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Abstract. The principal aim of this study is to present a new algorithm for solving some kinds of
weakly singular fractional integro-differential equations. The suggested algorithm uses the shifted sixth-
kind Chebyshev polynomials together with the collocation method. Using the suggested algorithm and
resultant operational matrices, the main equation converts into a system of algebraic equations which can
be efficiently solved. Some theorems are proved and used to deduce an upper error bound for this method.
Also, several examples are presented to illustrate the efficiency of the suggested algorithm compared to
other methods in the literature. The suggested algorithm provides accurate results, even using a few terms
of the proposed expansion.

1. Introduction

In recent years, many phenomena in engineering, physics, chemistry, and other sciences have been
modeled successfully by mathematical tools of fractional calculus (.i.e. theory of derivatives and integrals
of arbitrary orders)[1–7]. Therefore, with the development of fractional calculus in modeling natural
phenomena, theoretical and numerical analysis of these equations has been paid much attention by some
researchers. (see previous works[8–14]).

Many natural phenomena in physical science have been formulated as fractional order integro-differential
equations with weakly singular kernels. These kinds of equations arise in the field of elasticity and fracture
mechanics [15], radiative equilibrium [16], heat conduction problems [17], and other applications of these
equations can be found in [18–20]. So far, there are a few achievements in the numerical methods for solving
fractional order weakly singular integro-differential equations, for example second kind Chebyshev polyno-
mials [21], Euler functions (FEFs)[22], Legendre wavelet method [23], modified hat functions (MHFs) [24],
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spline collocation method [25], piecewise polynomial [26], the second kind Chebyshev wavelets (SCW)
method [27], least residue method [28]. Since solving these equations analytically is hard or not even
possible, thus the approximation of the solutions of these equations leads to a new subject.

In this paper, we study three type of fractional order weakly singular equations as follows

D
ηu(x) = q(x)u(x) + θ1

∫ x

0

H(x, z)u(z)
(x − z)κ

dz + θ2

∫ 1

0
H̄(x, z)u(z) dz + 1(x), (1)

D
ηu(x) = u(x) + θ1

∫ x

0

H(x, z)Dϑu(z)
(x − z)κ

dz + θ2

∫ 1

0
H̄(x, z)u(z) dz + 1(x), 0 < ϑ ≤ η, (2)

D
ηu(x) = u2(x) + θ1

∫ x

0

H(x, z)Dϑu(z)
(x − z)κ

dz + θ2

∫ 1

0
H̄(x, z)u2(z) dz + 1(x), 0 < ϑ ≤ η. (3)

The general form of these equations is as below

D
ηu(x) = F(x,u(x)) + θ1

∫ x

0

F (x, z,u(z),Dϑu(z))
(x − z)κ

dz + θ2

∫ 1

0
F̄ (x, z,u(z)) dz + 1(x), x ∈ [0, 1],

u j(0) = u j
0, j = 0, 1, . . . ,m − 1, m − 1 < η ≤ m,

(4)

where m = ⌈η⌉ is the ceiling function of η,F(x,u(x)) and 1(x) are known and continuous functions on [0, 1].
F (x, z,u(z),Dϑu(z)), F̄ (x, z,u(z)) are linear or nonlinear and sufficiently smooth functions, and u(x) ∈ Cm[0, 1]
is an unknown function. Dη and Dϑ are Caputo fractional derivative operators where 0 ≤ ϑ ≤ η. The
parameters θi, κ ∈ R, such that −1 ≤ θi ≤ 1, i = 1, 2, and 0 < κ < 1.

Existence and uniqueness of the solutions of Eq. (4) provided in Das et al. [29] and also Biazar and sadri
in [30]. A popular way to solve functional equations is to express the solution as a linear combination of the
basis functions. Among the family of polynomials, the Chebyshev polynomials usually give the near-best
approximation. Due to their orthogonality, they are proper to obtain the operational matrices. So far, the first
kind and second kind of Chebyshev polynomials have been used for weakly singular fractional Volterra
integro-differential equations and fractional integro-differential equations with weakly singular kernels
(see [21, 31]). But the sixth-kind Chebyshev polynomials, due to the complicated analytical form and their
weight function, have been used rarely as a basis function. The basic formula and properties of this class
of polynomials can be seen in [32–34] . The main aim of this paper is to consider the sixth-kind Chebyshev
polynomials as less used basis functions for solving fractional weakly singular integro-differential equations.
Also, we attempt to increase calculation speed by providing algorithms to approximate the singular integral
or nonlinear functions without any integration, as Kumar et al. in [40] presented another solution for cost
reduction. We demonstrate the obtained approximations of these polynomials are more accurate than
the obtained approximations of the second kind. Despite the long and complicated computations, the
numerical approach based on sixth-kind Chebyshev polynomials is fast. Moreover, we already knew the
distribution of roots of different kinds of Chebyshev polynomials on the interval [0, 1], we intend to consider
the influence of the distribution of roots of the sixth-kind Chebyshev polynomials on [0, 1]. Therefore, using
sixth-kind Chebyshev polynomials we derive the fractional operational matrices of fractional and integer
orders and the product operational matrix by presenting some useful algorithms. Also, we introduce an
operational matrix to approximate the integral part with the singular kernel in Eq. (4). By substitution
proper approximations in Eq. (4), the original equation converts into an algebraic equation that is collocated
at N + 1 roots of the (N + 1)th shifted sixth-kind Chebyshev polynomial (SSKCP). By solving this algebraic
system, the approximate solution of the original equation is obtained. The nonlinear system can be solved
by the well-known Newton iterative method in [35, 36]. In this paper, we use shifted sixth-kind Chebyshev
polynomials and acquire a numerical solution of the fractional integro-differential with weakly singular
kernels without any integration and multiplication operations on the basic vector. This method is accurate,
advantageous, and easy to implement. We arrange the rest of this paper as follows. In Section 2, we present
some basic definitions and properties of fractional calculus and shifted sixth-kind Chebyshev polynomials.
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Section 3 is focused on constructing operational matrices of SSKCPs. In Section 4, a collocation method
based on shifted sixth-kind Chebyshev polynomials is implemented. The error analysis of the proposed
method is discussed in Section 5 and convergence of the presented method is investigated in section 6.
Some numerical test examples are provided in Section 7. Finally, in Section 8 the main conclusions are
presented.

2. Definitions and Preliminaries

In this section, we recall some definitions and properties of fractional integral and derivative, which will
be used later. After that, some necessary definitions and fundamental properties of the shifted sixth-kind
Chebyshev polynomials are reviewed briefly.

2.1. Fractional calculus
Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f (x) is defined as[1, 12]

Jα f (x) =
1
Γ(α)

∫ x

0
(x − z)α−1 f (z) dz, α > 0, x > 0.

The above integral exist almost everywhere for any absolutely integrable function f (x).

Definition 2.2. Let α ∈ R, n − 1 < α ≤ n, n ∈ N and f (x) is an absolutely continuous function on the interval
[0,∞), then the Caputo fractional derivative of order α > 0 is defined by[1, 21] 0D

α
x f (x) =

1
Γ(n − α)

∫ x

0

f n(z)
(x − z)α+1−n dz,

f (n)(z), α = n,

where Γ(x) is the Gamma function given as follows

Γ(x) =
∫
∞

0
e−zzx−1 dz, Rez > 0,

with the property Γ(x + 1) = xΓ(x). Also, the Beta integral can be computed using the Gamma function as

B(u, v) =
∫ 1

0
zu−1(1 − z)v−1 dz =

Γ(u)Γ(v)
Γ(u + v)

, Reu > 0,Rev > 0.

The Riemann-Liouville integral, Jα, and the Caputo fractional derivative, Dα, operators satisfy the following
properties

1. Jα1 (Jα2 f (x)) = Jα2 (Jα1 f (x)) = Jα1+α2 f (x),
2. Jα(λ1 f (x) + λ21(x)) = λ1 Jα f (x) + λ2 Jα1(x),

3. Jα(Dα f (x)) = f (x) −
∑n−1

i=0 f i(0)
xi

i!
, n − 1 < α ≤ n, x > 0,

4. Dαxγ =


0 α > γ,
Γ(γ + 1)
Γ(γ − α + 1)

xγ−α otherwise.
,

5. Jαxv =
Γ(v+1)
Γ(v+α+1) x

v+α, v > −1.

where α, α1, α2, γ ∈ R+ and ν, λ1, λ2 ∈ R.

Theorem 2.3. If f (x) is any continuous function on the interval [0,X] for some X > 0, then

D
α2D

α1 f (x) = Dα1D
α2 f (x) = Dα1+α2 f (x), x ∈ [0,X],

whereDα1 ,Dα2 are the Caputo derivative, α1, α2 ∈ R+ and α1 + α2 ≤ 1.

Proof. See[38].
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2.2. Shifted sixth-kind Chebyshev polynomials
Definition 2.4. The sixth-kind Chebyshev polynomials are orthogonal functions on the interval [−1, 1] and can be
determined by the following recursive formula[34]

S j(x) = xS j−1(x) −
j( j + 1) + (−1) j(2 j + 1) + 1

4 j( j + 1)
S j−2(x), j ≥ 2,

S0(x) = 1, S1(x) = x.

Definition 2.5. The shifted sixth-kind Chebyshev polynomials on [0, 1] defined by[33, 39]

S∗j(x) = S j(2x − 1), j = 0, 1, 2, · · · .

These polynomials have the following explicit analytic form

S∗j(x) =
j∑

k=0

ρkjxk, (5)

where

ρkj =


22k− j

(2k+1)!

j
2∑

i=⌊ k+1
2 ⌋

(−1)
j
2 +i+k (2i+k+1)!

(2i−k)! , j even,

22k− j+1

(2k+1)!( j+1)

j−1
2∑

i=⌊ k
2 ⌋

(−1)
j+1
2 +i+k(i+1)(2i+k+2)!

(2i−k+1)! , j odd.

(6)

Moreover, the shifted polynomials S∗j(x) are orthogonal on [0, 1] with respect to the weight function V(x) = (2x −

1)2
√

x − x2 in the sense that∫ 1

0
S∗i (x)S∗j(x)V(x) dx = λiδi j, (7)

λi =

 π
22i+5 , i even,
π(i+3)

22i+5(i+1) , i odd.
(8)

Now, let h(x) ∈ L2[0, 1] then h(x) can be approximated in terms of S∗j(x) as

h(x) ≈
N∑

j=0

ϱ jS∗j(x) = 𭟋TS(x) = ST(x)𭟋,

where

S(x) =
[
S∗0(x),S∗1(x), . . . ,S∗N(x)

]T
, 𭟋 =

[
ϱ0, ϱ1, . . . , ϱN

]T , (9)

where the coefficients ϱ j are given by

ϱ j =
1
λ j

∫ 1

0
h(x)S∗j(x)V(x) dx,

and λ j is defined in Eq. (8). Similarly, any continuous two-variable function, G(x, z), defined on [0, 1]× [0, 1] can be
approximated by means of the double-shifted sixth-kind Chebyshev polynomials as

G(x, z) ≈
N∑

j=0

N∑
i=0

1i jS∗i (x)S∗j(z) = ST(x)GS(z), (10)

where G is a (N + 1) × (N + 1) matrix and its entries are given by

1i j =
1
λiλ j

∫ 1

0

∫ 1

0
G(x, z)S∗i (x)S∗j(z)V(x)V(z) dxdz. (11)
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3. Operational matrices of SSKCPs

In this section, the formulas of operational matrices will be derived from the fractional order for the
sixth-kind Chebyshev polynomials. Some lemmas and theorems are proved in the following.

Lemma 3.1. If r ≥ l, l ∈N, then we have

∫ 1

0
xrS∗l (x)V(x) dx =

l∑
m=0

ρml
√
πΓ(r +m + 3

2 )
2Γ(r +m + 5)

(m2 +m + r2 + 2rm + 3 + r).

Proof. The lemma can be easily proved by the integration of analytic form SSKCPs Eq. (5).

Theorem 3.2. Let S(x) be the SSKCPs vector given by Eq. (9), µ ∈ R then

JµS(x) ≈P (µ)S(x),

where P (µ) is the (N + 1) × (N + 1) operational matrix of fractional integration of order µ in the Riemann-Liouville
sense, which is defined by

P (µ) =


ã00 ã01 . . . ã0N
ã10 ã11 . . . ã1N
...

...
. . .

...
ãN0 ãN1 . . . ãNN

 ,

ãi j =

i∑
l=0

ϖi jl, i = 0, . . . ,N, j = 0, . . . ,N. (12)

and ϖi jl are given by

ϖi jl = ρli
Γ(l + 1)Γ( 3

2 )
λ jΓ(l + µ + 1)

j∑
k=0

ρkj

[4Γ(l + µ + k + 7
2 )

Γ(l + µ + k + 5)
−

4Γ(l + µ + k + 5
2 )

Γ(l + µ + k + 4)
+
Γ(l + µ + k + 3

2 )
Γ(l + µ + k + 3)

]
, i, j = 0, . . . ,N.

Proof. By applying the Riemann-Liouville integral operator to the SSKCPs analytic form, we have

JµS∗i (x) =
i∑

l=0

ρli
Γ(l + 1)
Γ(l + µ + 1)

xµ+l, (13)

now, we can express xµ+l in terms of the shifted sixth-kind Chebyshev polynomials as the following

xµ+l
≈

N∑
j=0

C̃l jS∗j(x),

where the coefficients C̃l j, are given by

C̃l j =
1
λ j

∫ 1

0
xµ+lS∗j(x)V(x) dx,
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By substitution of the analytic form of the sixth-kind Chebyshev polynomials into the above integral and
using Beta function definition, we calculate the integral and we can rewrite Eq. (13) as follows

JµS(∗)
j (x) ≈

N∑
j=0

 i∑
l=0

ρli
Γ(l + 1)Γ( 3

2 )
λ jΓ(l + µ + 1)

×

j∑
k=0

ρkj

[4Γ(l + µ + k + 7
2 )

Γ(l + µ + k + 5)
−

4Γ(l + µ + k + 5
2 )

Γ(l + µ + k + 4)
+
Γ(l + µ + k + 3

2 )
Γ(l + µ + k + 3)

] S∗j(x)

=

N∑
j=0

ãi jS∗j(x).

where ãi j is given in Eq. (12). The last relation can be rewritten in the vector form as follows

JµS∗j(x) ≈ [ãi0, ãi1, . . . , ãiN] S∗j(x), i = 0, 1, ...,N.

This leads to the desired result.

In the following, some useful and applicable lemmas are presented to get the Chebyshev operational matrix
of product.

Lemma 3.3. If S∗j(x) and S∗i (x) are jth and ith shifthed sixth-kind Chebyshev polynomials, then we can write the
product of S∗j(x) and S∗i (x) as

⅁i+ j(x) = S∗i (x)S∗j(x) =
i+ j∑
k=0

χ(i, j)
k xk.

The coefficients χ(i, j)
k are computed by Algorithm 1 and the quantities ρrj are determined using Eq. (6).

Proof. See[30].

To clarify the performance of this algorithm consider two following Chebyshev polynomials of the sixth
kind

S∗4(x) =
3

16
− 4x + 20x2

− 32x3 + 16x4, S∗2(x) =
1
2
− 4x + 4x2.

Then, the direct product is

⅁(4,2)
4+2 (x) = S∗4(x)S∗2(x) =

3
32
−

11
4

x +
107

4
x − 112x3 + 216x4

− 192x5 + 64x6.



S. Yaghoubi et al. / Filomat 38:7 (2024), 2457–2486 2463

Algorithm 1 Computation of the quantity χ(i, j)
k

Input : i, j, ρmn
I f i ≥ j :
k = 0, 1, ..., i + j,
if k > i then
χ(i, j)

k =
∑ j

r=k−i ρ(k−r)iρrj,
else

r̂ = min{k, j}
χ(i, j)

k =
∑r̂

r=0 ρ(k− j)iρrj,
end if

I f i < j :
k = 0, 1, ..., i + j,
if k ≤ i then

r̂ = min{k, i},
χ(i, j)

k =
∑r̂

r=0 ρ(k−r)iρrj,
else

r̃ = min{k, j}
χ(i, j)

k =
∑r̃

r=k−i ρ(k−r)iρrj,
end if
Output : χ(i, j)

k

The coefficients in the above equation are computed using Algorithm 1 as follows

i = 4, j = 2, i + j = 6, i ≥ j :
k = 0, 1, . . . , 6 :

k = 0 < i, r̂ = min{0, 2} = 0, χ(4,2)
0 =

0∑
r=0

ρ0−r4ρr2 = ρ04ρ02 = (
3

16
)(

1
2

) =
3
32
,

k = 1 < i, r̂ = min{1, 2} = 1, χ(4,2)
1 =

1∑
r=0

ρ1−r4ρr2 = ρ14ρ02 + ρ04ρ12 = (−4)(
1
2

) + (
3

16
)(−4) =

−11
4
,

k = 2 < i, r̂ = min{2, 2} = 2, χ(4,2)
2 =

2∑
r=0

ρ2−r4ρr2 = ρ24ρ02 + ρ14ρ12 + ρ24ρ02

= (20)(
1
2

) + (−4)(−4) +
3

16
(4) =

107
4
,

k = 3 < i, r̂ = min{3, 2} = 2, χ(4,2)
3 =

2∑
r=0

ρ3−r4ρr2 = ρ34ρ02 + ρ24ρ12 + ρ14ρ22

= (−32)(
1
2

) + (20)(−4) + (−4)(4) = −112,

k = 4 = i, r̂ = min{4, 2} = 2, χ(4,2)
4 =

2∑
r=0

ρ4−r4ρr2 = ρ44ρ02 + ρ34ρ12 + ρ24ρ22

= (16)(
1
2

) + (−32)(−4) + (20)(4) = 216,

k = 5 > i, r̂ = min{0, 2} = 0, χ(4,2)
5 =

2∑
r=1

ρ5−r4ρr2 = ρ44ρ12 + ρ34ρ22 = (16)(−4) + (−32)(4) = −192,

k = 6 > i, r̂ = min{0, 2} = 0, χ(4,2)
6 =

2∑
r=2

ρ44ρ22 = 64,
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so we have

⅁i+ j(x) = S∗4(x)S∗2(x) =
6∑

k=0

χ(4,2)
k xk =

3
32
−

11
4

x +
107
4

x − 112x3 + 216x4
− 192x5 + 64x6.

Lemma 3.4. If S∗i (x), S∗j(x) and S∗k(x) are ith, jth and kth shifted sixth-kind Chebyshev polynomials then

di jk =

∫ 1

0
S∗i (x)S∗j(x)S∗k(x)V(x) dx =

j+k∑
r=0

i∑
l=0

√
πρliχ

(i, j)
k Γ(r + l + 3

2 )

2Γ(r + l + 5)
((l + r)(l + r + 1) + 3),

where χ(i, j)
k is obtained by Lemma 3.3.

Proof. According to Lemma 3.3, we can write

⅁ j+k(x) = S∗j(x)S∗k(x) =
j+k∑
r=0

χ( j,k)
r xr,

then

di jk =

∫ 1

0
S∗i (x)

j+k∑
r=0

χ( j,k)
r xrV(x) dx =

j+k∑
r=0

χ( j,k)
r

∫ 1

0
S∗i (x)xrV(x) dx.

The value of the integral is obtained by Lemma 3.1.

Assuming that E is a (N + 1) × 1 vector, we have

S(x)ST(x)E ≈ ẼS(x). (14)

where Ẽ is a (N + 1) × (N + 1) matrix, called the product operational matrix. The next theorem presents a
general form for entries of matrix Ẽ.

Theorem 3.5. The entries of matrix Ẽ in Eq. (14) are as follows

Ẽ jk =
1
λk

N∑
i=0

Eidi jk j, k = 0, 1, · · · ,N,

where di jk is obtained using Lemma 3.4, and Ei is the element of the vector E.

Proof. See[30].

Remark 3.6. Let S(x) be SSKCPs vector in Eq. (9) then

Q =

∫ 1

0
S(x)ST(x) dx

is a (N + 1) × (N + 1) matrix and its entries are determined as follows

Qi j =

i+ j∑
r=0

χ(i, j)
r

r + 1
,

the quantities χ(i, j)
r are introduced in Lemma 3.3.
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In the following, we get an approximation for the integral part with singular kernel in Eq. (4). Before
that, we present a theorem.

Theorem 3.7. The following relation is determined for 0 < κ < 1∫ x

0

zr

(x − z)κ
dz =

Γ(r + 1)Γ(1 − κ)
Γ(r − κ + 2)

xr−κ+1, r = 0, 1, 2, . . . . (15)

Proof. By substituting z = ξx into Eq.(15) and then using the definition of Beta function, we obtain

xr−κ+1
∫ 1

0
(1 − ξ)−κξr dξ =

Γ(1 − κ)Γ(r + 1)
Γ(r − κ + 2)

xr−κ+1, r = 0, 1, 2, . . . .

Now, we present an approximation of integral with a weakly singular kernel. For this purpose, see the
following theorem.

Theorem 3.8. Suppose that u(x) ∈ C[0, 1] and κ ∈ (0, 1) and u(x) ≈ ST(x)𭟋 = 𭟋TS(x) whereS(x) and 𭟋 are defined
by Eq. (9), then we have∫ x

0

u(z)
(x − z)κ

dz ≈ 𭟋T
ℑ

(κ)S(x),

where ℑ(κ) is a (N + 1) × (N + 1) matrix as follows

ℑ
(κ) =


σ00 σ01 . . . σ0N
σ10 σ11 . . . σ1N
...

...
. . .

...
σN0 ãN1 . . . σNN

 ,
and its entries are determined as follows

ℑ
(κ)
i j = σi j =

i∑
l=0

ρli
Γ(l + 1)Γ(1 − κ)
Γ(l − κ + 2)

C̃ j(l−κ+1), i, j = 0, 1, . . . ,N.

where the quantities ρli and C̃ j(l−κ+1) are introduced in relation (6) and Theorem 3.2, respectively.

Proof. By definition of vector S(x) and Eq. (5), we can write

ST(x) =
[
S∗0(x),S∗1(x), . . . ,S∗N(x)

]
=

 0∑
l=0

ρl0xl, . . . ,
N∑

l=0

ρlNxl

 ,
applying Theorem 3.7, we have∫ x

0

ST(z)
(x − z)κ

dz =

 0∑
l=0

∫ x

0
ρl0

zl

(x − z)κ
dz, . . . ,

N∑
l=0

ρlN

∫ x

l=0

zl

(x − z)κ
dz


=

 0∑
l=0

ρl0
Γ(l + 1)Γ(1 − κ)
Γ(l − κ + 2)

xl−κ+1, . . . ,
N∑

l=0

ρlN
Γ(l + 1)Γ(1 − κ)
Γ(l − κ + 2)

xl−κ+1

 .
(16)
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Now, we approximate xl−κ+1 in terms of SSKCPs

xl−κ+1
≈

N∑
j=0

C̃ j(l−κ+1)S∗j(x),

and

C̃ j(l−κ+1) =
1
λ j

∫ 1

0
xl−κ+1S∗j(x)V(x) dx, j = 0, 1, . . . ,N

where C̃ j(l−κ+1) are obtained by applying Theorem 3.2. Thus

i∑
l=0

ρli
Γ(l + 1)Γ(1 − κ)
Γ(l − κ + 2)

xl−κ+1
≈

N∑
j=0

 i∑
l=0

ρliΓ(l + 1)Γ(1 − κ)C̃ j(l−κ+1)

Γ(l − κ + 2)

 S∗j(x)

=

N∑
j=0

σi jS∗j(x), i = 0, 1, . . . ,N.

Eq. (16) is obtained as follows

∫ x

0

ST(z)
(z − x)κ

dz ≈


σ00 σ01 . . . σ0N
σ10 σ11 . . . σ1N
...

...
. . .

...
σN0 ãN1 . . . σNN




S∗0(x)
S∗1(x)
...

S∗N(x)

 = ℑ(κ)S(x).

4. Solution method

In this section, we apply the operational Chebyshev method to solve a class of the integro-differential
equations with the weakly singular kernel. For this aim, we consider Eqs. (1), (2), (3) under the condition
u(0) = 0. Where 0 < η < 1, q(x), H(x, z) and H̄(x, z) are continuous functions on intervals [0, 1] and
[0, 1] × [0, 1], respectively.

Now, we approximate these equations using matrices introduced in the previous section. We determine
the highest order of derivatives in Eqs. (1)-(3) and we approximate the functionDηu in a matrix form.

D
ηu(x) = Dη−ϑDϑu(x) ≈ ST(x)𭟋. (17)

From Theorem 3.2, we obtain

u(x) ≈ ST(x)P (η)T𭟋 = ST(x)F1, F1 =P (η)T𭟋, (18)

D
ϑu(x) ≈ ST(x)P (η−ϑ)T𭟋 = ST(x)F2, F2 =P (η−ϑ)T𭟋, (19)

using Eq. (14), we have

S(x)ST(x)F1 = F̃1S(x), (20)

Then, the nonlinear function is approximated as follows

u2(x) ≈ (ST(x)F1)T(ST(x)F1) = FT
1S(x)ST(x)F1 ≈ F

T
1 F̃1S(x) = ST(x)U, U = F̃1

T
F1. (21)
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F̃1 is the operational matrix of the product corresponding to the vector F1, P (η), P (η−ϑ) are the operational
matrix of integration of the order η, η − ϑ, respectively. Using Eq. (10), we approximate the kernelsH(x, z)
and H̄(x, z) by

H(x, z) ≈ ST(x)HS(z), H̄(x, z) ≈ ST(x)H̄S(z). (22)

From Eqs. (20), (22) and Theorem 3.8 we have

∫ x

0

H(x, z)u(z)dz
(x − z)κ

≈

∫ x

0

ST(x)HS(z)ST(z)F1

(x − z)κ
dz

= ST(x)H
∫ x

0

S(z)ST(z)F1

(x − z)κ
dz

≈ ST(x)HF̃1

∫ x

0

S(z)
(x − z)κ

dz

≈ ST(x)HF̃1ℑ
(κ)S(x).

Similarly, by substituting Eq. (19) into integral
∫ x

0

H(x, z)Dϑu(z)
(x − z)κ

dz, we get

∫ x

0

H(x, z)Dϑu(z)
(x − z)κ

dz ≈ ST(x)HF̃2ℑ
(κ)S(x).

F̃2 is the operational matrix of the product corresponding to the vector F2 and matrix ℑ(κ) is introduced by
Theorem 3.8. From Eqs. (18) and (21), we approximate the second integral in Eqs. (1)-(3) as follows

∫ 1

0
H̄(x, z)u(z) dz ≈

∫ 1

0
ST(x)H̄S(z)ST(z)F1 dz

= ST(x)H̄
∫ 1

0
S(z)ST(z) dzF1

= ST(x)H̄QF1.

Where matrix Q is computed by Remark 3.6. Also, by substituting Eq. (21) into the integral in Eq. (3), we
have

∫ 1

0
H̄(x, z)u2(z) dz ≈

∫ 1

0
ST(x)H̄S(z)ST(z)U dz

= ST(x)H̄
∫ 1

0
S(z)ST(z) dzU

= ST(x)H̄QU.

By substituting the computed matrices and approximations into Eqs. (1)-(3), we get

ST(x)𭟋 − q(x)ST(x)F1 − θ1S
T(x)HF̃1ℑ

(κ)S(x) − θ2S
T(x)H̄QF1 − 1(x) ≈ 0,

ST(x)𭟋 −ST(x)F1 − θ1S
T(x)HF̃2ℑ

(κ)S(x) − θ2S
T(x)H̄QF1 − 1(x) ≈ 0,
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ST(x)𭟋 −ST(x)U − θ1S
T(x)HF̃2ℑ

(κ)S(x) − θ2S
T(x)H̄QU − 1(x) ≈ 0.

The resultant algebraic equations are collocated at N+1 roots of the (N+1)th shifted sixth-kind Chebyshev
polynomials. By evaluating equations at collocation points, we obtain linear and nonlinear system of
algebraic equations. We can solve a nonlinear system by the Newton iterative method. By solving the
resultant algebraic system, we can obtain an approximation for vector 𭟋, then we can get the approximate
solutions of Eqs. (1)-(3) using Eq. (18).

5. Error analysis

In this section, we present some theorems, then we get an upper error bound for approximation errors.
For this aim, we consider Eq. (1) and theorems for Eqs. (2) and (3) can be proved similarly.

Theorem 5.1. LetΥ(x) ∈ C[0, 1] andΥN(x) =
∑N

i=0 EiS∗i (x), be SSKCPs approximate function toΥ(x) on the interval
[0, 1]. Then, the coefficients Ei, for i = 0, 1, . . . ,N are bounded as follows

|Ei| ≤
MΥ

λi

i∑
m=0

ρmi

√
πΓ(m + 3

2 )
2Γ(m + 5)

(m2 +m + 3), (23)

whereMΥ indicates the maximum value of Υ(x) on the interval [0, 1].

Proof. Using Eqs. (5) and (7) for i = 0, 1, . . . ,N. we have

Ei =
1
λi

∫ 1

0
Υ(x)S∗i (x)V(x) dx =

1
λi

∫ 1

0
Υ(x)

i∑
m=0

ρmixmV(x) dx

=
1
λi

i∑
m=0

ρmi

∫ 1

0
Υ(x)xmV(x) dx.

(24)

Since Υ(x) is a continuous function on the interval [0, 1], so it is bounded and there is a constantMΥ such
that

|Υ(x)| ≤ MΥ. ∀x ∈ [0, 1]. (25)

Using Eqs. (24) and (25), inequality (23) is deduced.

Theorem 5.2. Suppose that Υ(x) is a continuous function and ΥN(x) is an approximation to Υ(x) in terms of
SSKCPs. Then, a bound for the approximation error can be achieved as follows

∥Υ(x) − ΥN(x)∥2 ≤
( ∞∑

i=N+1

Ωi

) 1
2
= ΩN,

where ∥.∥2 denotes L2-norm and

Ωi =
M

2
Υ

λi

i∑
m=0

(
ρmi

√
πΓ(m + 3

2 )
2Γ(m + 5)

(m2 +m + 3)
)2
.
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Proof. Assume that Υ(x) is an arbitrary function. So, Υ(x) and ΥN(x) using SSKCPs have following forms

Υ(x) =
∞∑

i=0

EiS∗i (x), ΥN(x) =
N∑

i=0

EiS∗i (x),

so,

Υ(x) − ΥN(x) =
∞∑

i=N+1

EiS∗i (x). (26)

Using Eqs. (7), (26) and Theorem 5.1, we have

∥Υ(x) − ΥN(x)∥22 =
∫ 1

0
|Υ(x) − ΥN(x)|2V(x) dx =

∫ 1

0

( ∞∑
i=N+1

EiS∗i (x)
)2

V(x) dx

=

∫ 1

0

∞∑
j=N+1

∞∑
i=N+1

EiE jS∗i (x)S∗j(x)V(x) dx =
∞∑

i=N+1

E
2
i λi ≤

∞∑
i=N+1

Ωi.

Remark 5.3. In the proof of Theorem 5.2, If m (or N) is sufficiently large, we have from Stirling formula

Γ(m + 3
2 )

Γ(m + 5)
≤ c∗m

3
2−5 = c∗m

−7
2 ,

where c∗ is a positive constant.

Theorem 5.4. IfH(x, y) is any continuous two-variable function and approximated on the interval [0, 1]× [0, 1] by

SSKCPs asHN(x, y) =
N∑

i=0

N∑
j=0
Hi jS∗i (x)S∗j(y), then coefficientsHi j can be bounded as follows

|Hi j| ≤
MHπ

4λiλ j

i∑
m=0

ρmiΓ(m + 3
2 )

Γ(m + 5)
(m2 +m + 3)

j∑
r=0

ρrjΓ(r + 3
2 )

Γ(r + 5)
(r2 + r + 3), i, j = 0, 1, . . . ,N

whereMH denotes the maximum value ofH(x, y) on the interval [0, 1] × [0, 1].

Proof. Using Eq. (5) and (11), we have

Hi j =
1
λiλ j

∫ 1

0

∫ 1

0
H(x, y)S∗i (x)S∗j(y)V(x)V(y) dxdy

=
1
λiλ j

∫ 1

0

i∑
m=0

ρmixmV(x)
( ∫ 1

0
H(x, y)

j∑
r=0

ρrjyrV(y)dy
)

dx

=
1
λiλ j

i∑
m=0

ρmi

j∑
r=0

ρrj

∫ 1

0

∫ 1

0
xm
H(x, y)yrV(x)V(y) dxdy.

(27)

Where λi is the normalization factor introduced in Eq. (8). Since H(x, y) is a continuous function on the
interval [0, 1] × [0, 1] and it is bounded. So, there is a constantMH such that

|H(x, y)| ≤ MH , ∀(x, y) ∈ [0, 1] × [0, 1]. (28)

Using Eqs. (27) and (28), Theorem 5.4 is proved.
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Theorem 5.5. Assume that H(x, y) is a continuous two-variable function such that HN(x, y) is the SSKCPs ap-
proximate function toH(x, y). Then the error bound can be obtained as follows

∥H(x, y)(x) −HN(x, y)∥2 ≤
( N∑

i=0

∞∑
j=N+1

ς2
i jλiλ j

) 1
2

+
( ∞∑

i=N+1

∞∑
j=0

ς2
i jλiλ j

) 1
2
= ΛH ,

ςi j =
MHπ

4λiλ j

i∑
m=0

ρmi
Γ(m + 3

2 )
Γ(m + 5)

(m2 +m + 3)
j∑

r=0

ρrj
Γ(r + 3

2 )
Γ(r + 5)

(r2 + r + 3).

Proof. Suppose that H(x, y) is an arbitrary function. SSKCPs series of H(x, y) and its approximation in
terms of SSKCPs have the following form

H(x, y) =
∞∑

i=0

∞∑
j=0

Hi jS∗i (x)S∗j(y), HN(x, y) =
N∑

i=0

N∑
j=0

Hi jS∗i (x)S∗j(y),

thus

H(x, y) −HN(x, y) =
N∑

i=0

∞∑
j=N+1

Hi jS∗i (x)S∗j(y) +
∞∑

i=N+1

∞∑
j=0

Hi jS∗i (x)S∗j(y), (29)

using Eqs. (7), (29) and Theorem 5.4, we conclude that

∥H(x, y)(x) −HN(x, y)∥2 ≤∥
N∑

i=0

∞∑
j=N+1

Hi jS∗i (x)S∗j(y)∥2 + ∥
∞∑

i=N+1

∞∑
j=0

Hi jS∗i (x)S∗j(y)∥2

=

( ∫ 1

0

∫ 1

0

( N∑
i=0

∞∑
j=N+1

Hi jS∗i (x)S∗j(y)
)2

V(x)V(y) dydx
) 1

2

+

( ∫ 1

0

∫ 1

0

( ∞∑
i=N+1

∞∑
j=0

Hi jS∗i (x)S∗j(y)
)2

V(x)V(y) dydx
) 1

2

=
( N∑

i=0

∞∑
j=N+1

H
2
i jλiλ j

) 1
2
+

( ∞∑
i=N+1

∞∑
j=0

H
2
i jλiλ j

) 1
2

≤

( N∑
i=0

∞∑
j=N+1

ς2
i jλiλ j

) 1
2
+

( ∞∑
i=N+1

∞∑
j=0

ς2
i jλiλ j

) 1
2
.

In Theorem 5.6, we will achieve an upper error bound of the presented method. Assume that the
following assumptions are satisfied

1. ∥H(x, y)∥2 ≤ MH , ∥H̄(x, y)∥2 ≤ MH̄
,

2. ∥q(x)u(x) − q(x)uN(x)∥2 ≤ β∥u(x) − uN(x)∥2, ∥q(x)∥∞ ≤ β,

3. ∥uN(x)∥2 ≤
( N∑

i=0

M
2
uN
λi

( i∑
l=0
ρli

√
πΓ(l+ 3

2 )
2Γ(l+5) (l2 + l + 3)

)2) 1
2
= ΘN.
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Theorem 5.6. Suppose that u(x) and uN(x) are the exact and approximate solution respectively of Eq. (1). Moreover,
assume that Hypotheses 1-3 are satisfied and also β

Γ(η+1) +
|θ1 |Γ(1−κ)
Γ(η−κ+2)MH +

3|θ2 |

Γ(η+2)MH̄
< 1, then an error bound for the

method can be achieved as follows

∥u(x) − uN(x)∥2 ≤
∆N +

(
|θ1 |Γ(1−κ)
Γ(η−κ+2)ΛH +

3|θ2 |

Γ(η+2)ΛH̄
)
ΘN

1 −
(
β

Γ(η+1) +
|θ1 |Γ(1−κ)
Γ(η−κ+2)MH +

3|θ2 |

Γ(η+2)MH̄

) .
Proof. We apply the Riemann-Liouville integral operator on Eq. (1) and obtain the following equation

u(x) = G(x) +
1
Γ(η)

∫ x

0
(x − z)η−1q(z)u(z) dz +

θ1Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
(x − z)η−κH(x, z)u(z) dz

+
θ2

Γ(η)

∫ 1

0

∫ x

0
(x − z̃)η−1

H̄(z̃, z)u(z) dz̃dz,
(30)

where G(x) = 1
Γ(η)

∫ x

0 (x − z)η−11(z)dz +
∑m−1

j=0
u j

0x j

Γ( j+1) . We can write the approximate equation of Eq. (30) as
follows

uN(x) = G(x) +
1
Γ(η)

∫ x

0
(x − z)η−1q(z)uN(z) dz +

θ1Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
(x − z)η−κHN(x, z)uN(z) dz

+
θ2

Γ(η)

∫ 1

0

∫ x

0
(x − z̃)η−1

H̄N(z̃, z)uN(z) dz̃dz +HN(x),
(31)

where HN(x) is the perturbation term. We subtract Eq. (31) from Eq. (30) and obtain the following result

u(x) − uN(x) = −HN(x) +
1
Γ(η)

∫ x

0
(x − z)η−1q(z)(u(z) − uN(z)) dz

+
θ1Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
(x − z)η−κ(H(x, z)u(z) −HN(x, z)uN(z)) dz

+
θ2

Γ(η)

∫ 1

0

∫ x

0
(x − z̃)η−1(H̄(z̃, z)u(z) − H̄N(z̃, z)uN(z)) dz̃dz.

(32)

First, we obtain a bound for the perturbation term.

∥HN(x)∥2 ≤ ∥u(x) − uN(x)∥2 +
1
Γ(η)

∫ x

0
|x − z|η−1

∥q(z)∥∞∥u(z) − uN(z)∥2 dz

+
|θ1|Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
|x − z|η−κ∥H(x, z)u(z) −HN(x, z)uN(z)∥2 dz

+
|θ2|

Γ(η)

∫ 1

0

∫ x

0
|x − z̃| η−1

∥H̄(z̃, z)u(z) − H̄N(z̃, z)uN(z)∥2 dz̃dz.

Using Hypothesis 2 and Theorem 5.2, we have

1
Γ(η)

∫ x

0
|x − z|η−1

∥q(z)∥∞∥u(z) − uN(z)∥2 dz ≤
β

Γ(η + 1)
∥u(x) − uN(x)∥2 ≤

β

Γ(η + 1)
ΩN. (33)

From Hypotheses 1 and 3 and Theorems 5.2 and 5.5, the following inequalities are obtained
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|θ1|Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
|x − z|η−κ∥H(x, z)(u(z) − uN(z)) + uN(z)

(
H(x, z) −HN(x, z)

)
∥2 dz

≤
|θ1|Γ(1 − κ)
Γ(η − κ + 2)

MH∥u(x) − uN(x)∥2 +
|θ1|Γ(1 − η)
Γ(η − κ + 2)

ΛH∥uN(x)∥2

≤
|θ1|Γ(1 − κ)
Γ(η − κ + 2)

MHΩN +
|θ1|Γ(1 − η)
Γ(η − κ + 2)

ΛHΘN,

(34)

|θ2|

Γ(η)

∫ 1

0

∫ x

0
|x − z̃|η−1

∥H̄(z̃, z)(u(z) − uN(z)) + uN(z)(H̄(z̃, z) − H̄N(z̃, z))∥2 dz̃dz

≤
3|θ2|

Γ(η + 2)
M
H̄
∥u(x) − uN(x)∥2 +

3|θ2|ΛH̄
Γ(η + 2)

∥uN(x)∥2

≤
3|θ2|

Γ(η + 2)
M
H̄
ΩN +

3|θ2|ΛH̄
Γ(η + 2)

ΘN.

(35)

From Theorem 5.2 and Eqs. (33)-(35), we can get the following upper bound for HN(x)

∥HN(x)∥2 ≤
(
1 +

β

Γ(η + 1)
+
|θ1|Γ(1 − κ)
Γ(η − κ + 2)

MH +
3|θ2|

Γ(η + 2)
M
H̄

)
ΩN

+
(
|θ1|Γ(1 − η)
Γ(η − κ + 2)

ΛH +
3|θ2|ΛH̄
Γ(η + 2)

)
ΘN

= ∆N.

Again, we consider Eq. (32). So, we have

∥u(x) − uN(x)∥2 ≤ ∥HN(x)∥2 +
1
Γ(η)

∫ x

0
|x − z|η−1

∥q(z)∥∞∥u(z) − uN(z)∥2 dz

+
|θ1|Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
|x − z|η−κ∥H(x, z)u(z) −HN(x, z)uN(z)∥2 dz

+
|θ2|

Γ(η)

∫ 1

0

∫ x

0
|x − z̃| η−1

∥H̄(z̃, z)u(z) − H̄N(z̃, z)uN(z)∥2 dz̃dz

≤ ∥HN(x)∥2 +
β

Γ(η + 1)
∥u(x) − uN(x)∥2

+
|θ1|Γ(1 − κ)
Γ(η − κ + 2)

MH∥u(x) − uN(x)∥2 +
|θ1|Γ(1 − η)
Γ(η − κ + 2)

ΛH∥uN(x)∥2

+
3|θ2|

Γ(η + 2)
M
H̄
∥u(x) − uN(x)∥2 +

3|θ2|ΛH̄
Γ(η + 2)

∥uN(x)∥2.

In a similar way, we obtain the following upper bound for our method error

∥u(x) − uN(x)∥2 ≤
∆N +

(
|θ1 |Γ(1−κ)
Γ(η−κ+2)ΛH +

3|θ2 |

Γ(η+2)ΛH̄
)
ΘN

1 −
(
β

Γ(η+1) +
|θ1 |Γ(1−κ)
Γ(η−κ+2)MH +

3|θ2 |

Γ(η+2)MH̄

) .
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Remark 5.7. Consider the linearity property of Caputo derivative and Lipschitz condition as follows

D
ϑu(x) −DϑuN(x) = Dϑ(u(x) − uN(x)),

∥D
ϑ(u(x) − uN(x))∥2 ≤ γ∥u(x) − uN(x)∥2

(36)

and

∥D
ϑuN(x)∥2 ≤ ΨN. (37)

Also, we can rewrite the non-linear expression as

u2(x) − u2
N(x) = (u(x) − uN(x))(u(x) − uN(x) + 2uN(x)). (38)

Now, similar to the linear case to obtain an error estimate in the non-linear case, first, we form the residual function
and using Eqs. (36)–(38) and applying norm-L2 to both sides of the residual function, we have

∥u(x) − uN(x)∥2 ≤ ∥HN(x)∥2 +
1

Γ(η + 1)
∥u(x) − uN(x)∥2

(
∥u(x) − uN(x)∥2 + 2∥uN(x)∥2

)
+
|θ1|γΓ(1 − κ)MH

Γ(η − κ + 2)
∥u(x) − uN(x)∥2 +ΨNΛH +

3|θ2|MH̄

Γ(η + 2)
∥u(x) − uN(x)∥2

+
3|θ2|ΛH̄
Γ(η + 2)

∥uN(x)∥2

(39)

Substituting the attained upper bounds into the right hand-side of Eq. (39), for sufficiently large N, the error bound
can be obtained sufficiently small.

6. Convergence analysis

In this section, we consider the convergence of the presented method in the Chebyshev-weighted sobolev
space. A different method for discrete problems can be found in [41]. We will demonstrate convergence for
Eq. (1), and the proofs for Eq. (2) and Eq. (3) are similar.

Definition 6.1. The Chebyshev-weighted sobolev space is indicate as

CHm
w (I) =

{
z(x)

∣∣∣∣∣dkz
dxk
∈ L2

w(I), 0 ≤ k ≤ m,m ∈N
}
,

equipped with the following norm and semi-norm and inner product

∥z∥CHm
w =

( m∑
k=0

∥∥∥∥∥dkz
dxk

∥∥∥∥∥2

w

) 1
2

, |z|CHm
w =

∥∥∥∥∥dmz
dxm

∥∥∥∥∥
w
, < z, y >CHm

w=

m∑
k=0

〈
dkz
dxk
,

dky
dxk

〉
w
.

Theorem 6.2. Suppose that 0 ≤ m ≤ N and z(x) ∈ CHm
w (I). Also, let uN(x) be the sixth-kind Chebyshev approxima-

tion to the exact solution z(x). Then, we can obtain an error bound of the approximate solution as follows

∥z − zN∥L2
w
≤ cN

−9
4 m
|z|CHm

w ,

where c is a positive constant independent of N.

Proof. See[37].
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Definition 6.3. The two-dimensional Chebyshev-weighted sobolev space, CHm
w (Ω),m ∈N, is introduced as

CHm
w (Ω) =

{
Z(x, t) ∈ L2

w(Ω)|
∂i+ jZ(x, t)
∂xi∂t j ∈ L2

w(Ω), 0 ≤ i + j ≤ m
}
.

The norm of this space for ι = (ι1, ι2), ιi ∈ Z+, |ι| = ι1 + ι2 is defined by

∥Z∥CHm
w (Ω) =

( ∑
|ι|≤m

∥DιZ∥2L2
w(Ω)

)( 1
2 )
=

(∥∥∥∥∥ ∂|ι|Z∂xι1∂tι2

∥∥∥∥∥2

L2
w(Ω)

) 1
2
.

Theorem 6.4. Let 0 ≤ m < N + 1, Z(x, t) ∈ CHm
w (Ω) and ZN(x, t) be the Chebyshev approximation of Z(x, t). We

can obtain an error bound as follows

∥Z − ZN∥L2
w
≤

√

3C0N
−9
4 m

∥∥∥∥∥∂mZ
∂xm

∥∥∥∥∥
L2

m

.

where C0 is a positive constant independent of any function.

Proof. See[37].

Theorem 6.5. Assume that uN(x) is the approximate solution of Eq. (1) with q(x) = 1 obtained from the presented
method. If HN(x) is the perturbation term, then HN(x) −→ 0 as N is sufficiently large.

Proof. We first apply the Riemann-Liouville integral operator on Eq. (1), and we achieve the following
equation

u(x) = G(x) +
1
Γ(η)

∫ x

0
(x − z)η−1q(z)u(z) dz +

θ1Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
(x − z)η−κH(x, z)u(z) dz

+
θ2

Γ(η)

∫ 1

0

∫ x

0
(x − z̃)η−1

H̄(z̃, z)u(z) dz̃dz,
(40)

where G(x) = 1
Γ(η)

∫ x

0 (x − z)η−11(z)dz +
∑m−1

j=0
u j

0x j

Γ( j+1) . By substitution uN(x) (approximate solution of Eq. (1))
into Eq. (40), we have

uN(x) = G(x) +
1
Γ(η)

∫ x

0
(x − z)η−1q(z)uN(z) dz +

θ1Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0
(x − z)η−κHN(x, z)uN(z) dz

+
θ2

Γ(η)

∫ 1

0

∫ x

0
(x − z̃)η−1

H̄N(z̃, z)uN(z) dz̃dz +HN(x),
(41)

where HN(x) is the perturbation term. We subtract Eq. (41) from Eq. (40), and define the error function
eN = u(x) − uN(x).

eN(x) = −HN(x) +
1
Γ(x)

∫ x

0
(x − z)η−1q(z)eN(z) dz

+
θ1Γ(1 − κ)
Γ(η − κ + 1)

∫ x

0

(
H(x, z)eN(z) + (H(x, z) −HN(x, z))(u(z) − eN(z))

)
dz

+
θ2

Γ(η)

∫ 1

0

∫ x

0
(x − z̃)η−1

(
H̄N(z̃, z)eN(z) + (H̄(z̃, z) − H̄N(z̃, z))(u(z) − eN(z))

)
dz̃dz.

(42)
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Since q(z) is a continuous function on the interval [0, 1], therefore it is bounded. (∥q(x)∥∞ ≤ β). We utilize
the L2

−norm, Theorem 6.2 and Theorem 6.4, then we have

∥HN(x)∥L2
w
≤ N

−9
4 m
∥

dmu
dxm ∥L2

w

(
c +

c1β

Γ(η)
+

c2θ2Γ(κ)
Γ(η − κ + 1)

+
θ2c5

Γ(η)
∥H̄∥L2

w

)
+
√

3C0N
−9
4 m
∥u∥L2

w

( ć3θ1Γ(1 − κ)
Γ(η − κ + 1)

∥
∂m
H

∂xm ∥L2
w
+
θ2ć6

Γ(η)
∥
∂m
H̄

∂xm ∥L2
w

)
+
√

3C0N
−9
2 m
∥

dmu
dxm ∥L2

w

(c4θ1Γ(1 − κ)
Γ(η − κ + 1)

∥
∂m
H

∂xm ∥L2
w
+
θ2c7

Γ(η)
∥
∂m
H̄

∂xm ∥L2
w

)
.

where c, ći, ci, 1 ≤ i ≤ 7, are the positive constants. According to the boundedness of u(x),H(x, z), H̄(x, z), it
can be seen HN(x) −→ 0 as N −→ ∞.

Theorem 6.6. Suppose that u(x) and uN(x) are the exact and approximate solution of Eq. (1) , respectively. If we
define eN(x) = u(x) − uN(x), then eN(x) −→ 0 when N −→ ∞.

Proof. For obtaining the bound for method error, we use Theorem 6.2 and Theorem 6.4, thus we have

∥eN(x)∥L2
w
≤ A1N

−9
4 m
∥

dmu
dxm ∥L2

w
+
√

3C0A2N
−9
4 m
∥u∥L2

w
+
√

3C0A3N
−9
2 m
∥

dmu
dxm ∥L2

w
,

where

A1 = c +
c1β

Γ(η)
+

c2θ2Γ(1 − κ)
Γ(η − κ + 1)

+
θ2c5

Γ(η)
∥H̄∥L2

w
,

A2 =
ć3θ1Γ(1 − κ)
Γ(η − κ + 1)

∥
∂m
H

∂xm ∥L2
w
+
θ2ć6

Γ(η)
∥
∂m
H̄

∂xm ∥L2
w
,

A3 =
c4θ1Γ(1 − κ)
Γ(η − κ + 1)

∥
∂m
H

∂xm ∥L2
w
+
θ2c7

Γ(η)
∥
∂m
H̄

∂xm ∥L2
w
.

where c, ći, ci, 1 ≤ i ≤ 7, are the positive constants. When N −→ ∞ then the right-hand side tends to zero.

Here, we prepare the upper bounds to estimate the errors of the operational matrices in Theorem 3.2 and
Theorem 3.8. For this aim, we define the error vectors as follows

E(x) =
∫ x

0

ST(z)
(x − z)κ

dz − ℑ(κ)S(x) = [E0(x)E1(x) . . .EN(x)]T ,

F(x) = JµS(x) −P (µ)S(x) = [F0(x)F1(x) . . . FN(x)]T .

Where

En(x) =
∫ x

0

S∗n(z)
(x − z)κ

dz − ℑ(κ)
n S(x),

Fn(x) = JµS∗n(x) −P
(µ)
n S(x).

For n = 0, 1, . . . ,N,ℑ(κ)
n and P

(µ)
n are the nth rows of the operational matrices in Theorem 3.2 and Theorem

3.8.

Lemma 6.7. Consider En(x) =
∫ x

0

S∗n(z)
(x − z)κ

dz − ℑ(κ)
n S(x) ∈ CHm

w (I). Thus, we can obtain error bound for En(x) by

∥En(x)∥L2
w(I) ≤ CN

−9
4 m

( N∑
l=m

N∑
s=m

ρlnρsn
Γ(l + 1)Γ(l − κ)Γ(s + 1)Γ(s − κ)
Γ(l − κ −m)Γ(s − κ −m)

×

(
4B(l − 2κ − 2m +

11
3
,

3
2

) − 4B(l − 2κ − 2m +
9
2
,

3
2

) + B(l − 2κ − 2m +
7
2
,

3
2

)
)) 1

2
,

where B(u, v) is the Beta function.
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Proof. We set fn(x) =
∫ x

0
S∗n(z)

(x−z)κ dz. Then, we use definition of the semi-norm in the space CHm
w (I), we can

write

| fn(x)|2CHm
w (I) = ∥

dm

dx

∫ x

0

S∗n(z)
(x − z)κ

dz∥2L2
w(I) = ∥

N∑
l=0

ρln
Γ(l + 1)Γ(l − κ)
Γ(l − κ −m)

xl−κ−m+1
∥

2
L2

w(I)

=

N∑
l=m

N∑
s=m

ρlnρsn
Γ(l + 1)Γ(l − κ)Γ(s + 1)Γ(s − κ)
Γ(l − κ −m)Γ(s − κ −m)

×

∫ 1

0

(
4xl−2κ−2m+ 9

2 − 4xl−2κ−2m+ 7
2 + xl−2κ−2m+ 5

4

)
(1 − x)

1
2 dx

=

N∑
l=m

N∑
s=m

ρlnρsn
Γ(l + 1)Γ(l − k)Γ(s + 1)Γ(s − κ)
Γ(l − κ −m)Γ(s − κ −m)

×

(
4B(l − 2κ − 2m +

11
3
,

3
2

) − 4B(l − 2κ − 2m +
9
2
,

3
2

) + B(l − 2κ − 2m +
7
2
,

3
2

)
)
.

Using Theorem 6.2, we achieve the desired result.

Lemma 6.8. Assume Fn(x) = JµS∗n(x) −P
(µ)
n S(x) ∈ CHm

w(I). So, we can obtain an error bound of Fn(x) as follows

∥Fn∥L2
w(I)
≤ CN

−9
4 m

( n∑
l=p

n∑
s=p

ρlnρsn
Γ(l + 1)Γ(s + 1)

Γ(l −m + µ + 1)Γ(s −m + µ + 1)

×

(
4B(l + s − 2m + 2µ +

7
2
,

3
2

) − 4B(l + s − 2m + 2µ +
5
2
,

3
2

) + B(l + s + 2µ − 2m +
3
2
,

3
2

)
)) 1

2
.

Where p =
⌈
m − µ

⌉
.

Proof. We set fn(x) = JµS∗n(x), and we use the properties of the Caputo fractional derivative and Riemann-
Liouville integral. Thus, we have

| fn(x)|2CHm
w(I)
= ∥Dm JµS∗n(x)∥2L2

w(I)
= ∥Dm−µDµ(JµS∗n(x))∥2L2

w(I)
= ∥Dm−µS∗n(x)∥2L2

w(I)

= ∥

n∑
l=p

ρln
Γ(l + 1)

Γ(l −m + µ + 1)
xl−m+µ

∥
2
L2

w(I)

=

n∑
l=p

n∑
s=p

ρlnρsn
Γ(l + 1)Γ(s + 1)

Γ(l −m + µ + 1)Γ(s −m + µ + 1)

×

∫ 1

0

(
4xl+s+2µ−2m+ 5

2 − 4xl+s+2µ−2m+ 3
2 + xl+s+2µ−2m+ 1

2

)
(1 − x)

1
2 dx.

By using the Beta function definition and Theorem 6.2, we obtain the desired result.

7. Numerical illustration

In this section, some different fractional integro-differential equations with the weakly singular kernel
are solved by applying the suggested method. In order to evaluate the error of this method, we present the
absolute error and root-mean-square error

eN(x) = |u(x) − uN(x)|, ξN =
( ∫ 1

0
e2

N(x)V(x) dx
) 1

2
,
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where u(x) is the exact solution and uN(x) is the numerical solution by the presented method. In addition, to
measure the computational complexity of the proposed algorithm, the CPU time is computed for all given
examples. All algorithms are performed by Maple 18. In addition, we compute the convergence rate for all
examples. Hence, the convergence rate, Cr, for all examples is computed by the following formula:

Cr =

∣∣∣∣∣ln(Ei+1/Ei)
∣∣∣∣∣

ln(Ni+1/Ni)

where Ei is the maximum absolute error for N = Ni. Also, You can see the updated method to solve discrete
problems in [42].

Example 7.1. Consider the following fractional integro-differential equation with weakly singular kernel [21, 22]

D
ηu(x) = 2x −

16
15

x
1
2 u(x) +

∫ x

0
(x − z)−

1
2 u(z) dz, 0 ≤ x ≤ 1, (43)

with the initial condition u(0) = 0. The exact solution at η = 1 is u(x) = x2. We apply the computed approximations
in Section 3, and we get the following approximations

D
ηu(x) ≈ ST(x)𭟋, u(x) ≈ ST(x)P (η)T𭟋 = ST(x)U,

∫ x

0
(x − z)−

1
2 u(z) dz ≈ UT

ℑ
( 1

2 )S(x).

where P (η) is the operational matrix of integration of the order η, U =P (η)T𭟋 and ℑ( 1
2 ) is the matrix introduced by

Theorem 3.8. We substitute these approximations into Eq. (43) and get the following algebraic equation

ST(x)𭟋 − 2x +
16
15

x
1
2ST(x)U −UT

ℑ
( 1

2 )S(x) ≈ 0.

Figure 1: Plot of the function u(x) for N = 2 with η = 0.75, 0.85, .095, 1 for Example 7.1

In Figure 1 as η approached 1, the numerical solutions converge to the exact solution. Table 1 shows the root-
mean-square errors for different values of N and the comparison between results obtained from the introduced method
and SKCPs method, FEFs method reported by [21, 22] and also shows computed CPU time. From Table 1, we can
see that the errors decay as N increases, and the SSKCPs collocation method has smaller root-mean-square errors.
Figure 2 and Figure 3 display the numerical result for different values of N. The last column of Table 1 shows that the
proposed method has a reasonable computational time.
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Table 1: The root-mean-square errors ξN for different values of N for Example 7.1
N SKCPs method[21] FEFs method[22] SSKCPs method CPU time
2 1.0680 × 10−2 1.7113 × 10−4 1.1887 × 10−4 0.296
4 5.1492 × 10−5 2.7335 × 10−5 7.5333 × 10−6 0.375
6 1.7022 × 10−5 9.5741 × 10−6 6.8170 × 10−7 0.546
8 6.5612 × 10−5 6.2536 × 10−6 4.1744 × 10−8 0.749

Figure 2: Plot of the absolute error function with N = 2, 4, 6, 8 for Example 7.1

Table 2: Convergence rate for different value of N in Example 7.1
N 2, 4 4, 6 6, 8 8, 10 10, 12 12, 14 14, 16

Convergence rate (Cr) 4.2290 5.4384 4.7701 4.3071 4.8080 7.0391 4.6554

Example 7.2. Consider the following equation [21, 22]

D
1
3 u(x) = 1(x) −

32
35

x
1
2 u(x) +

∫ x

0
(x − z)−

1
2 u(z) dz, 0 ≤ x ≤ 1, (44)

where

1(x) =
6x

8
3

Γ( 11
3 )
+

(32
35
−
Γ( 1

2 )Γ( 7
3 )

Γ( 17
6 )

)
x

11
6 + Γ(

7
3

)x,
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Figure 3: ξN on logarithmic scale for Example 7.1

with the initial value u(0) = 0. The exact solution of this problem is u(x) = x3+x
4
3 . We substitute the approximations

given in Section 3 into Eq. (44), then we have the following algebraic equation

ST(x)𭟋 +
32
35

x
1
2ST(x)P ( 1

3 )𭟋 −UT
ℑ

( 1
2 )S(x) − 1(x) ≈ 0.

We apply the presented method to this example and we consider N = 2, 4, 6, 8. Table 3 shows the root-mean-square

Table 3: The root-mean-square errors ξN for different values of N for Example 7.2
N SKCPs method[21] FEFs method[22] SSKCPs method CPU time
2 1.3426 × 10−2 1.0502 × 10−2 5.1209 × 10−3 0.577
4 5.1379 × 10−4 2.6252 × 10−4 1.8074 × 10−4 0.702
6 1.5578 × 10−4 6.6216 × 10−5 5.1336 × 10−5 1.061
8 6.4612 × 10−5 4.8349 × 10−4 1.8356 × 10−5 1.435

errors for the SSKCPs collocation method, SKCPs method, and FEFs method with α = 1. It is seen that the results
obtained by the SSKCPs collocation method are more accurate than the other two methods in [21, 22]. Figure 4
displays the absolute error and Figure 5 shows root-mean-square errors for different values of N.

Table 4: Convergence rate for different value of N in Example 7.2
N 4, 6 6, 8 8, 10 10, 12 12, 14 14, 16 16, 18

Convergence rate (Cr) 2.5358 2.7257 2.8552 2.3939 2.3712 2.3927 2.4395

Example 7.3. Consider the following linear fractional integro-differential equation with the weakly singular kernel
[25, 30]

D
1
2 u(x) + x

1
2 u(x) +

∫ x

0
(x − z)−

1
4 u(z) dz +

∫ x

0
(x − z)−

1
3D

3
8 u(z) dz = 1(x), 0 ≤ x ≤ 1, (45)

where

1(x) =
3Γ2( 3

4 )
√

2
π

x
1
4 + 2x

5
4 +

2Γ2( 3
4 )

√
π

x
3
2 +

864Γ( 3
4 )Γ( 2

3 )Γ( 23
24 )

25πCsc( π24 )
x

25
24 ,
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Figure 4: Plot of the absolute error function with N = 2, 4, 6, 8 for Example 7.2

Figure 5: ξN on logarithmic scale for Example 7.2

with the initial condition u(0) = 0 and the exact solution is u(x) = 2x
3
4 . We substitute the approximations obtained

in Section 3 into Eq. (45) and get the following algebraic equation
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ST(x)𭟋 + x
1
2ST(x)F1 + F

T
1ℑ

( 1
4 )S(x) + F2ℑ

( 1
3 )S(x) − 1(x) ≈ 0, (46)

where F1 = P ( 1
2 )𭟋 and F2 = P ( 1

8 )T𭟋. By choosing N = 26, Eq. (46) is collocated at roots of S∗27(x). We solve
the resultant algebraic system and thus we can determine the unknown vector 𭟋. We computed the values of the
numerical solutions at points xi = 0.2i for i = 0, 1, . . . , 5 and N = 26, where the results are reported in Table 5. Table
6 displays the maximum absolute errors for different values of N and the comparison between the presented method,
Spline collocation method and the Jacobi collocation method. This table shows the results obtained from the SSKCPs
collocation method are consistent with the other two methods. Table 7 displays the numerical results for different
values of N.

Table 5: Values of absolute errors at equally spaced point for N = 26 in Example 7.3
xi Exact solution Approximate solution ErrorAbs

0.0 0.0000000 0.0075659 7.5659 × 10−3

0.2 0.5981395 0.5981647 2.5211 × 10−5

0.4 1.0059467 1.0059427 4.0836 × 10−6

0.6 1.3634632 1.3634351 2.8045 × 10−5

0.8 1.6917940 1.6917697 2.4346 × 10−5

1.0 2.0000000 1.9998943 1.0571 × 10−4

Table 6: Maximum absolute errors obtained from SSKCPs collocation, Jacobi collocation and Spline collocation methods in Example
7.3

Method N = 8 N = 16
SSKCPs collocation method 3.3350 × 10−2 1.4350 × 10−2

Jacobi collocation method[30] 2.8900 × 10−2 1.1579 × 10−2

Spline collocation method[25] 2.6400 × 10−2 1.6900 × 10−2

Table 7: Numerical results for Example 7.3
N Maximum absolute error CPU time
8 3.3350 × 10−2 1.825

16 1.4350 × 10−2 7.379
26 7.5659 × 10−3 31.62

Table 8: Convergence rate for different value of N in Example 7.3
N 10, 12 12, 14 14, 16 16, 18 18, 20 20, 22 22, 24

Convergence rate (Cr) 0.7084 0.8443 0.8584 1.0128 1.0109 1.1536 1.0960

Example 7.4. Consider the following linear fractional integro-differential equation with the weakly singular kernel[30]

D
1
3 u(x) =

∫ x

0

D
1
3 u(x)

(x − z)
1
2

dz +
6
Γ( 11

3 )
x

8
3 −

6
√
π

Γ( 25
6 )

x
19
6 , 0 ≤ x ≤ 1. (47)

The initial condition and exact solution of the problem are u(0) = 0 and u(x) = x3, respectively. We apply the
approximations introduced in Section 3 in Eq. (47) and we achieve the following algebraic equation
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ST(x)𭟋 − FT
ℑ

( 1
2 )S(x) −

6
Γ( 11

3 )
x

8
3 +

6
√
π

Γ( 25
6 )

x
19
6 ≈ 0,

where F = P ( 1
2 )T𭟋. We have calculated the numerical solution using the SSKCPs collocation method for N = 11.

In part (a) of Figure 6, we plotted the numerical and exact solutions and the part (b) displays the absolute error for
N = 11 that shows the numerical solution coincides with the exact solution. Figure 7 shows the absolute errors for
N = 3, 6, 11. CPU times for N = 3, 6 and 11 are 0.484, 0.749, 1.576s, respectively. From Table 9, we can see that
both of SSKCPs collocation method and Jacobi collocation method obtain good approximations to the exact solution
and the SSKCPs collocation method has a smaller absolute error than Legendre wavelet method.

Table 9: Maximum absolute errors obtained from SSKCPs collocation, Jacobi collocation and Legendre wavelet methods in Example
7.4

Method N = 3 N = 6 N = 11
SSKCPs collocation method 1.2395 × 10−2 8.5374 × 10−5 3.8206 × 10−6

Jacobi collocation method[30] 7.8474 × 10−3 1.3458 × 10−4 2.3492 × 10−6

Legendre wavelet method[23] 8.8579 × 10−2 1.4235 × 10−3 1.0105 × 10−3

Figure 6: (a) Exact and approximate solutions, (b) Absolute error function for N = 11 in Example 7.4

Table 10: Convergence rate for different value of N in Example 7.4
N 2, 4 4, 6 6, 8 8, 10 10, 12 12, 14 14, 16

Convergence rate (Cr) 5.6201 7.4105 4.1242 8.1978 3.9701 8.6586 3.9878

Example 7.5. As the last example, consider the following nonlinear fractional integro-differential equation with
weakly singular kernel [23, 30]

D
ηu(x) =

∫ x

0

u2(z)

(x − z)
1
2

dz +
∫ 1

0
xzu2(z)dz + 3x2

−
Γ(7)Γ( 1

2 )

Γ( 15
2 )

x
13
2 −

x
8
, 0 ≤ x ≤ 1, (48)
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Figure 7: Absolute error functions obtained by SSKCPs collocation method for N = 3, 6, 11 in Example 7.4

with u(0) = 0. The exact solution of the equation for η = 1 is u(x) = x3. Using Eq. (21) and the obtained operational
matrices, Eq. (48) converts into the following algebraic equation

ST(x)𭟋 −UT
ℑ

( 1
2 )S(x) −ST

HQU − 3x2 +
Γ(7)Γ( 1

2 )

Γ( 15
2 )

x
13
2 +

x
8
≈ 0, (49)

where U = F̃1
T
F1 and F1 = P (η)T𭟋 where F̃1 is the operational matrix of the product corresponding to the vector

F1. Table 11 displays the maximum absolute errors and the computing time that are obtained for different values of
N. We can see that by increasing N, good approximations are obtained to the exact solution. In Figure 8, we show
the SSKCPs collocation solutions and the exact solution for various values of η. It is evident from Figure 8 that as η
gets close to 1, the numerical solutions obtained from the SSKCPs collocation method converge to the exact solution.
Figure 9 shows a graphical comparison between the exact and approximate solutions and the plot of the absolute error
function in parts (a) and (b) for N = 11. In this figure, we can observe excellent agreement between the exact and
approximate solution.

Table 11: Numerical results for Example 7.5
N Maximum absolute error CPU time
3 2.6597 × 10−2 1.513
8 9.1313 × 10−9 5.148

11 3.0000 × 10−11 11.123
16 6.7636 × 10−13 38.438
20 4.8129 × 10−14 95.784

Table 12: Convergence rate for different value of N in Example 7.5
N 4, 6 6, 8 8, 10 10, 12 12, 14 14, 16 16, 18

Convergence rate (Cr) 17.3580 15.1978 13.5795 13.8716 13.2876 13.8285 13.2458
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Figure 8: Exact and numerical solutions for values of η = 0.8, 0.9, 1 and N = 11 in Example 7.5

Figure 9: (a) Exact and approximate solutions, (b) Absolute error function for N = 11 in Example 7.5

8. Conclusion

In this paper, we presented the numerical solution of a category of fractional integro-differential equa-
tions based on shifted sixth-kind Chebyshev polynomials. We applied these polynomials together with
the collocation method for solving the weakly singular fractional integro-differential equations. For this
aim, we derived the operational matrices of integration and product. We used these approximations, and
we converted the main equations into a linear or nonlinear system of algebraic equations that we solved
using the Newton iterative method. By solving the linear and nonlinear systems, approximate solutions are
achieved. Moreover, the error analysis of the proposed method was investigated. We solved some prob-
lems to show the applicability of the presented method. Graphical illustrations and tables of the numerical
results show very good consistency between the numerical results and the analytic solutions. The results
got by this method in comparison with some existing methods, such as the SKCPs collocation method, FEFs
method, and the Legendre wavelet method, are more precise, and the results obtained from the proposed
scheme are close to those of the Jacobi collocation method [30]. At the end of this paper, it should be noted
that CPU time had been calculated for all of the examples but Example 7.5 had a CPU time longer than the
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others. This issue can be due to nonlinear nature of Eq. (48). CPU time in this equation may be reduced if
a suitable approximation is substituted into the terms of the integral equation. However, our method can
be helpful in complicated calculations and faster than many other methods.
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