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Abstract. It is well-known that successive residuals may be correlated with each other, and serial correlation
usually result in an inefficient estimate in time series analysis. In this paper, we investigate the serial
correlation test of parametric regression models where the response is missing at random. Three test
statistics based on the empirical likelihood method are proposed to test serial correlation. It is proved that
three proposed empirical likelihood ratios admit limiting chi-square distribution under the null hypothesis
of no serial correlation. The proposed test statistics are simple to calculate and convenient to use, and they
can test not only zero first-order serial correlation, but also the higher-order serial correlation. A simulation
study and a real data analysis are conducted to evaluate the finite sample performance of our proposed test
methods.

1. Introduction

Testing for serial correlation has long been a standard practice in applied econometric analysis because if
the residuals are serially correlated, not only the least squares estimator is inefficient, it can be inconsistent if
the regressors contain lagged dependent variables. Hence, it is important to test the serial correlation of the
residuals before using the models. There exist some approaches to test serial correlation. For example, Chi
and Reinsel ([6], [7]) proposed score test based on likelihood function. This kind of test method usually has
good power when the error follows the normal distribution; see [37] and [12] for more details about score
test. However, when the normal distribution assumption is violated, the effect of the test is unsatisfactory.
In addition, the likelihood function is quite complex for the case of high order serial correlation, so the test
method is not easy to be extended to high order serial correlation test case. Another method is based on the
least squares residuals test, such as the well-known Durbin-Watson test, which is only suitable for testing
first-order serial correlation. Besides, [25] studied tests for serial correlation in semiparametric partially
linear panel data model and [5] extended their results to the pure time series case under certain mixing
conditions by the generalization of the Durbin h-statistic. Empirical likelihood (EL) based testing method
is an attractive approach for testing serial correlation, see [21] for example.
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Parametric regression models are frequently used to describe the association between a response variable
and its predictors, and have the following form:

Y = f (x, θ) + ε, (1)

where x = (X1, · · · ,Xm)T is a vector of the predictors, f (·, θ) is a known parameter function with unknown
parameter vector θ and ε is the model error. Examples of f (·, θ) include the widely used linear model
f (x, θ) = xTθ and a logistic model f (x, θ) = 1/{1 + exp(xTθ)}. Parametric regression models (1) have been
extensively studied by many authors. For example, Fan and Huang([15]) investigated the goodness-of-
fit test for parametric regression models by using the adaptive Neyman test. Van Keilegom et al.([13])
proposed a test statistic which measures the distance between the empirical distribution function of the
parametric and of the nonparametric residuals to study the goodness-of-fit tests in parametric regression
models. Dai and Müller([9]) applied nonparametric method to give efficient estimators for expectations of
a known function of response and covariates in parametric regression models with responses missing at
random (MAR).

The aforementioned articles mainly discussed the serial correlation test when the data are completely
observed. In practice, however, not all response measurements are observable due to various reasons such
as unwillingness of some sampled units to supply the desired information, loss of information caused by
uncontrollable factors, failure on the part of investigators to gather correct information, and so forth. Thus,
it is of interest for us to investigate serial correlation test with missing response. The simplest way of
dealing with missing response data is to just omit those participants who have any missing data among its
variables. Such an analysis is called a complete case (CC) analysis and is proved to be undesirable. It is
because the CC analysis may decrease the power of the analysis by decreasing the effective sample size. At
present, many authors have studied the processing methods for dealing with missing response data, such
as [11] for dimension reduction with MAR and [39] for robust model selection with MAR, among others.
In practice, one often obtains a random sample of incomplete data

(Yi, xi, δi), i = 1, · · · ,n,

where δi = 0 if Yi is missing and δi = 1 otherwise. The missing at random (MAR) assumption implies that
δ and Y are conditionally independent given x, or equivalently,

P(δ = 1 | Y, x) = P(δ = 1 | x) def
= π(x),

where π(x) is called a selection probability function. MAR is a common missing mechanism, which is more
general than missing completely at random (MCAR), see [27].

In this paper, our aim is to test the serial correlation for parametric regression model (1), when the
response Y is MAR and the covariate x is completely observed. In order to be able to test the serial correlation
both for zero first-order and higher-order cases, we propose three different EL-based test methods to check
the possible serial correlation in the model error. The EL method, firstly proposed by Owen (1988), defines
an empirical likelihood ratio function, and uses its maximum subject to a hypothesis that place restrictions
on the parameter to construct confidence region. This method uses only the data to determine the shape
and orientation of a confidence region and does not use the estimator of the asymptotic covariance. The
EL method has been used in various test problems. For example, Hu et al.([35]) proposed an empirical log-
likelihood ratio to test finite-order serial correlation in semiparametric varying-coefficient partially linear
models; Zhou et al.([42]) considered the spline empirical log-likelihood ratio for testing serial correlation
in partially nonlinear models; Liu et al.([34]) tested the serial correlation of partial linear models via
empirical likelihood ratio; Chen et al.([3]) constructed balanced adjusted empirical likelihood and obtained
the asymptotic normality of the empirical log-likelihood ratio statistic when the sample size and the data
dimension are comparable; Qin and Zhou([36]) proposed one-sided empirical likelihood method for the
complete independence test based on squared sample correlation coefficients.

The rest of this article is organized as follows. In Section 2, we construct three different test statistics
based on the EL method. The limiting distributions of the proposed test statistics under the null hypothesis
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are established in the section too. The performance of the tests via simulation study and a real data analysis
are demonstrated in Section 3. The concluding remarks are given in Section 4. All proofs of the main results
are given in the Appendix.

2. Methodology

In this section, our interest is to test whether the error εi are serially correlated. The null hypothesis to
be tested is that the errors εi are serially uncorrelated. The alternative hypothesis of interest is a p-th order
autoregression, denoted by AR(p) and written as

εi = a1εi−1 + a2εi−2 + · · · + apεi−p + ei,

or a p-th order moving average, denoted by MA(p) and written as

εi = a1ei−1 + a2ei−2 + · · · + apei−p + ei,

where ei are i.i.d. with E(ei) = 0 and var(ei) = σ2 < ∞. Assume that ai in AR(p) satisfies the stationary
condition that the roots of equation 1 − a1u − · · · − apup = 0 lie outside the unit circle. Let a = (a1, · · · , ap)T,
then our aim is to test whether a = 0p×1 or not. Denote γ =

(
γ1, γ2, · · · , γp

)
T, γk = E(εiεi+k), k = 1, 2, . . . , p,

i = 1, 2, . . . ,T, T = n − p. By the Yule-Walker equation, it is easy to find that testing whether a = 0p×1 or not
is equivalent to testing whether γ = 0p×1 or not. Therefore, our hypothesis testing problem becomes to

H0 : γ = 0p×1 vs H1 : γ , 0p×1. (2)

Let zi =
(
zi1, zi2, · · · , zip

)
T, where zik = εiεi+k, k = 1, · · · , p, i = 1, 2, . . . ,T, T = n − p. Note that E(zi) = 0p×1

under the null hypothesis H0. Then testing the serial correlation is equivalent to testing whether E(zi) is
equal to 0. However zik = {Yi − f (xi, θ)}{Yi+k − f (xi+k, θ)} cannot be used directly, since the responses Yi are
MAR and zik contain unknown parameter vector θ.

To deal with the MAR, we need to estimate the selection probability function π(x) beforehand. The
Nadaraya-Watson estimation approach is often used to estimate π(x). However, a fully nonparametric
estimation may suffer from the curse of dimensionality and hence unattractive, since the estimation precision
decreases rapidly as the dimension of x increases. In this situation, a parametric approach might be more
suitable to estimate π(x). Suppose that π(x) has a parametric structure π(x) = π(x,α), then one only need to
estimate the unknown parameter α. Specifically, we assume π(x,α) has the following logistic regression,

π(xi,α) =
1

1 + exp (−αTxi)
, i = 1, · · · ,n,

where α = (α1, · · · , αm)T is unknown parameter vector. By the maximum likelihood estimation method,
we can obtain the consistent maximum likelihood estimator α̂ of α. Then, the estimator of the selection
probability function is given as π̂(x) = π

(
x, α̂
)
= {1 + exp(−α̂Tx)}−1.

Below we employ the least-squares together with the inverse probability weight (IPW) method to obtain
the estimator of the unknown parameter θ, which is given by

θ̂ = arg min
θ

n∑
i=1

δi

π̂(xi)

{
Yi − f (xi, θ)

}2
.

Then, we can construct EL ratio function based on IPW method as follows,

R̃(1) = max

 T∏
i=1

Tpi

∣∣∣∣ T∑
i=1

pĩz
(1)
i = 0,

T∑
i=1

pi = 1, pi ≥ 0

 , (3)
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where z̃(1)
i =

(̃
z(1)

i1 , z̃
(1)
i2 , · · · , z̃

(1)
ip

)T
and z̃(1)

ik = ε̂iε̂i+k =
δiδi+k

π̂(xi)π̂(xi+k) {Yi − f (xi, θ̂)}{Yi+k − f (xi+k, θ̂)} for k = 1, 2, . . . , p,

i = 1, 2, . . . ,T. By the Lagrange multiplier method, the optimal solution of pi is given by pi = T−1
{
1 +

λTz̃(1)
i

}−1
, i = 1, 2, · · · ,T,where λ is the solution of the following equation,

T∑
i=1

z̃(1)
i

1 + λT̃z(1)
i

= 0. (4)

The corresponding empirical log-likelihood ratio is then

−2 log R̃(1) = 2
T∑

i=1

log{1 + λTz̃(1)
i }. (5)

Theorem 2.1. Suppose that conditions (C1)-(C4) in Appendix hold. Then under the null hypothesis H0, we have

−2 log R̃(1) d
−→ χ2

p, as n→∞,

where d
−→ stands for convergence in distribution and χ2

p is the central chi-square distribution with p degrees of
freedom.

Although IPW method is popular for solving the problem of response is MAR, it may not work well
when the selection probability is very small or the dimension of covariates is very high. In this circumstance,
the samples have a significant impact on the weighted averages due to the outrageous weights, which will
result in the biased estimation of sampling distribution. Therefore, this paper will also construct two
other test statistics based on imputation method for comparison. During the past research history, the
imputation is extraordinarily prevalent approach in dealing with the missing response, see [22] and [18]
for example. The directed purpose of imputation is to substitute the missing data with estimated values.
Let Ỹi = δiYi + (1 − δi) f (xi, θ̂) be the imputation estimator of Yi. Then we can construct the second EL ratio
function based on imputation method as follows,

R̃(2) = max

 T∏
i=1

Tpi

∣∣∣∣ T∑
i=1

pĩz
(2)
i = 0,

T∑
i=1

pi = 1, pi ≥ 0

 , (6)

where z̃(2)
i =

(̃
z(2)

i1 , z̃
(2)
i2 , · · · , z̃

(2)
ip

)T
and z̃(2)

ip = {Ỹi − f (xi, θ̂)} · {Ỹi+k − f (xi+k, θ̂)}, i = 1, · · · ,T, k = 1, · · · , p. Then the
empirical log-likelihood ratio function is given by

−2 log R̃(2) = 2
T∑

i=1

log(1 + λTz̃(2)
i ), (7)

where λ is the solution of the equation:
∑T

i=1
z̃(2)

i

1+λTz̃(2)
i

= 0.

Theorem 2.2. Suppose that conditions (C1)-(C4) in Appendix hold. Then under the null hypothesis H0, we have

−2 log R̃(2) d
−→ χ2

p.

Let Ŷi =
δi
π̂(xi)

Yi + {1 −
δi
π̂(xi)
} f (xi, θ̂) be another imputation estimator of Yi. Then the third EL ratio function is

given as follows:

R̃(3) = max

 T∏
i=1

Tpi

∣∣∣∣ T∑
i=1

pĩz
(3)
i = 0,

T∑
i=1

pi = 1, pi ≥ 0

 (8)
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where z̃(3)
i =

(̃
z(3)

i1 , z̃
(3)
i2 , · · · , z̃

(3)
ip

)T
, z̃(3)

ik = {Ŷi− f (xi, θ̂)} · {Ŷi+k− f (xi+k, θ̂)}, i = 1, 2, · · · ,T and k = 1, 2, · · · , p. Then
the third empirical log-likelihood ratio function can be given by,

−2 log R̃(3) = 2
T∑

i=1

log(1 + λTz̃(3)
i ), (9)

where λ is the solution of the equation:
∑T

i=1
z̃(3)

i

1+λTz̃(3)
i

= 0.

Theorem 2.3. Suppose that conditions (C1)-(C4) in Appendix hold. Then under the null hypothesis H0, we have

−2 log R̃(3) d
−→ χ2

p.

Remark 2.4. For the sake of description, the above three methods based on Theorems 2.1-2.3 are denoted as IPW, IM1
and IM2, respectively. Although the ideas of constructing test statistics of IPW and IM2 are different, the empirical
log-likelihood ratios for IPW and IM2 are consistent, since z̃(3)

ik =
δiδi+k

π̂(xi)π̂(xi+k) {Yi − f (xi, θ̂)}{Yi+k − f (xi+k, θ̂)} which is

equals to z̃(1)
ik .

3. Simulations and Application

3.1. Simulation studies
In this section, we use several simulation examples to illustrate the finite sample performance of IPW,

IM1, IM2 and CC methods for dealing with missing response data. The following simulated model is
considered:

Y = sin(xTθ) + (1 + xTθ)2 + ε, (10)

where θ = (0.5, 0.8)T and x = (x1, x2)T comes from binary normal distribution N(µ,Σ) with µ = (0, 1)T and
Σ = diag(1,4). To demonstrate the inference of different missing rates, the missing mechanisms are chosen
from the following two logistic models:

Case 1 : π1(x) = P(δ = 1 | x = x) = 1/[1 + exp{−(2.1 + 0.2x1 + 0.5x2)}],
Case 2 : π2(x) = P(δ = 1 | x = x) = 1/[1 + exp{−(0.8 + 0.8x1 + 0.2x2)}].

The corresponding missing rates of Cases 1 and 2 are about 10% and 30%, respectively. The model errors
εi obey the following two different models:

AR(2): εi = a1εi−1 + a2εi−2 + ei and MA(2): εi = a1ei−1 + a2ei−2 + ei,

where ei are generated from N(0, 1) and U(−1, 1), respectively. We take (a1, a2) = (0, 0), (0,0.4), (0.2,0.6),
(-0.3,0.5), (0.5,-0.8). The power for each given (a1, a2) is evaluated among 1000 simulations for n = 50, 100,
150 and 200 at significance level α = 0.05. The estimated sizes and powers of test are given in Tables 1-4,
respectively for different settings.

From Tables 1-4, we can conclude that the estimated sizes and powers with different error distributions
and missing rates are quite good. First, as the sample size increases, the estimated sizes converge toward
their nominal size and the powers increase rapidly as (a1, a2) far away from (0,0). Second, the IM1 method
give the best performance while the CC approach offers the worst. The IPW and IM2 methods give the
same results which coincide with Remark 2.1. It is also interesting to note that for each method, the test with
small missing rate performs better than that of large missing rate for fixed sample size and parameter vector
(a1, a2). To show the performance of the proposed tests graphically, we consider a1 = 0 and a2 = 0 : 0.1 : 1.
The power curves are depicted in Figures 1-2 for different scenarios, which show similar phenomenons
described above.
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Table 1: Estimated sizes and powers of four different test statistics for AR(2) with e ∼ N(0, 1).

n = 50 n = 100 n = 150 n = 200
(a1, a2) Method π1(x) π2(x) π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

(0,0)

CC 0.103 0.156 0.076 0.093 0.064 0.082 0.057 0.078
IPW 0.099 0.151 0.073 0.088 0.062 0.080 0.053 0.070
IM1 0.093 0.126 0.065 0.073 0.058 0.071 0.061 0.056
IM2 0.099 0.151 0.073 0.088 0.062 0.080 0.053 0.070

(0,0.4)

CC 0.581 0.405 0.865 0.600 0.957 0.762 0.991 0.862
IPW 0.618 0.445 0.896 0.678 0.970 0.853 0.992 0.919
IM1 0.622 0.441 0.899 0.703 0.973 0.891 0.995 0.938
IM2 0.618 0.445 0.896 0.678 0.970 0.853 0.992 0.919

(0.2,0.6)

CC 0.916 0.733 0.998 0.947 1.000 0.994 1.000 0.998
IPW 0.949 0.815 0.998 0.983 1.000 0.998 1.000 1.000
IM1 0.947 0.819 1.000 0.992 1.000 1.000 1.000 1.000
IM2 0.949 0.815 0.998 0.983 1.000 0.998 1.000 1.000

(-0.3,0.5)

CC 0.936 0.821 0.998 0.952 1.000 0.992 1.000 0.998
IPW 0.953 0.907 0.998 0.983 1.000 1.000 1.000 1.000
IM1 0.960 0.919 0.999 0.988 1.000 1.000 1.000 1.000
IM2 0.953 0.907 0.998 0.983 1.000 1.000 1.000 1.000

(0.5,-0.8)

CC 0.990 0.865 1.000 0.983 1.000 0.999 1.000 1.000
IPW 0.997 0.943 1.000 0.996 1.000 0.999 1.000 1.000
IM1 0.997 0.948 1.000 0.998 1.000 1.000 1.000 1.000
IM2 0.997 0.943 1.000 0.996 1.000 0.999 1.000 1.000

Table 2: Estimated sizes and powers of four different test statistics for AR(2) with e ∼ U(−1, 1).

n = 50 n = 100 n = 150 n = 200
(a1, a2) Method π1(x) π2(x) π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

(0.0,0.0)

CC 0.087 0.128 0.057 0.073 0.060 0.060 0.059 0.068
IPW 0.096 0.118 0.053 0.073 0.055 0.056 0.049 0.067
IM1 0.084 0.104 0.057 0.061 0.058 0.064 0.580 0.065
IM2 0.096 0.118 0.053 0.073 0.055 0.056 0.049 0.067

(0.0,0.4)

CC 0.562 0.368 0.879 0.622 0.971 0.772 0.993 0.874
IPW 0.597 0.436 0.906 0.695 0.979 0.860 0.999 0.941
IM1 0.613 0.442 0.919 0.735 0.981 0.892 0.999 0.963
IM2 0.597 0.436 0.906 0.695 0.979 0.860 0.999 0.941

(0.2,0.6)

CC 0.926 0.734 1.000 0.951 1.000 0.994 1.000 1.000
IPW 0.939 0.819 1.000 0.983 1.000 1.000 1.000 1.000
IM1 0.940 0.828 1.000 0.989 1.000 1.000 1.000 1.000
IM2 0.939 0.819 1.000 0.983 1.000 1.000 1.000 1.000

(-0.3,0.5)

CC 0.946 0.818 0.999 0.968 1.000 0.999 1.000 1.000
IPW 0.957 0.897 1.000 0.991 1.000 0.999 1.000 1.000
IM1 0.959 0.904 1.000 0.995 1.000 1.000 1.000 1.000
IM2 0.957 0.897 1.000 0.991 1.000 0.999 1.000 1.000

(0.5,-0.8)

CC 0.995 0.882 1.000 0.986 1.000 1.000 1.000 1.000
IPW 0.997 0.935 1.000 0.998 1.000 1.000 1.000 1.000
IM1 0.998 0.943 1.000 1.000 1.000 1.000 1.000 1.000
IM2 0.997 0.935 1.000 0.998 1.000 1.000 1.000 1.000
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Table 3: Estimated sizes and powers of four different test statistics for MA(2) with e ∼ N(0, 1).

n = 50 n = 100 n = 150 n = 200
(a1, a2) Method π1(x) π2(x) π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

(0.0,0.0)

CC 0.109 0.173 0.074 0.106 0.076 0.095 0.059 0.071
IPW 0.103 0.136 0.071 0.100 0.071 0.087 0.049 0.069
IM1 0.102 0.122 0.070 0.086 0.066 0.076 0.048 0.053
IM2 0.103 0.136 0.071 0.100 0.071 0.087 0.049 0.069

(0.0,0.4)

CC 0.530 0.362 0.818 0.533 0.953 0.672 0.985 0.758
IPW 0.557 0.405 0.849 0.618 0.970 0.751 0.990 0.852
IM1 0.562 0.392 0.862 0.635 0.974 0.809 0.995 0.900
IM2 0.557 0.405 0.849 0.618 0.970 0.751 0.990 0.852

(0.2,0.6)

CC 0.838 0.590 0.985 0.829 1.000 0.941 1.000 0.982
IPW 0.864 0.660 0.991 0.895 1.000 0.972 1.000 0.990
IM1 0.869 0.669 0.993 0.924 1.000 0.993 1.000 1.000
IM2 0.864 0.660 0.991 0.895 1.000 0.972 1.000 0.990

(-0.3,0.5)

CC 0.646 0.426 0.907 0.572 0.987 0.748 0.999 0.861
IPW 0.675 0.480 0.923 0.669 0.988 0.843 1.000 0.917
IM1 0.671 0.490 0.936 0.712 0.996 0.888 1.000 0.959
IM2 0.675 0.480 0.923 0.669 0.988 0.843 1.000 0.917

(0.5,-0.8)

CC 0.971 0.789 1.000 0.967 1.000 0.992 1.000 1.000
IPW 0.981 0.856 1.000 0.991 1.000 0.999 1.000 1.000
IM1 0.980 0.880 1.000 0.997 1.000 1.000 1.000 1.000
IM2 0.981 0.856 1.000 0.991 1.000 0.999 1.000 1.000

Table 4: Estimated sizes and powers of four different test statistics for MA(2) with e ∼ U(−1, 1).

n = 50 n = 100 n = 150 n = 200
(a1, a2) Method π1(x) π2(x) π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

(0.0,0.0)

CC 0.072 0.120 0.070 0.090 0.059 0.071 0.047 0.067
IPW 0.070 0.114 0.055 0.079 0.058 0.068 0.050 0.062
IM1 0.064 0.097 0.060 0.077 0.047 0.058 0.052 0.054
IM2 0.070 0.114 0.055 0.079 0.058 0.068 0.050 0.062

(0.0,0.4)

CC 0.485 0.331 0.832 0.511 0.964 0.665 0.991 0.822
IPW 0.517 0.357 0.868 0.582 0.970 0.771 0.995 0.879
IM1 0.530 0.371 0.880 0.629 0.983 0.818 0.995 0.931
IM2 0.517 0.357 0.868 0.582 0.970 0.771 0.995 0.879

(0.2,0.6)

CC 0.847 0.580 0.992 0.851 1.000 0.972 1.000 0.995
IPW 0.886 0.662 0.996 0.920 1.000 0.981 1.000 0.999
IM1 0.890 0.683 0.996 0.956 1.000 0.994 1.000 1.000
IM2 0.886 0.662 0.996 0.920 1.000 0.981 1.000 0.999

(-0.3,0.5)

CC 0.622 0.377 0.952 0.629 0.992 0.779 1.000 0.895
IPW 0.698 0.437 0.961 0.727 0.996 0.875 1.000 0.950
IM1 0.702 0.457 0.970 0.780 0.997 0.917 1.000 0.984
IM2 0.698 0.437 0.961 0.727 0.996 0.875 1.000 0.950

(0.5,-0.8)

CC 0.985 0.790 1.000 0.978 1.000 0.997 1.000 1.000
IPW 0.991 0.885 1.000 0.992 1.000 1.000 1.000 1.000
IM1 0.995 0.900 1.000 0.995 1.000 1.000 1.000 1.000
IM2 0.991 0.885 1.000 0.992 1.000 1.000 1.000 1.000
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Figure 1: The power curves of tests based on IPW (dotted line), IM1 (solid line), IM2 (dot-dashed line) and CC (dashed line) methods
for e ∼ N(0, 1) based on MR= 10% (left panel) and MR= 30% (right panel) with AR(2) (top) and MA(2) (bottom) under a1 = 0 and
different values of a2 when n = 100.

3.2. A real data example

In this subsection, we apply the proposed test methods to analyze a real data collected from HIV clinical
trials. The data set can be available in the R package “speff2trial”. In the data set, the response Y stands
for 1025 male patients who had received antiretroviral therapy prior to the trial. Based on the way of
therapy, the data set can be divided into two subsets. The first data set is 253 male patients who applied
monotherapy; the second data set is 772 male patients who adopted combined therapies. For each data
set, Y is CD4 counts at 96 ± 5 weeks post therapy, X1 is CD4 cell counts at baseline, X2 is CD4 counts at
20 ± 5 weeks, X3 is CD8 cell counts at baseline, X4 is the CD8 cell counts at 20 ± 5 weeks. Due to death
and dropout, there were 37.55% and 36.14% missing rates in the first and the second subset, respectively.
The covariates X1,X2,X3 and X4 for all patients are available. The data set has been used by [4] to test
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Figure 2: The power curves of tests based on IPW (dotted line), IM1 (solid line), IM2 (dot-dashed line) and CC (dashed line) methods
for e ∼ U(−1, 1) baed on MR= 10% (left panel) and MR= 30% (right panel) with AR(2) (top) and MA(2) (bottom) under a1 = 0 and
different values of a2 when n = 100.

nonparametric component in partial linear model where the response is MAR. According to the conclusion
of [4], these two subsets can be fitted with linear regression forms. We shall use these two subsets to test
the serial correlation via linear regression forms. By the IPW and least squares methods, the fitted models
are

LM 1 : Ŷ = 0.323X1 + 0.684X2 − 0.048X3 − 0.017X4,

LM 2 : Ŷ = 0.385X1 + 0.608X2 + 0.011X3 − 0.051X4.

Further, we test whether the residuals in LM1 and LM2 are first-order and second-order autocorrelated.
The values of the test statistics based on the IPW, IM1, IM2 and CC methods are given in Table 5. We can
see that the values of the test statistics with first-order and second-order autocorrelated are all less than
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Table 5: The values of the test statistics based on HIV clinical trials.

order CC IPW IM1 IM2 critical value

LM1 1 0.149 0.283 0.149 0.283 3.841
2 0.121 0.339 0.189 0.339 5.991

LM2 1 1.309 0.850 1.309 0.850 3.841
2 0.086 1.931 2.452 1.931 5.991

Table 6: LB test results for the real data analysis.

order test statistic p-value

LM1 1 0.1428 0.7055
2 0.1662 0.9203

LM2 1 1.1058 0.2930
2 2.2424 0.3259

3.841 and 5.991, respectively which are the 95% quantiles of central chi-square distribution with 1 and 2
degrees of freedom. Thus, it can be concluded that the residual sequence is not correlated. To further verify
this conclusion, the Ljung-Box (LB) test for first-order and second-order autocorrelated is used and the
corresponding testing results are displayed in Table 6, where the missing data are omitted naively. From
Table 6, it can be seen that the p-values are all greater than the significance level 0.05, which indicates that
the residuals are independent of each other. Hence, serial correlation does not exist in LM1 and LM2.

4. Concluding Remarks

In this paper, we applied the empirical likelihood approach to test the serial correlation for the residuals
in parametric regression models with response missing at random. Three different empirical log-likelihood
ratio test statistics based on IPW, IM1 and IM2 methods are proposed. The proposals can test not only zero
first-order serial correlation, but also higher-order serial correlation. Besides, the computation is fast and
easy to implement. The simulation study shows that IM1 method outperforms the other methods.

Appendix: Proof of Theorems

In this paper, the following conditions are required in order to obtain main conclusions. Denote
A⊗2 = AAT for any vector or matrix A.

(C1) For any x, f (x, θ) is a continuous function of θ and the second derivatives with respect to θ are
continuous, θ ∈ Θ, where Θ is a compact set;

(C2) E
{
∂ f (x,θ)
∂θ

}⊗2
is finite and positive definite;

(C3) The selection probability function π(x) has a bounded continuous second derivatives almost surely
and infx π(x) > 0;

(C4) supx E(ε4
|x = x) < ∞ and E∥x∥4 < ∞.

Lemma 4.1. Under conditions (C1)-(C4) and the null hypothesis, we have θ̂ − θ = Op

(
n−1/2

)
.

This lemma can be verified by Lemma 2 in [33].
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Lemma 4.2. Under the conditions (C1)-(C4) and the null hypothesis, we have T−1/2∑T
i=1 z̃(1)

i
d
−→ N

(
0,E
(
σ4(x)
π2(x)

)
Ip

)
,

where Ip is p × p identity matrix.

Proof. Let z̃(1)
ik =

δi
π̂(xi)
{Yi− f (xi, θ̂)} δi+k

π̂(xi+k) {Yi+k− f (xi+k, θ̂)}, z̃(1)
i = (̃z(1)

i1 , z̃
(1)
i2 , · · · , z̃

(1)
ip )T, i = 1, 2, · · · ,T, k = 1, 2, · · · , p,

T = n − p. Observe that

1
√

T

T∑
i=1

z̃(1)
ik =

1
√

T

T∑
i=1

δi

π̂ (xi)

{
Yi − f (xi, θ̂)

} δi+k

π̂ (xi+k)

{
Yi+k − f (xi+k, θ̂)

}
=

1
√

T

T∑
i=1

δiδi+k

π̂ (xi) π̂ (xi+k)
ε̂iε̂i+k

=
1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)
ε̂iε̂i+k −

1
√

T

T∑
i=1

δiδi+k
{
π̂ (xi+k) − π (xi+k)

}
π̂ (xi) π̂ (xi+k)π (xi+k)

ε̂iε̂i+k

−
1
√

T

T∑
i=1

δiδi+k
{
π̂ (xi) − π (xi)

}
π̂ (xi) π̂ (xi+k)π (xi)

ε̂iε̂i+k

−
1
√

T

T∑
i=1

δiδi+k
{
π̂ (xi) − π (xi)

} {
π̂ (xi+k) − π (xi+k)

}
π̂ (xi) π̂ (xi+k)π (xi)π (xi+k)

ε̂iε̂i+k

:=Z(1)
k1 − Z(1)

k2 − Z(1)
k3 − Z(1)

k4 . (A.1)

For the term Z(1)
k1 in (A.1), it can be further divided as

Z(1)
k1 =

1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)
ε̂iε̂i+k =

1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)
εiεi+k

−
1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)
εi

{
f (xi+k, θ̂) − f (xi+k, θ)

}
−

1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)
εi+k

{
f (xi, θ̂) − f (xi, θ)

}
+

1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)

{
f (xi, θ̂) − f (xi, θ)

}
·

{
f (xi+k, θ̂) − f (xi+k, θ)

}
:=Z(1)

k1,1 − Z(1)
k1,2 − Z(1)

k1,3 + Z(1)
k1,4. (A.2)

For Z(1)
k1,1 in (A.2), note that under null hypothesis E

{
δiδi+k

π(xi)π(xi+k)εiεi+k

}
= 0, we find

E
{

δiδi+k

π (xi)π (xi+k)
εiεi+k

}2

= E
{

δiδi+k

π2 (xi)π2 (xi+k)
ε2

i ε
2
i+k

}
= E
[
E
{

δiδi+k

π2 (xi)π2 (xi+k)
ε2

i ε
2
i+k | xi, xi+k

}]
= E
{

δiδi+k

π2 (xi)π2 (xi+k)
E
(
ε2

i ε
2
i+k | xi, xi+k

)}
= E
{

δiδi+k

π2 (xi)π2 (xi+k)
σ2 (xi) σ2 (xi+k)

}
= E
{
σ4(x)
π2(x)

}
. (A.3)
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From conditions (C1) and (C2), we can derive that

Z(1)
k1,2 =

1
√

T

T∑
i=1

δiδi+k

π(xi)π(xi+k)
εi

{
f (xi+k, θ̂) − f (xi+k, θ)

}
=

1
√

T

T∑
i=1

δiδi+k

π(xi)π(xi+k)
εi
∂ f (xi+k, θ)
∂θT

(θ̂ − θ) + (θ̂ − θ)T 1
T

T∑
i=1

δiδi+k

π(xi)π(xi+k)
εi
∂2 f (xi+k,θ̃)
∂θ∂θT

(θ̂ − θ)

:=R(1)
k1,1(θ̂ − θ) + (θ̂ − θ)TR(1)

k1,2(θ̂ − θ), (A.4)

where θ̃ lies between θ̂ and θ. It is easy to gain R(1)
k1,1 = Op

(
T−

1
2

)
. According to Lemma 4.1 and the continuity

of ∂2 f
(
xi, θ
)
/∂θ∂θT as a function of θ, we can obtain that

E

∣∣∣∣∣∣ δiδi+k

π (xi)π (xi+k)
εi
∂2 f (xi+k, θ̃)
∂θ∂θT

∣∣∣∣∣∣ = E
{

δiδi+k

π (xi)π (xi+k)
|εi|

∣∣∣∣∣∣∂2 f (xi+k, θ)
∂θ∂θT

∣∣∣∣∣∣
}
= O(1).

Therefore R(1)
k1,2 = Op(1). Then we can conclude that Z(1)

k1,2 = op(1). Similarly to the derivation for Z(1)
k1,2, we

can derive that Z(1)
k1,3 = op(1). Note that f (xi, θ̂) − f (xi, θ) = ∂ f (xi,θ̃1)

∂θ (θ̂ − θ), where θ̃1 lies between θ̂ and θ,

f (xi+k, θ̂) − f (xi+k, θ) = ∂ f (xi+k ,θ̃2)
∂θT (θ̂ − θ)T, where θ̃2 lies between θ̂ and θ. Then, we have

Z(1)
k1,4 = (θ̂ − θ)T 1

√
T

T∑
i=1

{
δiδi+k

π(xi)π(xi+k)
·
∂ f (xi, θ̃1)
∂θ

·
∂ f (xi+k, θ̃2)
∂θT

}
(θ̂ − θ)

def
= (θ̂ − θ)TR(1)

k1,3(θ̂ − θ).

Similar to the argument for R(1)
k1,2, we can get R(1)

k1,3 = Op(1) and hence, Z(1)
k1,4 = op(1). Then it follows that

Z(1)
k1 =

1
√

T

T∑
i=1

δiδi+k

π (xi)π (xi+k)
εiεi+k + op(1) def

=
1
√

T

T∑
i=1

Zk11,i + op(1). (A.5)

Similarly, we can obtain Z(1)
km = op(1), for m = 2, 3, 4. Denote z(1)

ik = (Z111,i,Z211,i, . . . ,Zp11,i)T. Then by (A.5),
we have 1

√
T

∑T
i=1 z̃(1)

i = 1
√

T

∑T
i=1 z(1)

i + op(1). Assuming that φ is any p-dimension nonzero vector, then

φTz(1)
i is a p-dependent random variable sequence under null hypothesis and Cov

(
φτz(1)

k1,1,φ
τz(1)

k1,1

)
=

φτ Cov
(
z(1)

i , z
(1)
j

)
φ = 0, for i , j. Then, according to the central limit theorem for the p-dependent se-

quence of [23], 1
√

T

∑T
i=1φ

τz(1)
i

d
−→ N(0,Ω), where Ω = φTφE

{
σ4(x)
π2(x)

}
. According to Cramer-Wold device, we

obtain that 1
√

T

∑T
i=1 z̃(1)

i
d
−→ N

(
0,E
(
σ4(x)
π2(x)

)
Ip

)
, which completes the proof of Lemma 4.2.

Lemma 4.3. Under the conditions (C1)-(C4) and the null hypothesis, we have

1
T

T∑
i=1

z̃(1)
i z̃(1)T

i
p
−→ E

( σ4(x)
π2(x)

)
Ip.

Proof. Similar to the proofs of Lemma 4.2, we can show Lemma 4.3 holds easily.

Appendix B: Proof of Theorem 2.1

Let z̃⋆ def
= max1≤i≤T

∥∥∥̃zi

∥∥∥. By Lemmas 4.2 and 4.3 and the same arguments of Lemma 5.6 in [10], we can

derive that z̃⋆ = op

(
T1/2
)

and ∥λ∥ = Op(T−1/2). Then, applying a Taylor expansion to (5), the empirical
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log-likelihood ratio function (5) can be decomposed as follows,

−2 log R̃(1) = 2
T∑

i=1

λTz̃(1)
i −

T∑
i=1

(
λTz̃(1)

i

)2
+ op(1). (A.6)

By some calculations, we can obtain

T∑
i=1

{
λTz̃(1)T

i

}2
=

T∑
i=1

λTz̃(1)T

i + op(1) and λ =
{ T∑

i=1

z̃(1)
i z̃(1)T

i

}−1
T∑

i=1

z̃(1)
i + op(T−1/2).

Thus, by (A.6), we have

−2 log R̃(1) =

 1
√

T

T∑
i=1

z̃(1)
i


T  1

T

T∑
i=1

z̃(1)
i z̃(1)T

i


−1  1
√

T

T∑
i=1

z̃(1)
i

 + op(1).

Then according to Lemmas 4.2-4.3 and Slutsky’s Theorem, we can get −2 log R̃(1) d
−→ χ2

p.

Appendix C: Proof of Theorem 2.2

Let z̃(2)
ik = {δiYi+(1−δi) f (xi, θ̂)− f (xi, θ̂)}·{δi+kYi+k+(1 − δi+k) f (xi+k, θ̂)− f (xi+k, θ̂)}, z̃(2)

IM = (̃z(2)
i1 , z̃

(2)
i2 , · · · , z̃

(2)
ip )T, i =

1, 2, · · · ,T, T = n − p. Observe that

1
√

T

T∑
i=1

z̃(2)
ik =

1
√

T

T∑
i=1

δi

{
Yi − f (xi, θ̂)

}
· δi+k

{
Yi+k − f (xi+k, θ̂)

}
=

1
√

T

T∑
i=1

δi

{
f (xi, θ) + εi − f (xi, θ̂)

}
· δi+k

{
f (xi+k, θ) + εi+k − f (xi+k, θ̂)

}
=

1
√

T

T∑
i=1

δiδi+kεiεi+k −
1
√

T

T∑
i=1

δiδi+kεi

{
f (xi+k, θ̂) − f (xi+k, θ)

}
−

1
√

T

T∑
i=1

δiδi+kεi+k

{
f (xi, θ̂) − f (xi, θ)

}
+

1
√

T

T∑
i=1

δiδi+k

{
f (xi, θ̂) − f (xi, θ)

} {
f (xi+k, θ̂) − f (xi+k, θ)

}
def
=z(2)

k1 − z(2)
k2 − z(2)

k3 + z(2)
k4 .

Similar to the proof of Lemma 4.2, we can obtain that z(2)
km = op(1) for m = 2, 3, 4. Besides, it can be

concluded that E (δiδi+kεiεi+k)2 = E
(
δiδi+kε2

i ε
2
i+k

)
= E
[
E
{
δiδi+kε2

i ε
2
i+k | xi, xi+k

}]
= E
{
δiδi+kE

(
ε2

i ε
2
i+k | xi, xi+k

)}
=

E
{
δiδi+kσ2 (xi) σ2 (xi+k)

}
= E{π2(x)σ4(x)}. Then by the central limit theorem for the p-dependent sequence

of [23] and Cramer-Wold’s device, we derive that z(2)
k1

d
−→ N

(
0,E2
{π(x)σ2(x)}Ip

)
, which together with the

Slutsky’s Theorem gives the result of Theorem 2.
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Appendix D: Proof of Theorem 2.3

Observe that

z̃(3)
ik = {Ŷi − f (xi, θ̂)}{Ŷi+k − f (xi+k, θ̂)} =

[ δi

π(xi)
Yi +

{
1 −

δi

π(xi)

}
f (xi, θ̂) − f (xi, θ̂)

]
·

[ δi+k

π(xi+k)
Yi+k +

{
1 −

δi+k

π(xi+k)

}
f (xi+k, θ̂) − f (xi+k, θ̂)

]
=
δi

π̂(xi)
{Yi − f (xi, θ̂)}

δi+k

π̂(xi+k)
{Yi+k − f (xi+k, θ̂)} = z̃(1)

ik .

Then the result of Theorem 2.3 can be verified by Theorem 2.1.
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[26] Q. Wang, O. Linton, W. Härdle, Semiparametric regression analysis with missing response at random, Journal of the American Statistical

Association, 99(466) (2004), 334–345.
[27] R. J. A. Little, D. B. Rubin, Statistical analysis with missing data, Wiley, New York, 1987.
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