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Available at: http://www.pmf.ni.ac.rs/filomat

Topological generalization of minimal structure with medical
application

Heba I. Mustafaa, Fawzia M. Sleima, Yasmin T. Abdoha,∗

aDepartment of Mathematics, Faculty of Science, Zagazig University, Egypt

Abstract. In this paper we used the MSA− space, η−open sets and αη-open sets to introduce a new
approximation of uncertain sets as a mathematical tool to modify the approximations. Moreover, several
important measures such accuracy measure and quality of approximation would be studied. We compared
the previous methods with the current one we obtained. We proved that minimal structure is more efficient
and accurate in obtaining results than topology. Our new Mαη−approximation space is more accurate than
MSA− space , η−approximations and αη−approximations since by using it the boundary regions decreased
by increasing the lower approximations and decreasing the upper approximations. Finally we show the
importance of our new approximations with medical science by applying these approximations in corona
virus problem.

1. Introduction

The notion of minimal strcture [22](briefly MS) was presented by V.Popa and T.Noiri, also they presented
the notion of MS- open sets, MS- closed sets, MS-interior and MS-closure. Furthermore, the concepts of
separation axioms by using the concept of minimal structure have been introduced. In [8] Buadong et
al. represented the concept of generalized topology and minimal structure spaces (briefly GTMS). They
introduced the notion of M-continuous functions on functions between minimal structures. In [26] some
generalizations for closed sets in generalized topology and minimal structure spaces were investigated. In
[25] Zakaria introduced the notion of gm− continuity, gm-convergent to a point, gmT2− space,gm− closed
graph and strongly gm− closed graph on generalized topology and minimal structure spaces. Shyamapada
[15] studied separation axioms in ideal minimal spaces. El- sharkasy [9, 10] introduced a new approximation
space by using the notion of minimal structure approximation space and near open sets. Many authors
[11, 16, 18, 25] studied the properties and applications of minimal structure.

Rough set theory has been considered as an extension of set theory. Wiweger [24] introduced the concept
of topological rough sets. Many authors [1, 2, 12–14, 19, 21, 24] studied the relation between rough set and
topology. The relation between rough set and minimal structure were studied in [9]. Abu-donia [2] used
the notion of αη- open sets to generalize rough sets [17]. The concept of Cj-neighborhoods were used to
improve rough sets’s accuracy measure[5, 6]. Also Al-Shami and others used the concepts of j-adhesion
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neighborhoods and ideals to generate topologies and defined a new rough set model derived from these
topologies. These models have been proved to be finar than other topologies[7].

Shain Karg and M.Yucel defined the concepts of anti-topology and neutro-topological spaces. The
properties of those spaces were studied. The concept of the anti-topology is defined as a topological
structure that has at least one anti-axiom[23]. Since the minimal stucture defined as a topological structure
which has two anti-axiom(i.e the closure of arbitrary union and finite intersection). We can consider the
minimal structure as a special case of anti-topology.

In this paper, we generalized a minimal structure by using η- open and αη-open sets. We demonstrated
that some of Pawlak’s rough set models are a special cases of minimal generalizations. Moreover, the new
model measures, such as accuracy and quality of approximation have been investigated. The study about
αη-open sets has specific importance to help the modifications of the approximation space via adding new
concepts and facts. We used minimal structure concepts to introduce definitions of αη-approximations and
αη- boundary regions. We introduced the αη-boundary regions as different areas of uncertainty. Finally,
we used minimal structure concepts to introduce the definitions of αη-rough and αη-exact sets. The rest
of this article is organized as follows: Section 2 is devoted to recalling some basics and properties of η-
open sets, αη-open sets, and minimal structure. In section 3, we introduced the notion of η-open, αη-open
in minimal structure, furthermore, we introduced the concept of αη-lower approximations and αη-upper
approximations. The notions were further explored by studying its properties. Section 4 introduced αη-
region of uncertain sets. Section 5 contained comparison between αη-topological approximation space
and αη-minimal structure approximation space. In section 6, we applied the αη-approximation space in
minimal structure in covid -19 problem.

2. Premliminaries

In this section, we recalled some basic notions that are useful for discusssion in the next section

Definition 2.1 [7] Let W be a non-empty universe set which is finite, and Řη is a general binary relation
that can be used to obtain a subbase for a topology T on W that generates the class ηO(W) of all η−open
sets. Then the pair (W, Řη) is called a η−approximation space.

Definition 2.2 [7] Let (W,T) be a topological space and B ⊆W, then B is called η−open if B ⊆ cl(int(cl(B))).

Definition 2.3 [7] Let (W, Řη) be a η−approximation space and B is a non-empty subset of W, then the
η−lower (resp η−upper) approximation of B is defined as:

(1) Řη(B) = ∪{G ∈ ηO(W) : G ⊆ B}

(2) Řη(B) = ∩{F ∈ ηC(W) : F ⊇ B}

Definition 2.4 [7] Let (W, Řη) be a η−approximation space and B ⊆ W. The η−accuracy measure of B

is defined as follows: θη (B) =
|Rη(B)|

|Řη(B)|
, where B , ϕ.The η− boundary of B is defined as BNDη(B) = Řη(B) −

Řη(B).

Definition 2.5 [7] Let W be a non-empty universe set which is finite, and Řαη is a general binary relation
that can be used to obtain a subbase for a topology T on W that generates the class αηO(W) of all αη−open
sets. Then the pair (W, Řαη) is called a αη−approximation space.

Definition2.6 [7] Let (W,T) be a topological space, and B ⊆ W. Then B is called αη−open if B ⊆
cl(int(clα(B))).

Definition 2.7 [7] Let (W, Řαη) be aαη−approximation space and B is a non-empty subset of W. αη−lower
approximations and αη−upper approximation of B are defined as follow:
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Řαη(B) = ∪{G : G ∈ αηO(W),G ⊆ B}

Řαη(B) = ∩{F : F ∈ αηC(W),B ⊆ F}

Definition 2.8 [7] Let (W, Řαη) be αη− approximation space and B ⊆ W, then the αη-accuracy measure

of B defined as follows θαη(B) =
|Rαη(B)|

|Řαη(B)|
where B , ϕ.The αη− boundary of B is defined as BNDαη(B) =

Řαη(B) − Řαη(B).

Definition 2.9 [25] A family M ⊆ P(W) is said to be a minimal structure on W if W, ϕ ∈ M, in this case
(W,M) is called a minimal space. The elements of W are known as points of space and the subsets of W that
belong to M are called M−open sets. M−closed sets are the complement of the subsets of W that belong to
M.

Definition 2.10 [25] Let (W, M) be a minimal space and B ⊆ W then the M− closure of B is defined
as clM(B) = ∩{F ⊂W, B ⊂ F and F is closed }, so clM(B) is the smallest closed subset of W which contains B .

Definition 2.11 [25] Let (W,M) be a minimal space and B ⊆ W, then the M− interior of B is defined as
intM(B) = ∪{G ⊂W, G ⊂ B, and G is open}, so intM(B) is the union of all open subsets of W which containing
in B .

Definition 2.12 [25] Let (W, M) be a minimal space and B ⊆ W then the M− boundary of is given
by BNDM(B) = [ clM(B)] − [ intM(B)].

Propostion 2.1 [14] Let (W,M) be a minimal space and for any two set B and C ⊆W
1) intM(B) ⊆ B and intM(B) = B if B is M−open
2) clM(B) ⊇ B and clM(B) = B if B is M−closed
3) intM(B) ⊆ intM(C) and clM(B) ⊆ clM(C) if B ⊆ C
4) intM(B ∩ C) = intM(B) ∩ intM(C) and intM(B ∪ C) ⊇ intM(B) ∪ intM(C)
5) clM(B ∩ C) ⊆ clM(B) ∩ clM(C) and clM(B ∪ C) ⊆ clM(B) ∪ clM(C)
6) intM(intM(B)) = intM(B) and clM(clM(B))) = clM(B)
7) (clM(B))c

⊆ intM(Bc) and (intM(B))c
⊆ clM(Bc)

Definition 2.13 [25] Let B be a subset of minimal space (W, M), B is exact if and only if BNDM(B) = ϕ
otherwise B is rough. B is exact if and only if clM(B) = intM(B). There are two possibilities in Pawlak
approximation space for a subset B ⊆W which is rough or exact.

Definition 2.14 [11] Let (W, Ř) be a generalized approximation space where W be a finite nonempty
universe set and Ř an arbitarary relation on W and Nx(W) = {y ∈ W : xŘy} is the right neighbourhood of x
for all x ∈ W, then the class M(W) = {ϕ,W, Nx(W)}is called a minimal structure on (W, Ř), then (W, Ř, M)
is called a minimal structure approximation space briefly(MSA− space).

Definition 2.15 [11] Let (W, Ř,M) be MSA− space, and B ⊆W . Then B is called
(1) M−Regular open if B = intM(clM(B))
(2) M−Semi open if B ⊆ clM(intM(B))
(3) M − θ−open if B ⊆ intM(clM(intM(B)))
(4) M−Pre open if B ⊆ intM(clM(B))
(5) M−Semi- Preopen (M − η−open) if B ⊆ clM(intM(clM(B)))

The family of all Mα−open [resp. M−Regular open , M−Semiopen, Mθ−open, M−preopen, Mη−open]
sets of W is denoted by MαO(W) [ MŘO(W), MSO(W) , MθO(W), MPO(W), MηO(W)]. The complement
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of Mα−open [resp. M−Regularopen, M−Semiopen, Mθ−open, M−preopen, Mη−open] sets of W is called
Mα−closed [resp. M−Regular closed, M−Semi closed, Mθ−closed, M−preclosed, Mη−closed] is denoted
by MαC(W) [ MŘC(W), MSC(W), MθC(W), MPC(W), MηC(W)].

Definition 2.16 [11] Let(W, Ř, M) be a minimal structure approximation space (MSA− space) and B ⊆W.
Then a minmal lower approximation of B (M(B)) is defined as M(B) = ∪{G : G ∈ M(W),G ⊂ B}, and a
minimal upper aproximation of B (M(B)) is defined as M(B) = ∩{F : F ∈MSc(W),B ⊂ F}. The M− boundary
of is given by BNDM(B) =M(B) −M(B).

Definiton2.17 Let (W, Ř,M) be MSA− space, B ⊆ W, then the accuracy measure of B defined as follows
θMS(B) = |MS(B)|

|MS(B)|
where B , ϕ.

Definition 2.18 Let (W, Ř,M) be a MSA− space and B ⊆W. Then B is said to be
(1) Roughly M- definable if M(B) , ϕ and M(B) ,W
(2) Internally M- undefinable if M(B) = ϕ and M(B) ,W
(3) Externally M- undefinable if M(B) , ϕ and M(B) =W
(4) Totally M- undefinable if M(B) = ϕ and M(B) =W
We denote the set of all roughlyM−definable (resp. internallyM−undefinable , externallyM−undefinable

and totallyM−undefinable ) sets by MD(W) (resp. IMWD(W),EMWD(W) and TMWD(W)).

3. αη− open sets on minimal structure:

In this section, we introduced the notion of αη−open set in minimal structure and its properties.
Definition 3.1 Let W be a non-empty universe set which is finite and Ř be a general relation used to get

a minimal structure M on W, which is used to generates the class MηO(W) of all Mη−open sets. Then (W,
Ř,M) is MSA− space.

Definition 3.2 Let (W, Ř,M) be a MSA− space and B ⊆W. Then η−lower (resp η−upper) approximation
of B is defined as: Mη(B) = ∪{G ∈MηO(W),G ⊆ B}and Mη(B) = ∩{F ∈MηC(W),F ⊇ B}.

Definition3.3 Let (W, Ř, M) be a MSA− space and B ⊆ W, then the η-accuracy measure of B defined as

follows θMη (B) =
|Mη(B)|

|Mη(B)|
where B , ϕ.

Definition 3.4 Let (W, Ř,M) be a MSA− space then the subset B ⊆W is called
(1) Roughly Mη- definable if Mη(B) , ϕ and Mη(B) ,W

(2) Internally Mη- undefinable if Mη(B) = ϕ and Mη(B) ,W

(3) Externally Mη- undefinable if Mη(B) , ϕ and Mη(B) =W

(4) Totally Mη- undefinable if Mη(B) = ϕ and Mη(B) =W
We defined the set of all roughly Mη- definable ( resp. internally Mη- undefinable , externally Mη- unde-

finable and totally Mη- undefinable) sets by ηMD(W) (resp. ηMIWD(W) , ηMEWD(W) and ηMTWD(W)).

Definition3.5 Let (W, Ř,M) be MSA− space and B ⊂W, then there are memberships(∈, ∈, ∈η and ∈η ) say
strong, weak , η−strong and η−weak membership resp.which is defined as

(1) y ∈ B iff y ∈M(B)
(2) y ∈B iff y ∈M(B)
(3) y ∈η B iff y ∈Mη(B)
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(4) y ∈ηB iff y ∈Mη(B)

Definition 3.6 Let (W, Ř, M) be MSA− space and B ⊆ W the Mα−closure of B is defined by clMα(B) =
{w ∈ W : B ∩ intM(clM(G)) , ϕ,G ∈ M and W ∈ G}. A set B is called Mα−closed if B = clMα(B), and
intMα(B) =W/[clMα(W/B)].

Definition 3.7 Let (W, Ř, M) be MSA− space and B ⊆ W, then B is called M − αη−open if B ⊆
clM(intM(clMα(B))).

The family of all Mαη−open sets of W is defined by MαηO(W), The complement of Mαη−open sets of
W is called Mαη−closed is defined by MαηC(W).

Remark 3.1 M−αη open sets are stronger than any near open sets such as (Mα− open, M−Re1ular open,
M − semi open, Mθ−open, M − Pr eopen and Mη− open) sets as shown in Figure (1)

Figure 1:

The next example illustrates this idea
Example 3.1 Let W = {l,m,n, o,w}, Ř = {(l, l), (m,m), (n, l)(n,m), (o, l), (o,n), (o, o)} a general relation defined

on W, then the minimal structure associated with this relation is MS(W) = {ϕ,W, {l}, {m}, {l,m}, {l,n, o}}. We
have {l} ∈ MαηO(W) but {l} < MαO(W) and {l} < MŘO(W).Also {m,n} ∈ MαηO(W) but {m,n} < MθO(W),
{m,n} <MSO(W) and {m,n} <MPO(W) and {m,n} <MηO(W).

Definition 3.8 Let (W, Ř, M) be MSA− space where M be a minimal structure generated by a general
relation Ř on W which is used to generates the class MαηO(W)of all Mαη−open sets.

Example 3.2 From Example 3.1 let W = {l,m,n, o,w}be a universe set and Ř = {(l, l), (m,m), (n, l)(n,m), (o, l), (o,n), (o, o)}
a general relation defined on W, the minimal structure is MS(W) = {ϕ,W, {l}, {m}, {l,m}, {l,n, o}}. Then
MαηO(W) = {ϕ,W, {l}, {m}, {n}, {o}, {l,m}, {l,n}{l.o}, {l,w}, {m,n}, {m, o} , {m,w} , {n, o}, {n,w}, {o,w}, {l,m,n}, {l,m, o}, {l,m,w}, {l,n, o}, {l,n,w}, {l, o,w},
{m,n, o}, {m,n,w}, {m, o,w} , {l,m,n, o} , {l,m,n,w}, {l,n, o,w}, {l,m, o,w}, {m,n, o,w}}.

Definition 3.9 Let (W, Ř, M) be a MSA− space and B ⊆ W, then the αη− lower and αη−upper approxi-
mation of B is defined as follows

Mαη(B) = ∪{G : G ∈MαηO(W),G ⊆ B}

Mαη(B) = ∩{F : F ∈MαηC(W),B ⊆ F}
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Theorem3.1: Let (W, Ř,M) be MSA− space and B ⊆W, we have M(B) ⊆Mη(B) ⊆Mαη(B) ⊆ B ⊆ Mαη(B) ⊆
Mη(B) ⊆M(B)

proof:
M(B) = ∪{G : G ∈ M(W),G ⊂ B} ⊆ ∪{G : G ∈ MηO(W),G ⊆ B} ⊆ ∪{G : G ∈ MαηO(W),G ⊆ B} ⊂ B, i, e :

M(B) ⊆Mη(B) ⊆Mαη(B) ⊆ B, also M(B) = ∩{F : F ∈ Mc(W),B ⊆ F} ⊇ ∩{F : F ∈ MηC(W),B ⊆ F} ⊇ ∩{F :
F ∈ MαηC(W),B ⊆ F} ⊇ B, i.e. M(B) ⊇ Mη(B) ⊇ Mαη(B) ⊇ B. Consequently M(B) ⊆Mη(B) ⊆Mαη(B) ⊆ B ⊆
Mαη(B) ⊆Mη(B) ⊆M(B) as shown in Figure (2)

Figure 2:

Definition 3.10 Let (W, Ř, M) be a MSA− space, and B ⊆ W. Then there are memberships ∈αη and ∈αη
say αη− strong , αη−weak memberships resp. which are defined by

(1) x ∈αη B iff x ∈Mαη(B)

(2) x∈αη B iff x ∈Mαη(B)

Remark 3.2 According to definition 3.11 αη−lower and αη−upper approximation of subset can be
written as:

(1) Mαη(B) = {x ∈ B : x∈αη B}

(2) Mαη(B) = {x ∈ B : x ∈αη B}

Remark 3.3 Let (W, Ř,M) be a MSA− space, and B ⊆W. Then we have
(1) x ∈ B⇒ x ∈η B⇒ x ∈αη B
(2) x ∈αη B⇒ x ∈η B⇒ x ∈ B

The opposite of Remark 3.3 are not generally true as seen in the next example

Example 3.3 From Example 3.2 we can see that
if B = {m,n,w} we have n∈αηB but n<

η
B and w ∈η B but w < B Also, if C = {l,n} we have w ∈C but w<ηC

and o∈ηC but o<αηC.
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We identify the degree of completeness by Mαη−accuracy measure as follows

θMαη (B) =
|Mαη(B)|

|Mαη(B)|
where B , ϕ.

Example 3.4 In Example 3.2 we show in Table (1) the degree of accuracy measure θM(B),Mη− accuracy
measure θMη (B)and Mαη− accuracy measure θMαη (B) for some subsets of W

B θMαη (B) θMη (B) θM (B)
{l} 1 1 1

4
{m} 1 1 1

2
{o} 1 0 0
{l,n} 1 2

3
1
4

{l,w} 1 1
2

1
4

{l,m,n} 1 3
5

2
5

{l,m,n,w} 1 4
5

2
5

Table (1)
As we see if B = {l,w} the accuracy measure of Pawlak is 1

4 , the Mη−accuracy measure is 1
2 and the Mαη−

accuracy measure is 1.

Definition 3.11 Let (W, Ř,M) be MSA− space, and B,C ⊆W then B and C are
(1) αη−roughly bottom equals (B ≃ C) if Mαη(B) =Mαη(C)

(2) αη−roughly top equals (B ≂ C) if Mαη(B) =Mαη(C)
(3) αη−roughly equals (B ≈ C) if (B ≃ C) and (B ≂ C)

Example 3.5 Let W = {l,m,n, o}, Ř = {(m, l), (m,m), (n,n), (o,m), (o,n), (o, o)}, then M = {ϕ,W, {l,m}, {n}, {m,n, o}}
we find αη−roughly bottom equals ϕ, {o} and αη−roughly top equals {l,m,n} , W

Definition 3.12 Let (W, Ř,M) be MSA− space, and B,C ⊆W is called
(1) B is αη−roughly bottom included in C (B ⊂αη

∼

C ) if Mαη(B) ⊆ Mαη(C)

(2) B is αη−roughly top included in C (B
∼

⊂αη C ) if Mαη(B) ⊆ Mαη(C)

(3) B is αη−roughly included in C (B
∼

⊂αη
∼

C ) if (B ⊂
∼

C ) and (B
∼

⊂ C )

Example 3.6 From Example 3.5 ,
if B = {m}and C = {m,n} then B ⊂αη

∼

C

if B = {m, o} and C = {l,m, o} then B
∼

⊂αη C

if B = {l} and C = {l,m} then B
∼

⊂
∼αη

C

Lemma 3.1 Let (W, Ř,M) be MSA− space, and for all x, y ∈W. The condition x ∈Mαη({y}) and y ∈Mαη({x})
implies Mαη({x}) =Mαη({y})

Proof Since ηclα(y) is a closed set and x ∈ ηclα(y), while ηclα({x}) is the smallest closed set containing x,
thus ηclα({x}) ⊆ ηclα({y}).Hence Mαη({x}) ⊆Mαη({y}). The opposite

inclusion follows by symmetry ηclα({y}) ⊆ ηclα({x}) Thus Mαη({x}) ⊆ Mαη({y}).Consequently Mαη({x}) =
Mαη({y}).

Lemma 3.2: Let (W, Ř, M) be MSA− space, which verified that every αη-open set A ⊆ W is αη-closed,
then y ∈Mαη({x}) implies x ∈Mαη({y}) for all x, y ∈W.
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proof: Assume that x < Mαη({y}), then x < ∩{ f ∈ αηC(W), f ⊇ {y}}. So, x ∈ ∪{G ∈ αηO(W),Gc
⊆ {y}c},

then x ∈ ∪{G ∈ αηO(W), y < G} and thus there exist G ⊆ αηO(W) such that x ∈ G and
G ∩ {y] = ϕ. i.e. {y} ⊆ (W \ G). From assumption (W \ G) is αη−open
and y ∈ (W \ G), so (W \ G) ∩ {W} = ϕ. Hence y <Mαη({x}).

Proposition 3.1: Let (W, Ř,M) be MSA− space and every αη−open subset A of W is αη−closed, then the
family of set {Mαη({x}) : x ∈ A} is a partition of the set W

Proof: Let x, y, z ∈ A and z ∈ Mαη({x}) ∩ Mαη({y}), then z ∈ Mαη({x}) and z ∈ Mαη({y}). From lemma
3.2 x ∈ Mαη({z}) y ∈ Mαη({z}).From lemma 4.1 since Mαη({x}) = Mαη({z}) and Mαη({y}) = Mαη({z}), then

Řαη({x}) =Mαη({y}) =Mαη({z}). Hence either Mαη({x}) =Mαη({y}) or Mαη({x}) ∩Mαη({y}) = ϕ

Proposition 3.2: Let (W, Ř,M) be MSA− space, and B,C ⊆W, then
(1) Mαη(B) ⊆ B ⊆Mαη(B)

(2) Mαη(ϕ) = ϕ =Mαη(ϕ),Mαη(W) =W =Mαη(W)

(3) If B ⊆ C then Mαη(B) ⊆ Mαη(C) and Mαη(B) ⊆Mαη(C)

proof: (1) Let x ∈ Mαη(B) then x ∈ ∪{G ∈ αηO(W),G ⊆ B}, then there exist G0 ∈ αηO(W) such that
x ∈ G0 ⊂ B. So x ∈ B and Mαη(B) ⊆ B. Let x ∈ B, then by definition of

Mαη(B), x ∈Mαη(B) and hence B ⊆Mαη(B)
(2) Mαη(ϕ) = ∪{G ∈ αηO(W),G ⊆ ϕ} = ϕ = ∩{F ∈ αηc(W),F ⊇ ϕ}

Mαη(W) = ∪{G ∈ αηO(W),G ⊆W} =W = ∩{F ∈ αηc(W),F ⊇W}
(3) Mαη(B) = ∪{G ∈ αηO(W),G ⊆ B} and B ⊆ C

⊆ ∪{G ∈ αηO(W),G ⊆ C} =Mαη(C)

Mαη(B) = ∩{F ∈ αηc(W),F ⊇ B} and B ⊇ A
⊇ ∩{F ∈ αηc(W),F ⊇ A} =Mαη(A)

Proposition 3.3: Let (W, Ř,M) be a MSA− space, and B,C ⊆W then
(1) Mαη(W \ B) =W\Mαη(B)

(2)Mαη(W \ B) =W\Mαη(B)
(3) Mαη(Mαη(B)) =Mαη(B)

(4)Mαη(Mαη(B)) =Mαη(B)
(5) Mαη(Mαη(B)) ⊆Mαη(Mαη(B))

(6) Mαη(Mαη(B)) ⊆Mαη(Mαη(B))

Proof: (1) Let x ∈ Mαη(W \ B) = ∪{G ∈ αηO(W),G ⊆ W \ B}, so there exist G0 ∈ αηO(W) such that x ∈
G0 ⊆ (W \ B), then there exist Gc

0 such that B ⊆ Gc
0and x < Gc

0, Gc
0 ∈ αηC(W).Thus x < Gc

0 ∈ αηC(W) and
B ⊆ Gc

0. Then Mαη(W \ B) ⊆W\Mαη(B). Similarly W\Mαη(B) ⊆Mαη(W \ B). So, Mαη(x \ B) =W\Mαη(B).

(2) Let x ∈ Mαη(W \ B) = ∩{F ∈ αηC(W),F ⊇ (W \ B)}, so there exist F0 ∈ αηC(W)such that x ∈ (W \ B) ⊂
F0,then x < B ⊃ Fc

0, x < Fc
0 ∈ αηO(W), thus there exist Fc

0 ∈ αηO(W)and x < Fc
0,then x < Mαη(B), then

x ∈ (W \Mαη(B)), then Mαη(W \ B) ⊆W\Mαη(B). Similarly W\Mαη(B) ⊆Mαη(W \ B). So Mαη(W \ B) =W\
Rαη(B).

(3) Since Mαη(B) = ∪{G ∈ αηO(W),G ⊆ B}, then Mαη(Mαη(B)) = ∪{G ∈ αηO(W),G ⊆Mαη(B) ⊆ B} = ∪{G ∈
αηO(W),G ⊆ B}=Mαη(B).
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(4) Since Mαη(B) = W\ Mαη(B), From (2) then Mαη(W \ Mαη(B)) = W \ Mαη(W \ (W\ Mαη(W \ B))) =
W \Mαη(Mαη(W \ B)) =W\Mαη(W \ B) =Mαη(B).

(5) From (3) Mαη(Mαη(B)) =Mαη(B) ⊆Mαη(Mαη(B)), then Mαη(Mαη(B)) ⊆Mαη(Mαη(B)).

(6) Mαη(Mαη(B)) ⊆Mαη(B) =Mαη(Mαη(B)). From(4), Mαη(Mαη(B)) ⊆Mαη(Mαη(B)).

Proposition 3.4: Let (W, Ř,M) be a MSA− space, and B,C ⊆W, then
(1) Mαη(B ∪ C) ⊇Mαη(B) ∪Mαη(C)

(2) Mαη(B ∪ C) ⊇Mαη(B) ∪Mαη(C)
(3)Mαη(B ∩ C) ⊆Mαη(B) ∩Mαη(C)

(4) Mαη(B ∩ C) ⊆Mαη(B) ∩Mαη(C)

Proof (1) B ⊂ B ∪ C and C ⊂ B ∪ C implies Mαη(B) ⊂ Mαη(B ∪ C) and Mαη(C) ⊂ Mαη(B ∪ C).Mαη. So
(B ∪ C) ⊇Mαη(B) ∪Mαη(C).

(2) B ⊂ B∪C and C ⊂ B∪C implies Mαη(B∪C) ⊂Mαη(B∪C) and Mαη(C) ⊂Mαη(B∪C). So Mαη(B∪C) ⊇
Mαη(B) ∪Mαη(C)

(3) and (4) Similar as (1).and (2).

Theorem 3.2: Let (W, Ř,M) be a MSA− space, and B,C ⊆W if B is αη−definable, then the following are
hold

(1) Mαη(B ∪ C) =Mαη(B) ∪Mαη(C)

(2) Mαη(B ∩ C) =Mαη(B) ∩Mαη(C)

Proof: (1) It’s clear that Mαη(B) ∪Mαη(C) ⊆ Mαη(B ∪ C). To prove that Mαη(B ∪ C) ⊂ Mαη(B) ∪Mαη(C).
Let x ∈ Mαη(B ∪ C), then x ∈ ∪{G ∈ αηO(W),G ⊆ (B ∪ C)}, then there exist G0 ∈ αηO(W) such that x ∈
G0 ⊆ (B ∪ C).We have three cases

case(1) if G0 ⊆ B and x ∈ G0,then G0 ∈ αηO(W), then x ∈Mαη(B).
case(2) if G0 ∩ B = ϕ, then G0 ⊆ C ,x ∈ G0, then x ∈Mαη(C).
case(3) if G0 ∩ B , ϕ. Since x ∈ G0 and G0 is αη−open set, then x ∈ αηcl(B), for every G0 which has the

above condition. Thus x ∈ Mαη(B) and then x ∈ Mαη(B) because B is Mαη−definable in this three cases
Therefore, x ∈Mαη(B) ∪Mαη(C)

(2) It’s clear that Mαη(B∩C) ⊆Mαη(B)∩Mαη(C). To prove the converse inclusion, let x ∈Mαη(B)∩Mαη(C),
then x ∈Mαη(B) implies x ∈Mαη(B) and x ∈ G ⊆ B where G is αη−openset and for all G ∈ αηO(W) ,G ∩ C ,

ϕ. Therefore G ∩ (B ∩ C) = (G ∩ B) ∩ C = G ∩ Y , ϕ and hence x ∈Mαη(B ∩ C).

4. αη− regions of uncertain concepts.

In this section, we split the universe set into regions and found the relations between these regions in
different ways in αη−approximation space.

Definition 4.1: let (W, Ř, M) be a MSA− space, and B ⊆ W. According to relation M(B) ⊆ Mη(B) ⊆

Mαη(B) ⊆ B ⊆Mαη(B) ⊆Mη(B) ⊆M(B). The universe W can be divided to regions with respect to any B ⊆W
as follows:

(1) The M−internal edge of B Ed1
M

(B) = B \M(B)
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(2) The M − η-internal edge ofB Ed1
Mη

(B) = B \Mη(B)

(3) The M − αη−internal edge of B Ed1
Mαη

(B) = B \Mαη(B)

(4) The M−external edge of B Ed1M(B) =M(B) \ B
(5) The M − η− external edge of B Ed1Mαη (B) =Mη(B) \ B
(6) The M − αη−external ege of B Ed1Mαη (B) =Mαη(B) \ B
(7) The M−boundary of B BNDM(B) =M(B) \ M(B)
(8) The M − η−boundary of B BNDMη (B) =Mη(B) \ Mη(B)

(9) The M − αη− boundary of B BNDMαη (B) =Mαη(B) \ Mαη(B)

(10) The M−exterior of B extM(B) =W \M(B)
(11) The M − η−exterior of B extMη (B) =W \Mη(B)
(12) The M − αη−exterior of B extMαη (B) =W \Mαη(B)
(13) M(B) \Mη(B)

(14) M(B) \Mαη(B)

(15) Mη(B) \M(B)
(16) Mαη(B) \ R(B)
(17) Mη(B)\Mαη(B)

(18) Mη(B) \M(B)
(19) Mαη(B) \Mη(B)
(20) Mη(B) \M(B)
(21) Mαη(B) \M(B)
(22) Mαη(B) \Mη(B)

(23) M(B) \Mη(B)
(24) M(B) \Mαη(B)

Remark 4.1 The study of M − αη−approximation space in minimal structure is a generalization of
MSA− space. The elements of {Mαη(B) \ R(B)} region will be defined well in B, while those elements were
undefinable in MSA− space [8]. Also, The elements of {M(B) \Mαη(B)} region do not belong to B, while these
elements were not well defined in Pawlak’s approximation spaces. In our study, M − αη−boundary of B is
used to reduce the boundary region of B in MSA− space. Also, extending the exterior of A which contains
the elements that don’t belong to B by M − αη−exterior of B

Proposition 4.1 Let (W, Ř,M) be MSA− space and B ⊆W, then we have
(1) BNDM(B) = Ed1M(B) ∪ Ed1

M
(B).

(2) BNDMαη (B) = Ed1
Mαη

(B) ∪ Ed1Mαηη (B).

Proof:
(1) BNDM(B) =M(B) \ M(B) = (M(B) \ B) ∪ (B \M(B)) = Ed1M(B) ∪ Ed1M(B).

(2) BNDMαη (B) =Mαη(B) \ Mαη(B) = (Mαη(B) \ B) ∪ (B \ Mαη(B)) = ηEd1α(B) ∪ ηEd1
α
(B).

Proposition 4.2 Let (W, Ř,M) be MSA− space and B ⊆W, then we have
(1) M(B) \Mαη(B) = Ed1M(B) ∪ Ed1Mαη (B).

(2) Mαη(B) \M(B) = Ed1Mαη (B) ∪ Ed1
M

(B).
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Proof
(1) Ed1M(B) ∪ Ed1Mαη (B) = (M(B) \ B) ∪ (B \ Mαη(B) =M(B) \Mαη(B).

(2) Ed1Mαη (B) ∪ Ed1
M

(B) = (Mαη(B) \ B) ∪ (B \M(B)) =Mαη(B) \M(B).

Proposition 4.3 Let (W, Ř,M) be MSA− space and B ⊆W, then we have
(1) Ed1M(B) = Ed1

Mαη
(B) ∪ (Mαη(B) \M(B)).

(2) Ed1M(B) = Ed1Mαη (B) ∪ ( M(B) \Mαη(B)).

proof (1) R.H.S= Ed1
Mαη

(B) ∪ (Mαη(B) \M(B)) = (B \Mαη(B)) ∪ (Mαη(B) \M(B)) = B \M(B) = Ed1
M

(B).

(2) R.H.S= Ed1Mαη (B) ∪ ( M(B) \Mαη(B)) = (Mαη(B) \ B) ∪ ( M(B) \Mαη(B)) =M(B) \ B = Ed1M(B).

Definition 4.2 Let (W, Ř,M) be MSA− space, and a subset B of W is called
(1) αη−definable ( αη−exact) if Mαη(B) =Mαη(B) or BNDMαη (B) = ϕ.

(2) αη−Rough if Mαη(B) ,Mαη(B).

Example 4.1 From Example 3.5 B = {l}, {l,m}, {n}, then B is αη−exact , if C = {l,m,n} then C is αη−rough.

This is a flow chart of determining αη−exact and αη−rough set

Figure 3:

Algorithm 1 This is an algorithm to determine the αη−exact and the αη−rough set in (W, Ř,M).

Input: A MSA− space (W, Ř,M);
Output: Clasification aset in MSA− space (W, Ř,M) into

two categories αη−exact and αη−rough set;
Specify a relation Ř over the universal set W ;
Specify a minimal structure M over W;

Build the class MαηO(W)of all Mαη−open sets using
definition 3.8;

end
for each nonempty subset B of W;
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Calculate its lower approximation Mαη(B);
If Mαη(B) , ϕ then

return B is a αη−rough set;
else

Calculate its upper approximation Mαη(B);

Compute θMαη (B) =
|Mαη(B)|

|Mαη(B)|
;

If θMαη (B) = 1 then;
return B is a αη−exact set;

else
return B is a αη−rough set;

end
end

end

According to Theorem 3.1, we define the following important definition.

Definition 4.3 Let (W, Ř,M) be MSA− space, and B ⊆W is called
(1) Roughly Mαη−definable if Mαη(B) , ϕ and Mαη(B) ,W

(2) Internally Mαη−undefinable if Mαη(B) = ϕ and Mαη(B) ,W

(3) Externally Mαη−undefinable if Mαη(B) , ϕ and Mαη(B) =W

(4) Totally Mαη−undefinable if Mαη(B) = ϕ and Mαη(B) =W

The intuitive meaning of this classification is as shown:
(1) If X is roughly Mαη−definable, this means that for some elements of W we are able to decide which

belong to X and which is belong to Wc by using αη−approximation space.
(2) If X is internally Mαη−undefinable, this means that we are able to decide for some elements of W

that they belong to Wc, but we are unable to decide for any elements of W that belong to W by using
αη−approximation space.

(3) If X is externally Mαη−undefinable, this means that we are able to decide for some elements of
W that belong to W, but we are unable to decide for any elements of W that belong to Wc by using
αη−approximation space

(4) If X is totally Mαη−undefinable, this means that we are unable to decide for some elements of W
whether they belong to W or Wc by using αη−approximation space.

Example 4.2 From Example 3.3 we can see that the subsets {o} , {n}, {o,w} are internally M- unde-
finable and they are internally Mη- undefinable but they are roughly Mαη-definable. Also the subsets
{l,m}, {l,m,n}, {l,m, o} are externally M- undefinable and externally Mη- undefinable but they are roughly
Mαη- definable. So, αη−approximation space is a refinement.

5. Comparison and Discussion:

The minimal structure is more accurate than the topology as seen in the following example

Example 5.1 Let W = {l,m,n, o} and the minimal structure on it is definied as M(W) = {W, ϕ, {l}, {m},
{n, o} } we consider this minimal as subbase for the topology T= {W, ϕ, {l}, {m}, {l,m}, {l,n, o}, {m,n, o}}, So.
MSc(W) = {W, ϕ, {m,n, o}, {l,n, o}, {l,m}}.And, Tc = {ϕ,W, {m,n, o}, {l,n, o}, {n, o}, {m}, {l}} then αηTO(W) = {W,
ϕ, {l}, {m}, {l,m}, {l,n}, {l, o}, {m,n}, {m, o}, {l,m,n}, {l,m, o}, {l,n, o}, {m,n, o}}, αηTC(W) = {W, ϕ, {m,n, o}, {l,n, o},
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{n, o}, {m, o}, {m,n}, {l, o}, {l,n}, {o}, {n}, {m}, {l}} MαηO(W) = {W, ϕ, {l}, {m}, {n}, {o}, {l,m}, {l,n}, {l, o}, {m,n},
{m, o}, {n, o}, {l,m,n}, {l,m, o}, {l,n, o}, {m,n, o}} and MαηC(W) = {W, ϕ, {m,n, o}, {l,n, o}, {l,m,n}, {n, o}, {m, o},
{m,n}, {l, o}, {l,n}, {l,m}, {o}, {n}, {m}, {l}}.

M (current method) Definition 3.10
B Mαη(B) Mαη(B) BNDMαη (B) θMαη (B)
{l} {l} {l} ϕ 1
{m} {m} {m} ϕ 1
{n} {n} {n} ϕ 1
{o} {o} {o} ϕ 1
{l,m} {l,m} {l,m} ϕ 1
{l,n} {l,n} {l,n} ϕ 1
{l, o} {l, o} {l, o} ϕ 1
{m,n} {m,n} {m,n} ϕ 1
{m, o} {m, o} {m, o} ϕ 1
{n, o} {n, o} {n, o} ϕ 1
{l,m,n} {l,m,n} {l,m,n} ϕ 1
{l,m, o} {l,m, o} {l,m, o} ϕ 1
{l,n, o} {l,n, o} {l,n, o} ϕ 1
{m,n, o} {m,n, o} {m,n, o} ϕ 1

W W W ϕ 1
ϕ ϕ ϕ ϕ 0

Table (2)

T Abu-Donia [3] Definition 2.6

B Rαη(B) Řαη(B) BNDαη(B) θαη(B)
{l} {l} {l} ϕ 1
{m} {m} {m} ϕ 1
{n} ϕ {n} {n} 0
{o} ϕ {o} {o} 0
{l,m} {l,m} W {n, o} 1/2
{l,n} {l,n} {l,n} ϕ 1
{l, o} {l, o} {l, o} ϕ 1
{m,n} {m,n} {m,n} ϕ 1
{m, o} {m, o} {m, o} ϕ 1
{n, o} ϕ {n, o} {n, o} 0
{l,m,n} {l,m,n} W {o} 3/4
{l,m, o} {l,m, o} W {n} 1
{l,n, o} {l,n, o} {l,n, o} ϕ 1
{m,n, o} {m,n, o} {m,n, o} ϕ 1

W W W ϕ 1
ϕ ϕ ϕ ϕ 0

Table(3)

If we take B = {l,m} then the boundary and accuracy of B are ϕ and 1 respectively by the present method
in Definition 3.12 whereas the boundary and accuracy of B are{n, o} and 1

2 respectively by using abu-Donia
method [3]. There are different methods to approximate the sets . Our new method is the best of them
since the boundary regions decreased by increasing the lower approximations and decreasing the upper
approximations. Moreover the accuracy of θαη(B) in (MSA− space) is more accurate than the other accuracy
measures such as [3? ] as shown in Table(2) and Table (3)

Example 5.2 From Example 3.2 we can see that
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‘

Current method in Definition 3.9
B Mαη(B) Mαη(B) BNDMαη (B) θMαη (B)
{l} {l} {l} ϕ 1
{m} {m} {m} ϕ 1
{n} {n} {m} ϕ 1
{o} {o} {o} ϕ 1
{w} ϕ {w} {w} 0
{l,m} {l,m} {l,m} ϕ 1
{l,n} {l,n} {l,n} ϕ 1
{l, o} {l, o} {l, o} ϕ 1
{m,n} {m,n} {m,n} ϕ 1
{m, o} {m, o} {m, o} ϕ 1
{n, o} {n, o} {n, o} ϕ 1
{l,m,n} {l,m,n} {l,m,n} ϕ 1
{l,m, o} {l,m, o} {l,m, o} ϕ 1
{l,n,w} {l,n,w} {l,n,w} ϕ 1
{l,m,n, o} {m,n, o} W {w} 4/5

W W W ϕ 1
ϕ ϕ ϕ ϕ 0

Table (4)

Current method in Definition 3.2
Mη(B) Mη(B) BNDη(B) θMη (B)
{l} {l} ϕ 1
{m} {m} ϕ 1
ϕ {n} {n} 0
ϕ {o} {o} 0
ϕ {w} {w} 0
{l,m} {l,m} ϕ 1
{l,n} {l,n, o} {o} 2/3
{l, o} {l,n, o} {n} 2/3
{m} {m,n} {n} 1/2
{m, o} {m, o} ϕ 1
ϕ {n, o} {n, o} 0

{l,m,n} W {o,w} 3/5
{l,m, o} W {n,w} 3/5
{l,n,w} {l,n, o,w} {o} 3/4
{l,m,n, o} W {w} 4/5

W W ϕ 1
ϕ ϕ ϕ 0

Table (5)
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El-Sharkasy method in Definition 2.16 [11]
M(A) M(A) BNM(A) θM(A)
{l} {l,n, o,w} {n, o,w} 1/4
{m} {m,w} {w} 1/2
ϕ {n, o,w} {n, o,w} 0
ϕ {n, o,w} {n, o,w} 0
ϕ {n, o,w} {n, o,w} 0
{l,m} W {n, o,w} 2/5
{l} {l,n, o,w} {n, o,w} 1/4
{l} {l,n, o,w} {n, o,w} 1/4
{m} {m,n, o,w} {n, o,w} 1/4
{m} {m,n, o,n} {n, o,w} 1/4
ϕ {n, o,w} {n, o,w} 0
{l,m} W {n, o,w} 2/5
{l,m} W {n, o,w} 2/5
{l} {l,n, o,w} {n, o,w} 1/4
{l,m} W {n, o,w} 2/5

W W ϕ 1
ϕ ϕ ϕ 0

Table (6)

From Table(4) , Table (5) and Table (6), we can see that there are many subsets such as {o}, {n}, {o,w}
which are internally Ř- undefinable and internally Mη- undefinable but they are roughly Mαη- definable.
Also the subsets {l,m}, {l,m,n}, {l,m, o} are externally M- undefinable and externally Mη- undefinable but
they are roughly Mαη- definable So, M − αη−approximation space is a refinement We can say that the
proposed approach are useful in removing the impreciseness of rough sets.

6. αη−approximation space in minimal structure in Covid-19

Coronavirus disease (Covid-19) is an infectious disease caused by the Coronavirus, which was recently
discovered. The majority of people who contract COVID-19 experience only mild to moderate symptoms
and recover without the need for medication. The virus that causes Covid-19 disease is spread primarily by
droplets that an infected person exhales while coughing, sneezing, or inhaling. Since the droplets are too
large to stay suspended in the air, they easily fall to the ground or other surfaces. If you are very close to a
person with Covid-19 disease or touch a contaminated surface and then touch your eyes, nose, or mouth,
you may become infected by breathing. The most common signs and symptoms are: Fever, dry cough,
Exhaustion. Less common symptoms: Pains and aches, sore throat, diarrhea, conjunctivitis, a headache,
loss of sense of taste or smell, and a rash or change in the color of the fingers or toes

we showed that the importance of αη−approximation space with a minimal structure in medical science.
We applied this approximation in Coronavirus problem with seven symptoms for five patients. Table (7)
represents the problem of Coronavirus, the columns represent the symptoms which (yes means that the
patient has the symptoms and no means that the patient has not the symptoms ). The condition attributes
where Sy1is the fever on admission, Sy2 is cough, Sy3is Dyspnoea, Sy4 is a sore throat, Sy5is diarrhea, Sy6
is chest pain and Sy7 is malaise, the attribute D is the decision of the covid-19 in which y means the patient
has the virus and n means the patient has no virus, the rows are the patients P = {pa1, pa2, pa3, pa4, pa5}
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pa1 pa2 pa3 pa4 pa5
Sy1 yes yes yes yes yes
Sy2 no yes no no no
Sy3 no on no no no
Sy4 no yes yes no no
Sy5 no no no no no
Sy6 no no no no no
Sy7 yes yes no no yes
D yes yes no no yes

pa1 pa2 pa3 pa4 pa5

pa1 1 5/7 5/7 6/7 6/7
pa2 5/7 1 5/7 4/7 4/7
pa3 5/7 5/7 1 6/7 6/7
pa4 6/7 4/7 6/7 1 1
pa5 6/7 4/7 6/7 1 1

Table (7) Table (8)
Table (8) represents similarities between symptoms patients where the degree of similarity µ(x, y) is

defined as µ(x, y) =
∑n

i=1(ai(x)=ai(y))
n where n is the number of symptoms we define the relationship in each

issue according to the expert’s requirement, in this case, aℜ b if µ(a, b) > 0.8
M = {P, ϕ, {pa1, pa4, pa5}, {pa2}, {pa3, pa4, pa5}, {pa1, pa3, pa4, pa5}} , 2P

\M = {ϕ, P, {pa2, pa3}, {pa1, pa3, pa4, pa5},

{pa1, pa2}, {pa2}} and B1 (patients have corona) = {pa1, pa2, pa5} , Ř(B1) = {pa2} , Ř(B1) = P, So. θ(B1) = 1/5 , and

B2 (patients have not corona)= { pa3, pa4} , Ř(B2) =ϕ , Ř(B2) = {pa1, pa3, pa4, pa5} andθ(B2) = 0, So. MαηO(P) =
{ ϕ,P, {pa1}, {pa2}, {pa3}, {pa4}, {pa5}, {pa1, pa2}, {pa1, pa3}, {pa1, pa4}, {pa1, pa5}, {pa2, pa3}, {pa2, pa4}, {pa3, pa4},
{pa2, pa5}, {pa4, pa5}, {pa1, pa2, pa3}, {pa1, pa2, pa4}, {pa1, pa2, pa5}, {pa1, pa3, pa5}, {pa1, pa3, pa4} , {pa1, pa4, pa5},
{pa1, pa2, pa5}, {pa2, pa3, pa4}, {pa2, pa3, pa5}, {pa2, pa4, pa5}, {pa3, pa5, pa5}, {pa1, pa2, pa3.pa4}, {pa1, pa2, pa3.pa5},
{pa1, pa3.pa4, pa5}, {pa1, pa2, pa4, pa5}, {pa2, pa3.pa4, pa5}}. We notice that Ř(B1) = {pa1, pa2, pa5},

Ř(B1) = {pa1, pa2, pa5}, θ(B1) = 1 and Ř(B2) = {pa2, pa4}, Ř(B2) = {pa2, pa4}, θ(B2) = 1

In this example we got the minimal structure by a general relation Ř and we calculated the accuracy
measure which is 1/5 for the patients has corona. When we use the αη−approximation space, the accuracy
measure becomes 1 for the same group of patients.

7. Conclusions

We used minimal structure concepts to introduce the definitions of αη−rough and αη−exact sets. we
introduced the notion of η-open, αη-open in minimal structure, furthermore, we introduced the concept
of αη-lowerapproximation and αη-upper approximation. The notion is further explored by studying their
properties. We introduced αη-regions of uncertain sets. We compared topological approximation space and
αη-minimal structure approximation space. We applied the αη-approximation space in minimal structure
in covid -19 problem. We got that the minimal structure is more efficient and accurate in obtaining results
than Topology. Minimal structure increase the accuracy of decision making and help us to remove the
impreciseness of rough sets.
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