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Abstract. In this paper, we explicitly characterize bounded and compact composition operators from the
space of exponential Cauchy kernels generated by special measures to Bloch and little Bloch type spaces.
Moreover, the norm of a composition operator acting between these spaces is also obtained.

1. Introduction

Denote byD the open unit disk in the complex plane C, ∂D the unit circle, H(D) the class of all analytic
functions on D and by m the Lebesgue measure on ∂D such that m(∂D) = 1. Let M be the space of all
complex Borel measures on ∂D andM∗ the subset ofM consisting of probability measures. The family K
of Cauchy transforms is a subspace of H(D) consisting of all those functions which admits a representation
of the form

f (z) =
∫
∂D

1
1 − xz

dµ(x) (z ∈ D)

for some µ ∈M. Endowed with the norm

∥ f ∥K = inf
µ∈M

{
∥µ∥ : f (z) =

∫
∂D

1
1 − xz

dµ(x)
}
,

K becomes a Banach space, where ∥µ∥ is the total variation of the measureµ.By the Lebesgue decomposition
theorem M = Ma +Ms, where Ma = {µa ∈ M : µa ≪ m} and Ms = {µs ∈ M : µs⊥m}. Therefore, for any
µ ∈ M, we have µ = µa + µs, where µa ∈ Ma, µs ∈ Ms and ∥µ∥ = ∥µa∥ + ∥µs∥. Thus we also have the
decomposed: K = (K )a + (K )s, where (K )a is isometrically isomorphic toM/H1

0, the closed subspace ofM
of absolutely continuous measures and (K )s is isomorphic to Ms, the closed subspace of M consisting of
singular measures.
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Recently Yallaoui [22] defined the space of exponential Cauchy transforms as

Ke =
{

f ∈ H(D) : f (z) =
∫
∂D

exp
[ 1
1 − xz

]
dµ(x)

}
.

The spaceKe is a Banach space with respect to the norm

∥ f ∥Ke = inf
µ∈M

{
∥µ∥ : f (z) =

∫
∂D

exp
[ 1
1 − xz

]
dµ(x)

}
,

and can also be decomposed as Ke = (Ke)a ⊕ (Ke)s. Moreover, K ⊂ (Ke)a and Hp
⊂ (Ke)a for all p > 0. For

more about these spaces, we refer [1]-[9] and [11]-[22].
The Bloch-type space Bν(D) = Bν consists of all f ∈ H(D) such that

∥ f ∥Bν := | f (0)| + bν( f ) = | f (0)| + sup
z∈D
ν(z)| f ′(z)| < ∞,

where ν is a positive continuous function onD generally called a weight or a weight function. The weight ν
is called typical if it is radial, i.e. ν(z) = ν(|z|), z ∈ D and ν(|z|) decreasingly converges to 0 as |z| → 1.Also the
little Bloch-type space

Bν,0(D) = Bν,0 = { f ∈ H(D) : lim
|z|→1
ν(z)| f ′(z)| = 0}

is a closed subspace of Bν.
Recall that for φ be a holomorphic self-map of D, the composition operator Cφ is a linear operator

defined as
Cφ f = f ◦ φ, f ∈ H(D).

Recently, Abu-Muhanna and Yallaoui [2] characterized bounded and compact composition operators on
the space of exponential Cauchy transforms. Motivated by results in [2], we explicitly characterize bounded
and compact composition operators from the space of exponential Cauchy kernels generated by special
measures to Bloch and little Bloch type spaces. Moreover, we also obtain norm of a composition operator
acting between these spaces. For recent study of composition operators on Cauchy transforms, see [1]-[2],
[7], [8], [11], [12], [21] and the references therein. Throughout this paper, ν is a typical weight, and any
positive constants is denoted by C may not be same at each occurrence. The notation a ≲ b means that
a ≤ Cb and a ≳ b,means a ≥ Cb.Moreover, if a ≲ b and b ≤ Ca, then we write a ≍ b.

2. Main results

In this section, we characterize bounded and compact composition operators from the space of expo-
nential Cauchy kernels to Bloch type spaces.
The following two lemmas will play important role in this paper, see Corollary 1 and Lemma 1 in [1].

Lemma 1. The family { fx : x ∈ ∂D} is a subset ofKe, where

fx(z) = exp
[ 1
1 − xz

]
, z ∈ D. (2.1)

Moreover, supx∈∂D ∥ f ∥Ke = 1.

Lemma 2. For each f ∈ Ke, there exists a measure µ ∈M such that

f (z) =
∫
∂D

exp
[ 1
1 − xz

]
dµ(x)

and ∥ f ∥Ke = ∥µ∥.
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The next lemma is proved in [21].

Lemma 3. Let ν : D→ [0,∞) be a typical weight and dλ(z) = dA(z)/(1 − |z|2)2. Then f ∈ Bν if and only if

∥ f ∥2
Bν
≍ | f (0)|2 + sup

a∈D

∫
D

| f ′(z)|2ν2(z)
(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) < ∞, (2.2)

Standard arguments from Proposition 3.11 in [10] yields the proof of the next lemma. We omit details.

Lemma 4. If Cφ maps Ke boundedly into Bν, then Cφ maps Ke compactly into Bν if and only if for any norm
bounded sequence { f j} j∈N inKe converging to zero on compact subsets ofD, we have that lim j→∞ ∥Cφ f j∥Bν = 0.

The compactness of a closed subset F ⊂ Bν,0 can be characterized as follows, see Lemma 1 in [20].

Lemma 5. A closed set F in Bν,0 is compact if and only if it is bounded with respect to the norm ∥ · ∥Bν and satisfies

lim
|z|→1

sup
f∈F
ν(z)| f ′(z)| = 0.

Theorem 1. Cφ mapsKe boundedly into Bν if and only if

M1 := sup
x∈∂D

sup
z∈D

ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
< ∞. (2.3)

Moreover, if Cφ mapsKe boundedly into Bν, then

∥Cφ∥Ke→Bν =M1 + sup
x∈∂D

exp
[
ℜ

( 1
1 − xφ(0)

)]
. (2.4)

Proof. First, suppose that (2.3) holds. Let f ∈ Ke. Then by Lemma 2, there is a measure µ ∈M such that

f (z) =
∫
∂D

exp
[ 1
1 − xz

]
dµ(x) (2.5)

and ∥µ∥ = ∥ f ∥Ke . Thus, we have

f ′(z) =
∫
∂D

exp
[ 1
1 − xz

] x
(1 − xz)2 dµ(x)

and

f ′(φ(z)) =
∫
∂D

exp
[ 1
1 − xφ(z)

] x
(1 − xφ(z))2 dµ(x).

Therefore,

ν(z)|φ′(z)|| f ′(φ(z))| ≤
∫
∂D

ν(z)|φ′(z)|
|1 − xφ(z)|2

∣∣∣∣∣ exp
[ 1
1 − xφ(z)

]∣∣∣∣∣d|µ|(x) (2.6)

≤ sup
x∈∂D

sup
z∈D

ν(z)|φ′(z)|
|1 − xφ(z)|2

∣∣∣∣∣ exp
[ 1
1 − xφ(z)

]∣∣∣∣∣ ∫
∂D

d|µ|(x)

Using the facts that
∫
∂D

d|µ|(x) = ∥µ∥, ∥µ∥ = ∥ f ∥Ke and | exp( f (z))| = exp[ℜ( f (z))] for any f ∈ H(D), we have
that

sup
z∈D
ν(z)|(Cφ f )′(z)| ≤ sup

x∈∂D
sup
z∈D

ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
∥ f ∥Ke .
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Taking the supremum over z ∈ D, we get

sup
z∈D
ν(z)|(Cφ f )′(z)| ≤M1∥ f ∥Ke . (2.7)

Again

|(Cφ f )(0)| = | f (φ(0))| =
∣∣∣∣∣ ∫
∂D

exp
[ 1
1 − xφ(0)

]
dµ(x)

∣∣∣∣∣
≤ sup

x∈∂D

∣∣∣∣∣ exp
[ 1
1 − xφ(0)

]∣∣∣∣∣ ∫
∂D

d|µ|(x)

= sup
x∈∂D

exp
[
ℜ

( 1
1 − xφ(0)

)]
∥ f ∥Ke . (2.8)

Thus from (2.7) and (2.8), we have

∥Cφ f ∥Bν ≤
{
M1 + sup

x∈∂D
exp
[
ℜ

( 1
1 − xφ(0)

)]}
∥ f ∥Ke .

Hence Cφ mapsKe boundedly into Bν and

∥Cφ∥Ke→Bν ≤M1 + sup
x∈∂D

exp
[
ℜ

( 1
1 − xφ(0)

)]
. (2.9)

Next suppose that Cφ mapsKe boundedly into Bν. Let

fx(z) = exp
[ 1
1 − xz

]
, x ∈ ∂D. (2.10)

Then, by lemma 1, we have supx∈D ∥ fx∥Ke = 1 and

f ′x(z) = exp
[ 1
1 − xz

] x
(1 − xz)2 .

From this and the fact that Cφ maps Ke boundedly into Bν, we have that ∥Cφ fx∥Bν ≤ ∥Cφ∥Ke→Bν , for every
x ∈ ∂D and so

M1 + sup
x∈∂D

exp
[
ℜ

( 1
1 − xφ(0)

)]
≤ ∥Cφ∥Ke→Bν . (2.11)

Furthermore, from (2.9) and (2.11), (2.4) follows and the proof is accomplished.

Theorem 2. Cφ mapsKe boundedly into Bν if and only if

M2 := sup
x∈∂D

sup
a∈D

∫
D

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) (2.12)

is finite.

Proof. It is sufficient to show that M2 ≍ M2
1. Claim that M2 ≳ M2

1. For z ∈ D(a), we have ν(a) ≍ ν(z) and
|1 − āz| ≍ 1 − |a|2, Thus by the subharmonicity of the function

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)]
,
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we can have

M2 ≥ sup
x∈∂D

sup
a∈D

∫
D(a)

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)

= sup
x∈∂D

sup
a∈D

∫
D(a)

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)] (1 − |a|2)2

|1 − az|4
dA(z)

≥ sup
x∈∂D

sup
a∈D

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)]
=M2

1. (2.13)

This settles the claim. Next we show that M2 ≲M2
1. Again∫

D

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) ≲ 1,

we have that

M2 ≤M2
1 sup

a∈D

∫
D

(1 − |ηa(z)|2)2dλ(z) ≲M2
1. (2.14)

Thus the proof is accomplished.

Theorem 3. The following statements are equivalent:

(1) Cφ mapsKe compactly into Bν.
(2) For each of x ∈ T, the transform Λ defined as

Λ(x) =
∫
D

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)]
(1 − |ηa(z)|2)2dλ(z)

is a continuous function of x.
(3) For each x in ∂D and E ofD, let

νx(E) =
∫

E

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z).

Then for any given ε > 0 and a subset E ofD, there is a δ > 0 such that νx(E) < ε for all x in ∂D whenever∫
D

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) < δ.

Proof. (1)⇒ (2). Let {x j} j∈N be a sequence in ∂D such that x j converges to x for some x in ∂D as j→∞. Let
fx j be defined as in (2.1). Then sup j∈N || fx j ||Ke = 1 and fx j → fx uniformly on compact subsets ofD. Since Cφ
mapsKe compactly into Bν, so by Lemma 4, we have that ∥Cφ( fx j − fx)∥Bν → 0 as j→∞.

|Λ(x j) −Λ(x)| =
∣∣∣∣∣ ∫
D

{ ν2(z)|φ′(z)|2

|1 − x jφ(z)|4
exp
[
ℜ

( 2
1 − x jφ(z)

)]
−
ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)]}(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)
∣∣∣∣∣

=

∣∣∣∣∣ ∫
D

{
|( fx j ◦ φ)′(z)|2 − |( fx ◦ φ)′(z)|2

}
ν2(z)

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)
∣∣∣∣∣

≲
( ∫
D

| f ′x j
(φ(z))φ′(z) − f ′x(φ(z))φ′i (z)|2ν2(z)

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)
)1/2

= ∥Cφ( fx j − fx)∥Bν → 0 as j→∞.
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Thus Λ(x j)→ Λ(x) as j→∞. Hence the transformation Λ is a continuous function of x ∈ ∂D.
(2)⇒ (3). If possible, suppose that (2) does not hold. Then there are sequences {xk}k∈N in ∂D and {Ek}k∈N in
D such that xk → x and ∫

D

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)→ 0

as k→∞, but νxk (Ek) ≳ 1 for all k ∈N. Now

|νxk (Ek) − νx(Ek)| ≤
∫

Ek

∣∣∣∣∣ ν2(z)|φ′(z)|2

|1 − xkφ(z)|4
exp
[
ℜ

( 2
1 − xkφ(z)

)]
−
ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)]∣∣∣∣∣(1 − ∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z). (2.15)

Thus

νxk (Ek) ≤
∫

Ek

∣∣∣∣∣ ν2(z)|φ′(z)|2

|1 − xkφ(z)|4
exp
[
ℜ

( 2
1 − xkφ(z)

)]
−
ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)]∣∣∣∣∣(1 − ∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) + νx(Ek). (2.16)

Also Cφ mapsKe boundedly into Bν, so we have that

νx(Ek) =
∫

Ek

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)

≤M2
1

∫
Ek

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)→ 0 as k→∞. (2.17)

Using (2.16) and (2.17) in (2.15), we have that νx(Ek)→ 0, contradiction. Hence (2)⇒ (3) holds.
(3)⇒ (1). Let ϵ > 0 be given. Using the identity:

1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2 = (1 − |a|2)(1 − |z|2)
|1 − āz|2

,

we can easily see that ∫
D

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) = 1.

Therefore, by the Jensen’s inequality we have that∫
D

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)

≤ ∥µk∥

∫
∂D

∫
D

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)d|µk|(x).

Choose a compact set Ω ⊂ D such that∫
D\Ω

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) < δ.
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Then ∫
D\Ω

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)

≤ ∥µk∥

∫
∂D

∫
D\Ω

ν2(z)|φ′(z)|2

|1 − xφ(z)|4
exp
[
ℜ

( 2
1 − xφ(z)

)](
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)d|µk|(x)

≤ ϵ∥µk∥

∫
∂D

d|µk|(x) = ϵ|| fk||2Ke
< ϵ. (2.18)

On Ω, there is some k0 such that | f ′k (φi(z))|2 < ϵ for k ≥ k0. Thus for k ≥ k0,we have that∫
K
| f ′k (φ(z))|2|φ′(z)|2ν2(z)

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z)

≤ ϵC
∫

K
|φ′(z)|2ν2(z)

(
1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2)2dλ(z) < ϵC∥φ∥2
Bν

(2.19)

Therefore, by (2.18), (2.19) and the fact that φ ∈ Bν, we have that ||Cφ) fk||Bν → 0 as k → ∞. This completes
the proof of (3)⇒ (1).

Theorem 4. Cφ mapsKe boundedly into Bν,0 if and only if

M1 := sup
x∈∂D

sup
z∈D

ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
< ∞. (2.20)

and

lim
|z|→1

ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
= 0 (2.21)

for every x ∈ ∂D.

Proof. First suppose that (2.20) and (2.21) hold. Let f ∈ Ke be arbitrary. Then using Lemma 2 and proceeding
as in Theorem 1, we have

ν(z)|φ′(z)|| f ′(φ(z))| ≤
∫
∂D

ν(z)|φ′(z)|
|1 − xφ(z)|2

∣∣∣∣∣ exp
[ 1
1 − xφ(z)

]∣∣∣∣∣d|µ|(x) (2.22)

By (2.21), the the left hand side in (2.22) tends to zero for every x ∈ ∂D, as |z| → 1, and it is dominated by
M1, where M1 is as in Theorem 1. Thus by the Lebesgue-dominated convergence theorem, the integral in
(2.22) tends to zero as |z| → 1. Therefore,

lim
|z|→1
ν(z)|(Cφ f )′(z)| = 0.

Thus Cφ f ∈ Bν,0 for every f ∈ Ke. Hence Cφ maps Ke boundedly into Bν,0. Conversely, suppose that Cφ
mapsKe boundedly into Bν,0. Then Cφ fx ∈ Bν,0 for every function fx, x ∈ ∂D, defined in (2.10), that is

lim
|z|→1

ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
= 0

for every x ∈ ∂D. Since Cφ maps Ke boundedly into Bν,0, so Cφ maps Ke boundedly into Bν. Therefore, by
Theorem 1, (2.20) follows, as desired.
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Theorem 5. Cφ mapsKe boundedly into Bν,0 if and only if

lim
|z|→1

sup
x∈∂D

ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
= 0. (2.23)

Proof. By Lemma 5, the set {Cφ f : f ∈ Ke, ∥ f ∥Ke ≤ 1} has compact closure in Bν,0 if and only if

lim
|z|→1

sup{ν(z)|(Cφ f )′(z)| : f ∈ Ke, ∥ f ∥Ke ≤ 1} = 0. (2.24)

Let f be a function in the unit ball ofKe. Then there is a µ ∈M such that ∥µ∥ = ∥ f ∥Ke and

f (z) =
∫
∂D

exp
[ 1
1 − xz

]
dµ(x).

Thus proceeding as in Theorem 1, we have

ν(z)|(Cφ f )′(z)| ≤
ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
≤
ν(z)|φ′(z)|
|1 − xφ(z)|2

exp
[
ℜ

( 1
1 − xφ(z)

)]
. (2.25)

Using (2.24) in (2.25), we get (2.23). Hence Cφ maps Ke compactly into Bν,0. Conversely, suppose that Cφ
mapsKe compactly into Bν,0. Using the functions in (2.10) in (2.24), we easily have the desired condition in
(2.23).
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