The Drazin inverse for perturbed block-operator matrices

Huanyin Chen ${ }^{\text {a }}$, Marjan Sheibani ${ }^{\text {b,* }}$
${ }^{a}$ School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou, China
${ }^{b}$ Farzanegan Campus, Semnan University, Semnan, Iran

Abstract

We present new formulas of Drazin inverses for anti-triangular block-operator matrices. If $B^{\pi} A^{D} B=0, B^{\pi} A B^{D}=0$ and $B^{\pi} A B A^{\pi}=0$, the explicit representation of the Drazin inverse of a blockoperator anti- triangular matrix $\left(\begin{array}{cc}A & I \\ B & 0\end{array}\right)$ is given. Thus a generalization of [A note on the Drazin inverse for an anti-triangular matrix, Linear Algebra Appl., 431(2009), 1910-1922] is obtained. Some applications to full block-operator matrices are thereby considered.

1. Introduction

Lex X and Y be Banach spaces. Denote by $\mathcal{B}(X, Y)$ the set of all bounded linear operators from X to Y. Let $\mathcal{B}(X)$ denote the set of all bounded linear operators from X to itself. A bounded linear operator $A \in \mathcal{B}(X)$ has Drazin inverse $X \in \mathcal{B}(X)$ if it is the solution of the following equation system:

$$
A X=X A, X=X A X \text { and } A^{n}=A^{n+1} X
$$

for some $n \in \mathbb{N}$. If such X exists, it is unique, and we denote it by A^{D}. The smallest n in the preceding equations is called the Drazin index of A and denote by $i(A)$. Let $\mathcal{B}(X)^{D}$ denote the set of all Drazin invertible bounded linear operators in $\mathcal{B}(X)$. Let $A, B \in \mathcal{B}(X)^{D}$ and I be the identity matrix over a Banach space X. It is attractive to investigate the Drazin inverse of the block-operator matrix $M=\left(\begin{array}{cc}A & I \\ B & 0\end{array}\right)$. The relationship of computing the Drazin inverse of M to second order differential equations was observed by Campbell (see [2]). The application of Drazin inverse to singular differential equations was also found in [1]. Recently, the Drazin inverse of such anti-triangular block matrices is extensively studied by many authors (see $[5,6,11,14,15,17,18]$).

The additive property of Drazin inverse is interesting. It was studied from many different views, e.g., $[3,4,9,12,13]$. Let $T \in \mathcal{B}(X)^{D}$. We use T^{π} to stand for the spectral idempotent operator $I-T T^{D}$. In [3, Theorem 2.5], Castro-González obtained the representation of Drazin inverse of $A+B$ under the conditions $A^{D} B=0, A B^{D}=0$ and $B^{\pi} A B A^{\pi}=0$ for square complex matrices A and B. The motivation of this paper is to present formulae for the Drazin inverse of M under the same conditions.

[^0]In this paper, we present exact representations of the Drazin inverse of M. If $B^{\pi} A^{D} B=0, B^{\pi} A B^{D}=0$ and $B^{\pi} A B A^{\pi}=0$, the formula of the Drazin inverse of a block anti-triangular matrix $\left(\begin{array}{cc}A & I \\ B & 0\end{array}\right)$ is given. Evidently, we solve a wider kind of singular differential equations posed by Campbell (see [2]).

As applications, we explore the Drazin invertibility of a block operator matrix $N=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, where $A \in \mathcal{B}(X)^{D}, B \in \mathcal{B}(X, Y), C \in \mathcal{B}(Y, X)$ and $D \in \mathcal{B}(Y)^{D}$. Here, N is a bounded linear operator on $X \oplus Y$. A new additive property of the Drazin invertibility for bounded linear operators is provided and we then establish new perturbed conditions under which the full block-operator matrix N has Drazin inverse.

Throughout the paper, all operators are bounded linear operators over a Banach space. Let \mathbb{C} be the field of all complex numbers. \mathbb{N} stands for the set of all natural numbers. $C^{n \times n}$ denotes the Banach algebra of all $n \times n$ complex matrices.

2. Key lemmas

To prove the main results, some lemmas are needed. The following result over complex fields was given in [8]. Similarly, it can be extended to bounded linear operators over a Banach space.

Lemma 2.1. Let $P, Q \in \mathcal{B}(X)^{D}$. If $P Q=0$, then

$$
(P+Q)^{D}=\sum_{i=0}^{t-1} Q^{i} Q^{\pi}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{t-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi}
$$

where $t=\max \{i(P), i(Q)\}$.
Let $A, B \in \mathcal{B}(X)^{D}$. We are ready to prove:
Lemma 2.2. Suppose $G=\left(\begin{array}{cc}A B^{\pi} & B^{\pi} \\ B B^{\pi} & 0\end{array}\right)$ has Drazin inverse. If $B^{\pi} A B^{D}=0$, then

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=G^{D}+\sum_{i=0}^{i(G)-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

Proof. We check that $M=G+H$, where

$$
G=\left(\begin{array}{cc}
A B^{\pi} & B^{\pi} \\
B B^{\pi} & 0
\end{array}\right), H=\left(\begin{array}{cc}
A B B^{D} & B B^{D} \\
B^{2} B^{D} & 0
\end{array}\right)
$$

Since $B^{\pi} A B^{D}=0$, we see that $G H=0$. One directly verifies that

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right) H=\left(\begin{array}{cc}
B B^{D} & 0 \\
0 & B B^{D}
\end{array}\right) \\
= & H\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right), \\
& H\left[I-H\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right)\right] \\
= & {\left[I-H\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B B^{D}
\end{array}\right)\right]\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right) } \\
= & 0 .
\end{aligned}
$$

Therefore

$$
H^{D}=\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right), H^{\pi}=\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right) .
$$

Let $t=i(G)$. Using Lemma 2.1,

$$
M^{D}=G^{D}+\sum_{i=0}^{t-1}\left(H^{D}\right)^{i+1} G^{i} G^{\pi}
$$

as asserted.

The following lemma is known as the Cline's formula in matrix and operator theory (see [10, Corollary 3.3]).

Lemma 2.3. Let $P \in \mathcal{B}(X, Y), Q \in \mathcal{B}(Y, X)$. If $P Q \in \mathcal{B}(X)^{D}$, then $Q P \in \mathcal{B}(Y)^{D}$. In this case,

$$
(Q P)^{D}=Q\left[(P Q)^{D}\right]^{2} P
$$

Lemma 2.4. (see [11, Lemma 3.2] and [14, Lemma 2.3]) Let $A, B \in \mathcal{B}(X)$. If A and B are nilpotent and $A B=0$, then $\left(\begin{array}{cc}A & B \\ I & 0\end{array}\right)$ is nilpotent.

Lemma 2.5. If $A^{D} B=0, A B A^{\pi}=0$ and B is nilpotent, then

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=\sum_{i=0}^{t-1}\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
\left(A^{D}\right)^{i+1} & \left(A^{D}\right)^{i+2} \\
B\left(A^{D}\right)^{i+2} & B\left(A^{D}\right)^{i+3}
\end{array}\right)
$$

$t=i\left(\begin{array}{cc}A A^{\pi} & A^{\pi} \\ B A^{\pi} & 0\end{array}\right)$.
Proof. Clearly, we have $M=P+Q$, where

$$
P=\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
B A A^{D} & 0
\end{array}\right), Q=\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right) .
$$

We easily see that

$$
\left(\begin{array}{cc}
A^{2} A^{D} & 0 \\
I & 0
\end{array}\right)^{D}=\left(\begin{array}{cc}
A^{D} & 0 \\
\left(A^{D}\right)^{2} & 0
\end{array}\right)
$$

We observe that

$$
\begin{gathered}
\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
B A A^{D} & 0
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right)\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right), \\
\left(\begin{array}{cc}
A^{2} A^{D} & 0 \\
I & 0
\end{array}\right)=\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right) .
\end{gathered}
$$

By using Lemma 2.3, we get

$$
\begin{aligned}
P^{D} & \left.=\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right)\left[\begin{array}{cc}
A^{2} A^{D} & 0 \\
I & 0
\end{array}\right)^{D}\right]^{2}\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right)\left(\begin{array}{ll}
\left(A^{D}\right)^{2} & 0 \\
\left(A^{D}\right)^{3} & 0
\end{array}\right)\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{D} & \left(A^{D}\right)^{2} \\
B\left(A^{D}\right)^{2} & B\left(A^{D}\right)^{3}
\end{array}\right) .
\end{aligned}
$$

By induction, we have

$$
\begin{aligned}
\left(P^{D}\right)^{i} & =\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right)\left[\left(\begin{array}{cc}
A^{2} A^{D} & 0 \\
I & 0
\end{array}\right)^{D}\right]^{i+1}\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right)\left(\begin{array}{cc}
A^{D} & 0 \\
\left(A^{D}\right)^{2} & 0
\end{array}\right)^{i+1}\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & 0 \\
0 & B A A^{D}
\end{array}\right)\left(\begin{array}{cc}
\left(A^{D}\right)^{i+1} & 0 \\
\left(A^{D}\right)^{i+2} & 0
\end{array}\right)\left(\begin{array}{cc}
A^{2} A^{D} & A A^{D} \\
I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(A^{D}\right)^{i} & \left(A^{D}\right)^{i+1} \\
B\left(A^{D}\right)^{i+1} & B\left(A^{D}\right)^{i+2}
\end{array}\right) .
\end{aligned}
$$

Clearly, we have

$$
\begin{gathered}
\left(\begin{array}{cc}
A A^{\pi} & B A^{\pi} \\
I & 0
\end{array}\right)=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & B A^{\pi} \\
I & 0
\end{array}\right), \\
\left(\begin{array}{cc}
A A^{\pi} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & B A^{\pi} \\
I & 0
\end{array}\right)=0,\left(\begin{array}{cc}
0 & B A^{\pi} \\
I & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
B A^{\pi} & 0 \\
0 & B A^{\pi}
\end{array}\right) .
\end{gathered}
$$

Since $A^{\pi} B=B$ is nilpotent then $B A^{\pi}$ is nilpotent. By virtue of Lemma 2.4, $\left(\begin{array}{cc}A A^{\pi} & B A^{\pi} \\ I & 0\end{array}\right)$ is nilpotent. Observing that

$$
\begin{aligned}
\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right) & =\left(\begin{array}{cc}
I & 0 \\
0 & B A^{\pi}
\end{array}\right)\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
I & 0 \\
A & 0
\end{array}\right) \\
\left(\begin{array}{cc}
A A^{\pi} & B A^{\pi} \\
I & 0
\end{array}\right) & =\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
I & 0
\end{array}\right)
\end{aligned}
$$

According to [10, Corollary 3.3], Q is nilpotent.
Since $A^{D} B=0$, we have $P Q=0$. In view of Lemma 2.1, we get

$$
\begin{aligned}
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D} & =\sum_{i=0}^{t-1} Q^{i} Q^{\pi}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{t-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi} \\
& =\sum_{i=0}^{t-1} Q^{i}\left(P^{D}\right)^{i+1}
\end{aligned}
$$

where $t=i(Q)$. This completes the proof.

3. Main results

We now come to our main result.

Theorem 3.1. If $B^{\pi} A^{D} B=0, B^{\pi} A B^{D}=0$ and $B^{\pi} A B A^{\pi}=0$, then

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

where

$$
G=\left(\begin{array}{cc}
A B^{\pi} & B^{\pi} \\
B B^{\pi} & 0
\end{array}\right), G^{D}=\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)\left(\begin{array}{cc}
\Lambda & \Sigma \\
\Gamma & \Delta
\end{array}\right)^{2}\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right)
$$

$$
\begin{aligned}
& \Lambda=B^{\pi} A^{D}+\sum_{i=1}^{s-1} \varepsilon_{i} B^{\pi}\left(A^{D}\right)^{i+1}+\sum_{i=1}^{s-1} \zeta_{i} B B^{\pi}\left(A^{D}\right)^{i+2} \\
& \Sigma=B^{\pi}\left(A^{D}\right)^{2}+\sum_{i=1}^{s-1} \varepsilon_{i} B^{\pi}\left(A^{D}\right)^{i+2}+\sum_{i=1}^{s-1} \zeta_{i} B B^{\pi}\left(A^{D}\right)^{i+3} \\
& \Gamma=B B^{\pi}\left(A^{D}\right)^{2}+\sum_{i=1}^{s-1} \eta_{i} B^{\pi}\left(A^{D}\right)^{i+1}+\sum_{i=1}^{s-1} \theta_{i} B B^{\pi}\left(A^{D}\right)^{i+2} \\
& \Delta=B B^{\pi}\left(A^{D}\right)^{3}+\sum_{i=1}^{s-1} \eta_{i} B^{\pi}\left(A^{D}\right)^{i+2}+\sum_{i=1}^{s-1} \theta_{i} B B^{\pi}\left(A^{D}\right)^{i+3} . \\
& \varepsilon_{1}=B^{\pi} A A^{\pi} \text {, } \\
& \zeta_{1}=I-B^{\pi} A A^{D} \text {, } \\
& \eta_{1}=B B^{\pi} A^{\pi} \text {, } \\
& \theta_{1}=0 \text {, } \\
& \varepsilon_{i+1}=B^{\pi} A^{\pi} A \varepsilon_{i}+\left(I-B^{\pi} A A^{D}\right) \eta_{i}, \\
& \zeta_{i+1}=B^{\pi} A^{\pi} A \zeta_{i}+\left(I-B^{\pi} A A^{D}\right) \theta_{i}, \\
& \eta_{i+1}=B B^{\pi} A^{\pi} \varepsilon_{i} \text {, } \\
& \theta_{i+1}=B B^{\pi} A^{\pi} \theta_{i}, \\
& s=\max \{i(A), i(B)\}, t=i(G), i \in \mathbb{N} .
\end{aligned}
$$

Proof. Set $s=\max \{i(A), i(B)\}$. By hypothesis, we check that

$$
\begin{aligned}
\left(B^{\pi} A\right)\left(B^{\pi} A^{D}\right) & =B^{\pi} A A^{D}=B^{\pi} A^{D} A=\left(B^{\pi} A^{D}\right)\left(B^{\pi} A\right), \\
\left(B^{\pi} A^{D}\right)^{2}\left(B^{\pi} A\right) & =B^{\pi} A^{D}\left(B^{\pi} A^{D} B^{\pi} A\right)=B^{\pi} A^{D}, \\
\left(B^{\pi} A^{D}\right)\left(B^{\pi} A\right)^{s+1}-\left(B^{\pi} A\right)^{s} & =B^{\pi}\left(A^{D} A^{s+1}-A^{s}\right)=0 .
\end{aligned}
$$

Hence, $\left(B^{\pi} A\right)^{D}=B^{\pi} A^{D}$, and so $\left(B^{\pi} A\right)^{\pi}=I-B^{\pi} A B^{\pi} A^{D}=I-B^{\pi} A A^{D}$. It is easy to verify that

$$
\begin{aligned}
& \left(B^{\pi} A\right)^{D}\left(B^{\pi} B\right)=B^{\pi} A^{D} B B^{\pi}=0,\left(B^{\pi} A\right)\left(B^{\pi} B\right)^{D}=0, \\
& \left(B^{\pi} B\right)^{\pi}\left(B^{\pi} A\right)\left(B^{\pi} B\right)\left(B^{\pi} A\right)^{\pi}=B^{\pi} A B A^{\pi}=0 .
\end{aligned}
$$

Since $B B^{\pi}$ is nilpotent, it follows by Lemma 2.5 that

$$
\begin{aligned}
& \left(\begin{array}{cc}
B^{\pi} A & I \\
B^{\pi} B & 0
\end{array}\right)^{D} \\
= & \sum_{i=0}^{t-1}\left(\begin{array}{cc}
B^{\pi} A\left(B^{\pi} A\right)^{\pi} & \left(B^{\pi} A\right)^{\pi} \\
B B^{\pi}\left(B^{\pi} A\right)^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
\left(B^{\pi} A^{D}\right)^{i+1} & \left(B^{\pi} A^{D}\right)^{i+2} \\
B B^{\pi}\left(B^{\pi} A^{D}\right)^{i+2} & B B^{\pi}\left(B^{\pi} A^{D}\right)^{i+3}
\end{array}\right) \\
= & \sum_{i=0}^{t-1}\left(\begin{array}{cc}
B^{\pi} A A^{\pi} & I-B^{\pi} A A^{D} \\
B^{\pi} B A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
B^{\pi}\left(A^{D}\right)^{i+1} & B^{\pi}\left(A^{D}\right)^{i+2} \\
B B^{\pi}\left(A^{D}\right)^{i+2} & B B^{\pi}\left(A^{D}\right)^{i+3}
\end{array}\right),
\end{aligned}
$$

where $t=i\left(\begin{array}{cc}B^{\pi} A A^{\pi} & I-B^{\pi} A A^{D} \\ B^{\pi} B A^{\pi} & 0\end{array}\right)$.
Write $\left(\begin{array}{cc}B^{\pi} A A^{\pi} & I-B^{\pi} A A^{D} \\ B^{\pi} B A^{\pi} & 0\end{array}\right)^{i}=\left(\begin{array}{cc}\varepsilon_{i} & \zeta_{i} \\ \eta_{i} & \theta_{i}\end{array}\right)$. Then

$$
\begin{aligned}
\varepsilon_{1} & =B^{\pi} A A^{\pi} \\
\zeta_{1} & =I-B^{\pi} A A^{D} \\
\eta_{1} & =B B^{\pi} A^{\pi}, \\
\theta_{1} & =0 .
\end{aligned}
$$

For each $i \geq 1$, we have

$$
\begin{aligned}
\varepsilon_{i+1} & =B^{\pi} A^{\pi} A \varepsilon_{i}+\left(I-B^{\pi} A A^{D}\right) \eta_{i,} \\
\zeta_{i+1} & =B^{\pi} A^{\pi} A \zeta_{i}+\left(I-B^{\pi} A A^{D}\right) \theta_{i}, \\
\eta_{i+1} & =B B^{\pi} A^{\pi} \varepsilon_{i,}, \\
\theta_{i+1} & =B B^{\pi} A^{\pi} \theta_{i} .
\end{aligned}
$$

Hence

$$
\left(\begin{array}{cc}
B^{\pi} A & I \\
B^{\pi} B & 0
\end{array}\right)^{D}=\left(\begin{array}{ll}
\Lambda & \Sigma \\
\Gamma & \Delta
\end{array}\right)
$$

where

$$
\begin{aligned}
& \Lambda=B^{\pi} A^{D}+\sum_{i=1}^{s-1} \varepsilon_{i} B^{\pi}\left(A^{D}\right)^{i+1}+\sum_{i=1}^{s-1} \zeta_{i} B B^{\pi}\left(A^{D}\right)^{i+2} \\
& \Sigma=B^{\pi}\left(A^{D}\right)^{2}+\sum_{i=1}^{s-1} \varepsilon_{i} B^{\pi}\left(A^{D}\right)^{i+2}+\sum_{i=1}^{s-1} \zeta_{i} B B^{\pi}\left(A^{D}\right)^{i+3} \\
& \Gamma=B B^{\pi}\left(A^{D}\right)^{2}+\sum_{i=1}^{s-1} \eta_{i} B^{\pi}\left(A^{D}\right)^{i+1}+\sum_{i=1}^{s-1} \theta_{i} B B^{\pi}\left(A^{D}\right)^{i+2} \\
& \Delta=B B^{\pi}\left(A^{D}\right)^{3}+\sum_{i=1}^{s-1} \eta_{i} B^{\pi}\left(A^{D}\right)^{i+2}+\sum_{i=1}^{s-1} \theta_{i} B B^{\pi}\left(A^{D}\right)^{i+3} .
\end{aligned}
$$

Let $G=\left(\begin{array}{cc}A B^{\pi} & B^{\pi} \\ B B^{\pi} & 0\end{array}\right)$ and $H=\left(\begin{array}{cc}B^{\pi} A & B^{\pi} \\ B B^{\pi} & 0\end{array}\right)$. Then we see that

$$
H=\left(\begin{array}{cc}
B^{\pi} A & I \\
B B^{\pi} & 0
\end{array}\right)\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right)
$$

Using [18, Lemma 1.4], we get

$$
H^{D}=\left(\begin{array}{cc}
B^{\pi} A & I \\
B B^{\pi} & 0
\end{array}\right)^{D}\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right)
$$

It is easy to verify that

$$
\begin{aligned}
G & =\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right), \\
H & =\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right)\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right) .
\end{aligned}
$$

By using Lemma 2.3 again, we have

$$
\begin{aligned}
G^{D} & =\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)\left(H^{D}\right)^{2}\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right) \\
& =M\left(\begin{array}{cc}
\Lambda & \Sigma \\
\Gamma & \Delta
\end{array}\right)^{2}\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right)
\end{aligned}
$$

According to Lemma 2.2,

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & -A B^{D}
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

where $t=i(G)$. This completes the proof.
Corollary 3.2. If $A^{D} B=0, A B^{D}=0$ and $B^{\pi} A B A^{\pi}=0$, then

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & 0
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

where

$$
G=\left(\begin{array}{cc}
A & B^{\pi} \\
B B^{\pi} & 0
\end{array}\right), G^{D}=\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)\left(\begin{array}{cc}
\Lambda & \Sigma \\
\Gamma & \Delta
\end{array}\right)^{2}
$$

$$
\begin{gathered}
\Lambda=B^{\pi} A^{D}+\sum_{i=1}^{s-1} \varepsilon_{i} B^{\pi}\left(A^{D}\right)^{i+1}+\sum_{i=1}^{s-1} \zeta_{i} B B^{\pi}\left(A^{D}\right)^{i+2} \\
\Sigma=B^{\pi}\left(A^{D}\right)^{2}+\sum_{i=1}^{s-1} \varepsilon_{i} B^{\pi}\left(A^{D}\right)^{i+2}+\sum_{i=1}^{s-1} \zeta_{i} B B^{\pi}\left(A^{D}\right)^{i+3} \\
\Gamma=B B^{\pi}\left(A^{D}\right)^{2}+\sum_{i=1}^{s-1} \eta_{i} B^{\pi}\left(A^{D}\right)^{i+1}+\sum_{i=1}^{s-1} \theta_{i} B B^{\pi}\left(A^{D}\right)^{i+2} \\
\begin{aligned}
& s-1=B B^{\pi}\left(A^{D}\right)^{3}+\sum_{i=1}^{s-1} \eta_{i} B^{\pi}\left(A^{D}\right)^{i+2}+\sum_{i=1}^{s-1} \theta_{i} B B^{\pi}\left(A^{D}\right)^{i+3} . \\
& \varepsilon_{1}=B^{\pi} A A^{\pi}, \\
& \zeta_{1}=I-B^{\pi} A A^{D}, \\
& \eta_{1}=B B^{\pi} A^{\pi}, \\
&=0, \\
&=B_{1}^{\pi} A^{\pi} A \varepsilon_{i}+\left(I-B^{\pi} A A^{D}\right) \eta_{i,}, \\
& \varepsilon_{i+1}=B^{\pi} A^{\pi} A \zeta_{i}+\left(I-B^{\pi} A A^{D}\right) \theta_{i,} \\
& \zeta_{i+1}= B B^{\pi} A^{\pi} \varepsilon_{i}, \\
& \eta_{i+1}= B B^{\pi} A^{\pi} \theta_{i}, \\
& \theta_{i+1}= \\
& s=\max \{i(A), i(B)\}, t=i(G), i \in \mathbb{N} .
\end{aligned}
\end{gathered}
$$

Proof. Since $A B^{D}=0$, we have $A^{D} B^{D}=\left(A^{D}\right)^{2}\left(A B^{D}\right)=0$, and so $A^{D} B^{\pi}=A^{D}$. Therefore we obtain the result by Theorem 3.1.
Corollary 3.3. If $A^{D} B=0$ and $A B A^{\pi}=0$, then

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & 0
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

where G is constructed as in Corollary 3.2.
Proof. Since $A^{D} B=0$ and $A B A^{\pi}=0$, we have

$$
A B^{2}=A B A^{\pi} B+A B A A^{D} B=0
$$

and then $A B^{D}=0$. Setting G as in Corollary 3.2, we have

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right) G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & 0
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

as desired.
Corollary 3.4. If $A B^{D}=0$ and $B^{\pi} A B=0$, then

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & 0
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

where G is constructed as in Corollary 3.2.
Proof. Since $A B^{D}=0$ and $B^{\pi} A B=0$, we have

$$
A^{2} B=A B^{\pi} A B+A B B^{D} A B=0 ;
$$

hence, $A^{D} B=0$. Setting G as in Corollary 3.2, we derive

$$
\left(\begin{array}{cc}
A & I \\
B & 0
\end{array}\right)^{D}=\left(\begin{array}{cc}
B^{\pi} & 0 \\
0 & B^{\pi}
\end{array}\right) G^{D}+\sum_{i=0}^{t-1}\left(\begin{array}{cc}
0 & B^{D} \\
B B^{D} & 0
\end{array}\right)^{i+1} G^{i} G^{\pi}
$$

as required.

We present a numerical example to demonstrate Corollary 3.3 which should be contrast to [16, Theorem 2.3].

Example 3.5. Let $M=\left(\begin{array}{cc}A & I \\ B & 0\end{array}\right)$, where

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), B=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \in \mathbb{C}^{4 \times 4}
$$

We easily check that

$$
A^{D}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), A^{\pi}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then

$$
A^{D} B=0, A B A^{\pi}=0, \text { while } B A B^{\pi} \neq 0
$$

One directly verifies that

$$
\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right)^{i}=0 \text { for every } i \geq 3
$$

Since B is nilpotent, by using the formula in Corollary 3.3, we have

$$
\begin{aligned}
M^{D}= & \sum_{i=0}^{2}\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right)^{i}\left(\begin{array}{cc}
\left(A^{D}\right)^{i+1} & \left(A^{D}\right)^{i+2} \\
B\left(A^{D}\right)^{i+2} & B\left(A^{D}\right)^{i+3}
\end{array}\right) \\
= & \left(\begin{array}{cc}
A^{D} & \left(A^{D}\right)^{2} \\
B\left(A^{D}\right)^{2} & B\left(A^{D}\right)^{3}
\end{array}\right)+\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right) \\
& \left(\begin{array}{cc}
\left(A^{D}\right)^{2} & \left(A^{D}\right)^{3} \\
B\left(A^{D}\right)^{3} & B\left(A^{D}\right)^{4}
\end{array}\right)+\left(\begin{array}{cc}
A A^{\pi} & A^{\pi} \\
B A^{\pi} & 0
\end{array}\right)^{2}\left(\begin{array}{cc}
\left(A^{D}\right)^{3} & \left(A^{D}\right)^{4} \\
B\left(A^{D}\right)^{4} & B\left(A^{D}\right)^{5}
\end{array}\right),
\end{aligned}
$$

Since A^{D} is an idempotent and $A^{\pi} A^{D}=0$, we obtain

$$
\begin{aligned}
M^{D} & =\left(\begin{array}{cc}
A^{D} & A^{D} \\
B A^{D} & B A^{D}
\end{array}\right)+\left(\begin{array}{cc}
A^{\pi} B A^{D} & A^{\pi} B A^{D} \\
0 & 0
\end{array}\right) \\
& +\left(\begin{array}{cc}
A^{\pi} B A^{D} & A^{\pi} B A^{D} \\
B A^{\pi} B A^{D} & B A^{\pi} B A^{D}
\end{array}\right) .
\end{aligned}
$$

Obviously, $A^{\pi} B A^{D}=B A^{D}$ and $B A^{\pi} B A^{D}=B A^{\pi}$. Therefore

$$
\begin{aligned}
M^{D} & =\left(\right. \\
& =\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 2 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

4. Applications

The aim of this section is to develop the Drazin invertibility of the full block-operator matrix

$$
N=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A \in \mathcal{B}(X)^{D}, B \in \mathcal{B}(X, Y), C \in \mathcal{B}(Y, X)$ and $D \in \mathcal{B}(Y)^{D}$. For the detailed formula of N^{D}, we leave to the readers as they can be derived by the straightforward computation according to our proof. For further use, we apply Corollary 3.3 to establish a new additive property for the Drazin inverse of bounded linear operators.

Lemma 4.1. Let $P, Q, P Q \in \mathcal{B}(X)^{D}$. If $P Q^{2}=0, P^{D} Q=0$ and $P^{2} Q P^{\pi}=0$, then $P+Q \in \mathcal{A}^{D}$.
Proof. Clearly, $P+Q=(I, Q)\binom{P}{I}$. Using Lemma 2.3, it suffices to prove

$$
W=\binom{P}{I}(I, Q)=\left(\begin{array}{cc}
P & P Q \\
I & Q
\end{array}\right)
$$

has Drazin inverse. Write $M=K+L$, where

$$
K=\left(\begin{array}{cc}
P & P Q \\
I & 0
\end{array}\right), L=\left(\begin{array}{cc}
0 & 0 \\
0 & Q
\end{array}\right) .
$$

Let $H=\left(\begin{array}{cc}P & I \\ P Q & 0\end{array}\right)$. According to Corollary 3.3, H has Drazin inverse. Clearly,

$$
H=\left(\begin{array}{cc}
I & 0 \\
0 & P Q
\end{array}\right)\left(\begin{array}{cc}
P & I \\
I & 0
\end{array}\right), K=\left(\begin{array}{cc}
P & I \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & P Q
\end{array}\right) .
$$

By using Lemma 2.3, K has Drazin inverse. Since $P Q^{2}=0$, we have $K L=0$. In light of Lemma 2.1, W has Drazin inverse. Therefore $P+Q$ has Drazin inverse.

Theorem 4.2. If $A^{D} B=0, D^{D} C=0, A B C=0, D C B=0, A^{2} B D^{\pi}=0$ and $D^{2} C A^{\pi}=0$, then N has Drazin inverse.
Proof. Write $N=P+Q$, where

$$
P=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right), Q=\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) .
$$

Then

$$
P^{D}=\left(\begin{array}{cc}
A^{D} & 0 \\
0 & D^{D}
\end{array}\right), P^{\pi}=\left(\begin{array}{cc}
A^{\pi} & 0 \\
0 & D^{\pi}
\end{array}\right) .
$$

We compute that

$$
\begin{aligned}
P^{D} Q & \left.=\left(\begin{array}{cc}
A^{D} & 0 \\
0 & D^{D}
\end{array}\right)\left(\begin{array}{ll}
0 & B \\
C & 0
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
0 & A^{D} B \\
D^{D} C & 0
\end{array}\right) \\
& =0, \\
P Q^{2} & =\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
B C & 0 \\
0 & C B
\end{array}\right) \\
& =\left(\begin{array}{cc}
A B C & 0 \\
0 & D C B
\end{array}\right) \\
& =0 .
\end{aligned}
$$

Moreover, we check that

$$
\begin{aligned}
P^{2} Q P^{\pi} & =\left(\begin{array}{cc}
A^{2} & 0 \\
0 & D^{2}
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)\left(\begin{array}{cc}
A^{\pi} & 0 \\
0 & D^{\pi}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & A^{2} B D^{\pi} \\
D^{2} C A^{\pi} & 0
\end{array}\right) \\
& =0 .
\end{aligned}
$$

The result follows by Lemma 4.1.
As an immediate consequence, we derive the following.
Corollary 4.3. If $A^{2} B=0, D^{2} C=0, A B C=0$ and $D C B=0$, then N has Drazin inverse.
Consider the block-operator matrix, whose generalized Shur complement is equal to zero, that is

$$
S=\left(\begin{array}{cc}
A & B \tag{*}\\
C & D
\end{array}\right), D=C A^{D} B
$$

where $A \in \mathcal{B}(X)^{D}, B \in \mathcal{B}(X, Y), C \in \mathcal{B}(Y, X)$ and $D \in \mathcal{B}(Y)^{D}$.
Theorem 4.4. Let $A \in \mathcal{B}(X)^{D}$ and S be defined in (*). If $A^{D} B C=0, A B C A^{\pi}=0, B D C=0$ and $B D^{2}=0$, then S has Drazin inverse.
Proof. Clearly, we have

$$
\begin{aligned}
A^{D} B D & =\left(A^{D}\right)^{2} A B D=\left(A^{D}\right)^{2} A B\left(C A^{D} B\right) \\
& =A A^{D}\left(A^{D} B C\right) A^{D} B=0 .
\end{aligned}
$$

Write $S=P+Q$, where

$$
P=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & 0 \\
C & D
\end{array}\right) .
$$

Since $A^{D} B C=0$, we see that $C A^{D} B$ is nilpotent. Obviously, P and Q have Drazin inverses. Moreover, we have

$$
\begin{gathered}
P^{D}=\left(\begin{array}{cc}
A^{D} & \left(A^{D}\right)^{2} B \\
0 & 0
\end{array}\right), P^{\pi}=\left(\begin{array}{cc}
A^{\pi} & -A^{D} B \\
0 & I_{n}
\end{array}\right) ; \\
Q^{D}=0, Q^{\pi}=I .
\end{gathered}
$$

We compute that

$$
\begin{aligned}
P^{D} Q & =\left(\begin{array}{cc}
A^{D} & \left(A^{D}\right)^{2} B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
C & D
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(A^{D}\right)^{2} B C & \left(A^{D}\right)^{2} B D \\
0 & 0
\end{array}\right) \\
& =0, \\
P Q^{2} & =\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
D C & D^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
B D C & B D^{2} \\
0 & 0
\end{array}\right) \\
& =0 .
\end{aligned}
$$

Moreover, we check that

$$
\begin{aligned}
P^{2} Q P^{\pi} & =\left(\begin{array}{cc}
A^{2} & A B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
C & D
\end{array}\right)\left(\begin{array}{cc}
A^{\pi} & -A^{D} B \\
0 & I_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A B C A^{\pi} & A B D-A B C A^{D} B \\
0 & 0
\end{array}\right)
\end{aligned}
$$

By using Lemma 4.1, $S=P+Q$ has Drazin inverse, as asserted.

Corollary 4.5. If $A \in \mathcal{B}(X)^{D}$ and S be defined in (*). If $A^{D} B=0, C A^{\pi}=0$ and $B D=0$, then S has Drazin inverse. Proof. This is immediate from Theorem 4.4.

Acknowledgement

The authors would like to thank the referee for his/her careful reading and valuable suggestions.

References

[1] C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(2011), 863-877.
[2] S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 14(1983), 195-198.
[3] N. Castro-González, Additive perturbation results for the Drazin inverse, Linear Algebra Appl., 397(2005), $2779-297$.
[4] H. Chen and M.S. Abdolyousefi, G-Drazin inverses for operator matrices, Operators and Matrices, 14(2020), 23-31.
[5] D.S. Cvetković-Ilić, Some results on the (2,2,0) Drazin inverse problem, Linear Algebra Appl., 438(2013), 4726-4741.
[6] C. Deng and Y. Wei, A note on the Drazin inverse for an anti-triangular matrix, Linear Algebra Appl., 431(2009), 1910-1922.
[7] E. Dopazo and M.F. Martínez-Serrano, Further results on the representation of the Drazin inverse of a 2×2 block matrix, Linear Algebra Appl., 432(2010), 1896-1904.
[8] R. Hartwig; G. Wang and Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl., 322(2001), 207-217.
[9] X. Liu; X. Qin and J. Benítez, New additive results for the generalized Drazin inverse in a Banach Algebra, Filomat, 30(2016), 2289-2294.
[10] D. Mosić, On Jacobson's lemma and Cline's formula for Drazin inverses, , Revista de la Unión Matemática Argentina, 61(2020), 267-276.
[11] P. Patrício and R.E. Hartwig, The (2,2,0) Drazin inverse problem, Linear Algebra Appl., 437(2012), 2755-2772.
[12] L. Xia and B. Deng, The Drazin inverse of the sum of two matrices and its applications, Filomat, 31 (2017), 5151-5158.
[13] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Applied Math., 235(2011), 1412-1417.
[14] A. Yu; X. Wang and C. Deng, On the Drazin inverse of an anti-triangular block matrix, . Linear Algebra Appl., 489(2016), $274-287$.
[15] D. Zhang; Yu Jin and D. Mosic, The Drazin inverse of anti-triangular block matrices, J. Applied Math. Comput., (2021). https://doi.org/10.1007/s12190-021-01638-2.
[16] D. Zhang and D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(2018), 5907-5917.
[17] D. Zhang; D. Mosić and L. Chen, On the Drazin inverse of anti-triangular block matrices, Electronic Research Archive, 30(2022), 2428-2445.
[18] H. Zou; J. Chen and D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, Studia Scient. Math. Hungar., 54(2017), 489-508.

[^0]: 2020 Mathematics Subject Classification. 15A09; Secondary 47A05.
 Keywords. Drazin inverse; anti-triangular matrix; perturbation, block-operator matrix.
 Received: 29 August 2022; Revised: 29 October 2023; Accepted: 02 November 2023
 Communicated by Dragan S. Djordjević

 * Corresponding author: Marjan Sheibani

 Email addresses: huanyinchenfz@163.com (Huanyin Chen), m.sheibani@semnan.ac.ir (Marjan Sheibani)

