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Abstract. We develop several upper and lower bounds for the A-Euclidean operator radius of 2-tuple
operators admitting A-adjoint, and show that they refine the earlier related bounds. As an application of
the bounds developed here, we obtain sharper A-numerical radius bounds.

1. Introduction

Let H be a complex Hilbert space with inner product ⟨·, ·⟩ and let ∥ · ∥ be the norm induced by the inner
product. Let B(H) denote the C∗-algebra of all bounded linear operators onH . For A ∈ B(H), A∗ denotes
the adjoint of A, and |A| = (A∗A)

1
2 . Also, R(A) andN(A) denote the range and the kernel of A, respectively.

Every positive operator A in B(H) defines the following positive semi-definite sesquilinear form:

⟨., .⟩A : H ×H → C, (x, y)→ ⟨x, y⟩A = ⟨Ax, y⟩.

Seminorm ∥ · ∥A induced by the semi-inner product ⟨., .⟩A, is given by ∥x∥A = ⟨Ax, x⟩1/2 = ∥A1/2x∥. This makes
H into a semi-Hilbertian space. It is easy to verify that the seminorm induces a norm if and only if A is
injective. Also, (H , ∥ · ∥A) is complete if and only if R(A) is closed subspace of H . Henceforth, we reserve
the symbol A for a non-zero positive operator in B(H). We denote the A-unit sphere and A-unit ball of the
semi-Hilbertian space (H , ∥ · ∥A) by S∥·∥A and B∥·∥A , respectively, i.e.,

S∥·∥A =
{
x ∈ H : ∥x∥A = 1

}
, B∥·∥A =

{
x ∈ H : ∥x∥A ≤ 1

}
.

For T ∈ B(H), let cA(T) and wA(T) denote the A-Crawford number and the A-numerical radius of T,
respectively and are defined as

cA(T) = inf
{
|⟨Tx, x⟩A| : x ∈ S∥·∥A

}
, wA(T) = sup

{
|⟨Tx, x⟩A| : x ∈ S∥·∥A

}
.
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Dr. Pintu Bhunia would like to thank SERB, Govt. of India for the financial support in the form of National Post Doctoral

Fellowship (N-PDF, File No. PDF/2022/000325) under the mentorship of Prof. Apoorva Khare
Email addresses: janasuva8@gmail.com (Suvendu Jana), pintubhunia5206@gmail.com (Pintu Bhunia), kalloldada@gmail.com

(Kallol Paul)



S. Jana et al. / Filomat 38:8 (2024), 2587–2599 2588

Note that wA(T) is not necessarily finite, see [8]. An operator S ∈ B(H) is called an A-adjoint of T ∈ B(H)
if for every x, y ∈ H , ⟨Tx, y⟩A = ⟨x,Sy⟩A holds, i.e., S is a solution of the operator equation AX = T∗A.
There are operators T for which A-adjoint may fail to exist, when it do exist then there may be more than
one A-adjoint. The set of all operators in B(H) which possess A-adjoint is denoted by BA(H). By Douglas
theorem [12], we have

BA(H) =
{
T ∈ B(H) : R(T∗A) ⊆ R(A)

}
=
{
T ∈ B(H) : ∃ λ > 0 such that ∥ATx∥ ≤ λ∥Ax∥, ∀x ∈ H

}
.

If T ∈ BA(H), then there exists a unique solution of AX = T∗A, is denoted by T♯A , satisfying R(T♯A ) ⊆ R(A),
where R(A) is the norm closure of R(A). For simplicity we will write T♯ instead of T♯A . If T ∈ BA(H), then

T♯ ∈ BA(H).Moreover,
[
T♯
]♯
= P

R(A)TP
R(A) and

[[
T♯
]♯]♯
= T♯, where P

R(A) denotes the orthogonal projection

onto R(A). For more about T♯, the reader can see [2, 3]. Again, clearly we have

BA1/2 (H) =
{
T ∈ B(H) : R(T∗A1/2) ⊆ R(A1/2)

}
=
{
T ∈ B(H) : ∃ λ > 0 such that ∥Tx∥A ≤ λ∥x∥A, ∀x ∈ H

}
.

An operator inBA1/2 (H) is called A-bounded operator. The inclusionBA(H) ⊆ BA1/2 (H) always holds. Both
of them are subalgebras of B(H) which are neither closed and nor dense in B(H). The semi-inner product
⟨., .⟩A induces the A-operator seminorm on BA1/2 (H) defined as follows:

∥T∥A = sup
x∈R(A)

x,0

∥Tx∥A
∥x∥A

= sup
{
∥Tx∥A : x ∈ S∥·∥A

}
< ∞.

Also, it is easy to verify that

∥T∥A = sup
{
|⟨Tx, y⟩A| : x, y ∈ S∥·∥A

}
.

By Cauchy-Schwarz inequality, it follows that |⟨Tx, x⟩A| ≤ ∥Tx∥A∥x∥A for all x ∈ H , and so wA(T) ≤ ∥T∥A for all
T ∈ BA1/2 (H). For A-selfadjoint operator T (i.e., AT = T∗A), we have wA(T) = ∥T∥A, see in [26]. An operator
T ∈ BA(H) can be expressed as T =ℜA(T)+ iℑA(T), whereℜA(T) = 1

2 (T+T♯A ) andℑA(T) = 1
2i (T−T♯A ). This

decomposition is called A-Cartesian decomposition, using this we have |⟨ℜA(T)x, x⟩A|2 + |⟨ℑA(T)x, x⟩A|2 =
|⟨Tx, x⟩A|2 for all x ∈ H . This implies ∥ℜA(T)∥A ≤ wA(T) and ∥ℑA(T)∥A ≤ wA(T), since ℜA(T) and ℑA(T)
both are A-selfadjoint. Therefore, ∥T∥A ≤ ∥ℜA(T) + iℑA(T)∥A ≤ 2wA(T). Thus, for every T ∈ BA(H), we get
wA(T) ≤ ∥T∥A ≤ 2wA(T), (see also [26, Corollary 2.8]). One can also easily verify that the above inequality
holds for every T ∈ BA1/2 (H), and the A-power inequality wA(Tn) ≤ [wA(T)]n holds for every positive integer
n, see [4, 19].

Following [22], the A-Euclidean operator radius of d-tuple operators T = (T1,T2, .....,Td) ∈ BA1/2 (H)d is
defined as

wA,e(T) = sup


 d∑

k=1

|⟨Tkx, x⟩A|2


1/2

: x ∈ S∥·∥A

 .
This is also known as A-joint numerical radius of T. The A-Euclidean operator seminorm of d-tuple
operators T = (T1,T2, .....,Td) ∈ BA1/2 (H)d is defined as

∥T∥A = sup


 d∑

k=1

∥Tkx∥2A


1/2

: x ∈ S∥·∥A

 .
Clearly, the A-Euclidean operator radius and A-Euclidean operator seminorm of d-tuple operators are
generalizations of A-numerical radius and A-operator seminorm of an operator in BA1/2 (H). Observe that
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for A = I, ∥ · ∥A = ∥ · ∥, wA(·) = w(·), cA(·) = c(·), wA,e(·) = we(·) and ∥ · ∥A,e = ∥ · ∥e are the usual operator norm,
numerical radius, Crawford number, Euclidean operator radius and Euclidean operator norm, respectively.
For recent developments of A-numerical radius inequalities see [6, 7] and for Euclidean operator radius
inequalities see [4, 11, 20, 23]. In this paper, we obtain several inequalities involving A-Euclidean operator
radius and A-Euclidean operator seminorm of 2-tuple operators, and we show that these inequalities
improve on the earlier related inequalities.

We end this introductory section with a brief description of the space R(A1/2) ( see [1]) as follows: The
semi-inner product ⟨., .⟩A induces an inner product on the quotient space H/N(A), defined by [x, y] =
⟨Ax, y⟩, ∀ x, y ∈ H/N(A). The space (H/N(A), [., .]) is, in general, not a complete space. The completion
of (H/N(A), [., .]) is isometrically isomorphic to the Hilbert space R(A1/2) via the canonical construction
mentioned in [10], where R(A1/2) is equipped with the inner product

(A1/2x,A1/2y) = ⟨P
R(A)x,PR(A)y⟩, ∀x, y ∈ H .

In the sequel, the Hilbert space (R(A1/2), (., .)) will be denoted by R(A1/2) and we use the symbol ∥ · ∥R(A1/2)

to represent the norm induced by the inner product (., .). Note that, the fact R(A) ⊆ R(A1/2) implies that
(Ax,Ay) = ⟨x, y⟩A, ∀x, y ∈ H . This gives ∥Ax∥R(A1/2) = ∥x∥A, ∀x ∈ H . Now, we give a nice connection of an
operator T ∈ BA1/2 (H) with an operator T̃ ∈ B(R(A1/2)), in the form of the following proposition, see [1].

Proposition 1.1. Let T ∈ B(H). Then T ∈ BA1/2 (H) if and only if there exist a unique T̃ ∈ B(R(A1/2)) such that
ZAT = T̃ZA, where ZA : H → R(A1/2) is defined by ZAx = Ax.

2. Main Results

We begin with the following sequence of known lemmas. First lemma is known as mixed Schwarz
inequality.

Lemma 2.1. [17] If T ∈ B(H) and 0 ≤ α ≤ 1, then

|⟨Tx, y⟩|2 ≤ ⟨|T|2αx, x⟩⟨|T∗|2(1−α)y, y⟩ ∀ x, y ∈ H .

Second lemma is known as Holder-McCarthy inequality.

Lemma 2.2. [18] If T ∈ B(H) is positive, then the following inequalities hold: For any x ∈ H ,

⟨Trx, x⟩ ≥ ||x||2(1−r)
⟨Tx, x⟩r, for r ≥ 1

and
⟨Trx, x⟩ ≤ ||x||2(1−r)

⟨Tx, x⟩r, for 0 ≤ r ≤ 1.

Third lemma is related to A-selfadjoint operators.

Lemma 2.3. [15] Let T ∈ B(H) be A-selfadjoint. Then T♯ is also A-selfadjoint and [T♯]♯ = T♯.

Fourth lemma is related to semi-Hilbertian space operator T and Hilbert space operator T̃.

Lemma 2.4. [1, 13] Let T ∈ BA(H). Then
(i) T̃♯ =

(
T̃
)∗

and ˜(T♯A )♯A = T̃.

(ii) ∥T∥A = ∥T̃∥B(R(A1/2)), wA(T) = w(T̃) and cA(T) = c(T̃).
(Here ∥T̃∥B(R(A1/2)) denotes the usual operator norm of T̃).
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Now, we prove the following result related to A-Euclidean operator radius and Euclidean operator
radius by using a similar technique as used in [25, Proposition 2.5].

Theorem 2.5. Let T = (T1,T2, . . . ,Td) ∈ BA1/2 (H)d. Then

wA,e(T) = wA,e(T1,T2, ...,Td) = we(T̃1, T̃2, ...., T̃d) = we(T̃)

where T̃ = (T̃1, T̃2, ...., T̃d) ∈ B(R(A1/2))d
.

Proof. First we prove wA,e(T) ≤ we(T̃). We recall that

wA,e(T) = sup


 d∑

i=1

|⟨Tix, x⟩|2


1
2

: x ∈ H , ∥x∥A = 1


= sup


 d∑

i=1

|(ATix,Ax)|2


1
2

: x ∈ H , ∥Ax∥R(A1/2) = 1


= sup


 d∑

i=1

|(T̃iAx,Ax)|2


1
2

: x ∈ H , ∥Ax∥R(A1/2) = 1


(using Proposition 1.1).

From the decompositionH = N(A1/2) ⊕ R(A1/2), we obtain that

wA,e(T) = sup


 d∑

i=1

|(T̃iAx,Ax)|2


1
2

: x ∈ R(A1/2), ∥Ax∥R(A1/2) = 1

 . (1)

Now,

we(T̃)

= sup


 d∑

i=1

|(T̃iy, y)|2


1
2

: y ∈ R(A1/2), ∥y∥R(A1/2) = 1


= sup


 d∑

i=1

|(T̃iA1/2x,A1/2x)|2


1
2

: x ∈ H , ∥A1/2x∥R(A1/2) = 1


= sup


 d∑

i=1

|(T̃iA1/2x,A1/2x)|2


1
2

: x ∈ R(A1/2), ∥A1/2x∥R(A1/2) = 1

 . (2)

Since R(A) ⊆ R(A1/2), (1) together with (2) implies wA,e(T) ≤ we(T̃).
Next we show the reverse inequality, i.e, wA(T̃) ≤ wA,e(T). Suppose that

β ∈


 d∑

i=1

|(T̃iA1/2x,A1/2x)|2


1
2

: x ∈ R(A1/2), ∥A1/2x∥R(A1/2) = 1

 =We(T̃), (say).

So, there exists x ∈ R(A1/2) with ∥A1/2x∥R(A1/2) = 1 such that

β =

 d∑
i=1

|(T̃iA1/2x,A1/2x)|2


1
2

.
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Since A1/2x ∈ R(A1/2) and R(A) is dense in R(A1/2), there exist a sequence {xn} inH such that limn→∞ ∥Axn −

A1/2x∥R(A1/2) = 0. Hence β = limn→∞

(∑d
i=1 |(T̃iAxn,Axn)|2

) 1
2 and limn→∞ ∥Axn∥R(A1/2) = 1. Now, let yn =

xn
∥Axn∥R(A1/2)

. Then clearly we have, β = limn→∞

(∑d
i=1 |(T̃iAyn,Ayn)|2

) 1
2 and ∥Ayn∥R(A1/2) = 1. Therefore,

β ∈


 n∑

i=1

|(T̃iAx,Ax)|2


1
2

: x ∈ R(A1/2), ∥Ax∥R(A1/2) = 1

 =WA,e(T), (say).

Hence, We(T̃) ⊆WA,e(T). This implies we(T̃) ≤ wA,e(T), and this completes the proof.

Now, we are in a position to prove the bounds of A-Euclidean operator radius. In the following theorem
we obtain upper and lower bound for the A-Euclidean operator radius of 2-tuple operators in BA(H)
involving A-numerical radius.

Theorem 2.6. Let B,C ∈ BA(H), then

1
2

wA(B2 + C2) +
1
2

max{wA(B),wA(C)}
∣∣∣wA(B + C) − wA(B − C)

∣∣∣
≤ w2

A,e(B,C)

≤
1
√

2
wA((B♯B + C♯C) + i(BB♯ + CC♯)).

Proof. Let x ∈ H with ∥x∥A = 1. Then we have,

| ⟨Bx, x⟩A |2 + | ⟨Cx, x⟩A |2 ≥
1
2

(| ⟨Bx, x⟩A | + | ⟨Cx, x⟩A |)
2

≥
1
2

(| ⟨Bx, x⟩A ± ⟨Cx, x⟩A |)
2

=
1
2
| ⟨(B ± C)x, x⟩A |

2.

Taking supremum over all x ∈ H , ∥x∥A = 1, we get

w2
A,e(B,C) ≥

1
2

w2
A(B ± C). (3)

Therefore, it follows from the inequalities in (3) that

w2
A,e(B,C) ≥

1
2

max{w2
A(B + C),w2

A(B − C)}

=
w2

A(B + C) + w2
A(B − C)

4
+

∣∣∣w2
A(B + C) − w2

A(B − C)
∣∣∣

4

≥
wA((B + C)2) + wA((B − C)2)

4

+(wA(B + C) + wA(B − C))

∣∣∣wA(B + C) − wA(B − C)
∣∣∣

4

≥
wA((B + C)2 + (B − C)2)

4

+wA((B + C) + (B − C))

∣∣∣wA(B + C) − wA(B − C)
∣∣∣

4
.
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Therefore,

w2
A,e(B,C) ≥

wA(B2 + C2)
2

+
wA(B)

2

∣∣∣wA(B + C) − wA(B − C)
∣∣∣. (4)

Interchanging B and C in (4), we arrive

w2
A,e(B,C) ≥

wA(B2 + C2)
2

+
wA(C)

2

∣∣∣wA(B + C) − wA(B − C)
∣∣∣. (5)

The inequality (4) together with (5), gives the first inequality.
Next, we prove the second inequality. Let x ∈ H with ∥x∥ = 1. Then we have,

(| ⟨Bx, x⟩ |2 + | ⟨Cx, x⟩ |2)2

≤ (⟨|B|x, x⟩ ⟨|B∗|x, x⟩ + ⟨|C|x, x⟩ ⟨|C∗|x, x⟩)2 (using Lemma 2.1)

≤ (⟨|B|x, x⟩2 + ⟨|C|x, x⟩2)(⟨|B∗|x, x⟩2 + ⟨|C∗|x, x⟩2)
(since (ab + cd)2

≤ (a2 + c2)(b2 + d2) for all a, b, c, d ∈ R)

≤ (
〈
|B|2x, x

〉
+
〈
|C|2x, x

〉
)(
〈
|B∗|2x, x

〉
+
〈
|C∗|2x, x

〉
) (using Lemma 2.2)

= ⟨(B∗B + C∗C)x, x⟩ ⟨(BB∗ + CC∗)x, x⟩

≤
1
2

{
⟨(B∗B + C∗C)x, x⟩2 + ⟨(BB∗ + CC∗)x, x⟩2

}
=

1
2
| ⟨(B∗B + C∗C)x, x⟩ + i ⟨(BB∗ + CC∗)x, x⟩ |2

=
1
2
| ⟨((B∗B + C∗C) + i(BB∗ + CC∗))x, x⟩ |2

≤
1
2

w2((B∗B + C∗C) + i(BB∗ + CC∗)).

Taking supremum over all x ∈ H with ∥x∥ = 1, we get

w2
e (B,C) ≤

1
√

2
w((B∗B + C∗C) + i(BB∗ + CC∗)). (6)

As B,C ∈ BA1/2 (H), following Proposition 1.1, there exist unique B̃ and C̃ in B(R(A1/2)) such that ZAB = B̃ZA

and ZAC = C̃ZA. The inequality (6) implies that

w2
e (B̃, C̃) ≤

1
√

2
w((B̃∗B̃ + C̃∗C̃) + i(B̃B̃∗ + C̃C̃∗)). (7)

Since (B̃)∗ = B̃♯, the inequality (7) becomes

w2
e (B̃, C̃) ≤

1
√

2
w((B̃♯B̃ + C̃♯C̃) + i(B̃B̃♯ + C̃C̃♯)). (8)

For any S,T ∈ BA1/2 (H), it is easy to see that S̃T = S̃T̃ and ˜S + λT = S̃ + λT̃ for all λ ∈ C. So, the inequality
(8) is of the following form

w2
e (B̃, C̃) ≤

1
√

2
w(( ˜B♯B + C♯C) + i(BB♯ + CC♯)). (9)

Now, by applying Theorem 2.5 and Lemma 2.4, we have

w2
A,e(B,C) ≤

1
√

2
wA((B♯B + C♯C) + i(BB♯ + CC♯)).

This completes the proof.
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Remark 2.7. (i) The lower bound of we(B,C) in Theorem 2.6 is stronger than the lower bound in [14, Theorem 2.8],
namely, 1

2 wA(B2 + C2) ≤ w2
A,e(B,C). Also, it is not difficult to verify that

1
√

2
wA((B♯B + C♯C) + i(BB♯ + CC♯)) ≤

1
√

2

{
∥B♯B + C♯C∥2A + ∥BB♯ + CC♯∥2A

} 1
2 .

Therefore, the upper bound of wA,e(B,C) in Theorem 2.6 is better than the upper bound in [14, Theorem 2.8], namely,
w2

A,e(B,C) ≤ ∥BB♯ + CC♯∥A if ∥BB♯ + CC♯∥A ≤ ∥B♯B + C♯C∥A.
(ii) Following Theorem 2.6, w2

A,e(B,C) = 1
2 wA(B2 + C2) implies wA(B + C) = wA(B − C). However, the converse

is not true, in general.

The following corollary is an immediate consequence of Theorem 2.6.

Corollary 2.8. If B,C ∈ BA(H) are A-selfadjoint, then
1
2
∥B2 + C2

∥A +
1
2

max{∥B∥A, ∥C∥A}
∣∣∣∥B + C∥A − ∥B − C∥A

∣∣∣ ≤ w2
A,e(B,C).

In particular, considering B = [ℜA(T)]♯ and C = [ℑA(T)]♯ in Theorem 2.6, and the using the Lemma
2.3. we obtain the following new upper and lower bounds for the A-numerical radius of a bounded linear
operator T ∈ BA(H).

Corollary 2.9. If T ∈ BA(H), then
1
4
∥T♯T + TT♯∥A +

m
2

max{∥ℜA(T)∥A, ∥ℑA(T)∥A} ≤ w2
A(T) ≤

1
2
∥TT♯ + T♯T∥A,

where m =
∣∣∣∥ℜA(T) + ℑA(T)∥A − ∥ℜA(T) − ℑA(T)∥A

∣∣∣.
Again, considering B = T and C = T♯ in Theorem 2.6, we get the following new lower bound for the

A-numerical radius of T ∈ BA(H).

Corollary 2.10. Let T ∈ BA(H), then
1
2
∥ℜA(T2)∥A +

1
2

wA(T)
∣∣∣∥ℜA(T)∥A − ∥ℑA(T)∥A

∣∣∣ ≤ w2
A(T).

To prove our next theorem, we need the following lemma, known as Bohr’s inequality.

Lemma 2.11. [24]. Suppose ai ≥ 0 for i = 1, 2, ......,n. Then k∑
i=1

ai


r

= kr−1
k∑

i=1

ar
i for r ≥ 1.

Theorem 2.12. If B,C ∈ BA(H), then

1
8
∥B + C∥4A ≤ wA,e(B♯B,C♯C)wA,e(BB♯,CC♯).

Proof. Let x, y ∈ H with ∥x∥ = ∥y∥ = 1. Then we have,

|⟨(B + C)x, y⟩|4

= |⟨Bx, y⟩ + ⟨Cx, y⟩|4

≤ (|⟨Bx, y⟩| + |⟨Cx, y⟩|)4

≤ 8(|⟨Bx, y⟩|4 + |⟨Cx, y⟩|4) (using Lemma 2.11)
≤ 8(⟨|B|x, x⟩2⟨|B∗|y, y⟩2 + ⟨|C|)x, x⟩2⟨|C∗|y, y⟩2) (using Lemma 2.1 )
≤ 8(⟨B∗Bx, x⟩⟨BB∗y, y⟩ + ⟨C∗Cx, x⟩⟨CC∗y, y⟩) (using Lemma 2.2 )

≤ 8(⟨B∗Bx, x⟩2 + ⟨C∗Cx, x⟩2)
1
2 (⟨BB∗y, y⟩2 + ⟨CC∗y, y⟩2)

1
2

≤ 8we(B∗B,C∗C)we(BB∗,CC∗).
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Taking supremum over ∥x∥ = ∥y∥ = 1, we get

1
8
∥B + C∥4 ≤ we(B∗B,C∗C)we(BB∗,CC∗). (10)

As B,C ∈ BA1/2 (H), following Proposition 1.1, there exist unique B̃ and C̃ in B(R(A1/2)) such that ZAB = B̃ZA

and ZAC = C̃ZA. The inequality (10) implies that

1
8
∥B̃ + C̃∥4

B(R(A1/2)) ≤ we(B̃∗B̃, C̃∗C̃)we(B̃B̃∗, C̃C̃∗). (11)

Since (B̃)∗ = B̃♯, the inequality (11) becomes

1
8
∥B̃ + C̃∥4

B(R(A1/2)) ≤ we(B̃♯B̃, C̃♯C̃)we(B̃B̃♯, C̃C̃♯), (12)

that is,

1
8
∥B̃ + C∥4

B(R(A1/2)) ≤ we(B̃♯B, C̃♯C)we(B̃B♯, C̃C♯). (13)

By using Lemma 2.4 and Theorem 2.5 in the above inequality (13), we obtain

1
8
∥B + C∥4A ≤ wA,e(B♯B,C♯C)wA,e(BB♯,CC♯),

as desired.

Next we obtain an upper bound for the A-Euclidean operator radius of 2-tuple operators admitting
A-adjoint. For this we need the following lemma.

Lemma 2.13. [16] If x, y, e ∈ H with ∥e∥A = 1, then

| ⟨x, e⟩A⟨e, y⟩A |≤
| ⟨x, y⟩A | +max{1, |α − 1|}∥x∥A∥y∥A

|α|
,

for all non-zero scalar α.

Theorem 2.14. If B,C ∈ BA(H), then

w2
A,e(B,C) ≤

max{1, |1 − α|}∥(B,C)∥A,e∥(B♯,C♯)∥A,e + wA(B2) + wA(C2)
|α|

,

for any non-zero scalar α.
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Proof. Let x ∈ H with ∥x∥A = 1. Then we have,

| ⟨Bx, x⟩A |2 + | ⟨Cx, x⟩A |2

= |⟨Bx, x⟩A⟨x,B♯x⟩A| + |⟨Cx, x⟩A⟨x,C♯x⟩A|

≤
max{1, |α − 1|}∥Bx∥A∥B♯x∥A + |⟨Bx,B♯x⟩A|

|α|

+
max{1, |α − 1|}∥Cx∥A∥C♯x∥A + |⟨Cx,C♯x⟩A|

|α|
(using Lemma 2.13)

=
max{1, |α − 1|}(∥Bx∥A∥B♯x∥A + ∥Cx∥A∥C♯x∥A)

|α|

+
|⟨Bx,B♯x⟩A| + |⟨Cx,C♯x⟩A|

|α|

≤
max{1, |α − 1|}(∥Bx∥2A + ∥Cx∥2A)

1
2 (∥B♯x∥2A + ∥C

♯x∥2A)
1
2

|α|

+
|⟨B2x, x⟩A| + |⟨C2x, x⟩A|

|α|

≤
max{1, |α − 1|}∥(B,C)∥A,e∥(B♯,C♯)∥A,e

|α|
+

wA(B2) + wA(C2)
|α|

.

Taking supremum over all x ∈ H with ∥x∥A = 1, we get the desired inequality.

In particular, considering B = C = T in Theorem 2.14, we obtain the following corollary.

Corollary 2.15. If T ∈ BA(H), then

w2
A(T) ≤

max{1, |1 − α|}∥T∥2A + wA(T2)

|α|
,

for any non-zero scalar α.

The above inequality also studied in [16, Corollary 2.5]. For α = 2,

w2
A(T) ≤

1
2

(
∥T∥2A + wA(T2)

)
,

which was also obtained in [14, Corollary 2.5] and [16, Remark 2.6].
Next bound reads as follows.

Theorem 2.16. If B,C ∈ BA(H), then

w2
A,e(B,C) ≤ min{w2

A(B − C),w2
A(B + C)}

+
max{1, |1 − α|}∥C♯C + BB♯∥A + 2wA(BC)

|α|
,

for any non-zero scalar α.

Proof. Let x ∈ H with ∥x∥A = 1. Then we have,

| ⟨Cx, x⟩A |2 − 2Re[⟨Cx, x⟩A ⟨Bx, x⟩A] + | ⟨Bx, x⟩A |2 = | ⟨Cx, x⟩A − ⟨Bx, x⟩A |2

= | ⟨(C − B)x, x⟩A |
2

≤ w2
A(C − B).
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Thus,

| ⟨Cx, x⟩A |2 + | ⟨Bx, x⟩A |2

≤ w2
A(C − B) + 2Re[⟨Cx, x⟩A ⟨Bx, x⟩A]

≤ w2
A(C − B) + 2| ⟨Cx, x⟩A ⟨Bx, x⟩A |

≤ w2
A(C − B) +

2 max{1, |α − 1|}∥Cx∥A∥B♯x∥A + 2|⟨Cx,B♯x⟩A|
|α|

(by Lemma 2.13)

≤ w2
A(C − B) +

max{1, |1 − α|}(∥Cx∥2A + ∥B
♯x∥2A) + 2wA(BC)

|α|

≤ w2
A(C − B) +

max{1, |1 − α|}∥C♯C + BB♯∥A + 2wA(BC)
|α|

.

Taking supremum over all x ∈ H with ∥x∥A = 1, we get

w2
A,e(B,C) ≤ w2

A(B − C) +
max{1, |1 − α|}∥C♯C + BB♯∥A + 2wA(BC)

|α|
. (14)

Replacing C by −C, we obtain that

w2
A,e(B,C) ≤ w2

A(B + C) +
max{1, |1 − α|}∥C♯C + BB♯∥A + 2wA(BC)

|α|
. (15)

Following the inequality (15) together with (14), we get the desired inequality.

In particular, considering α = 2 in Theorem 2.16, we get

w2
A,e(B,C) ≤ min{w2

A(B − C),w2
A(B + C)} +

∥C♯C + BB♯∥A + 2wA(BC)
2

. (16)

Again, considering B = C = T in Theorem 2.16, we get the following upper bound for the A-numerical
radius of T ∈ BA(H):

w2
A(T) ≤

1
2 max{1, |1 − α|}∥T♯T + TT♯∥A + wA(T2)

|α|
. (17)

Putting α = 2 in (17), we get

w2
A(T) ≤

1
4
∥T♯T + TT♯∥A +

1
2

wA(T2),

which was also obtained in [26, Theorem 2.11].
Next, in the following theorem we obtain a lower bound for wA,e(B,C).

Theorem 2.17. If B,C ∈ BA(H), then

1
2

max
{
w2

A(B + C) + c2
A(B − C),w2

A(B − C) + c2
A(B + C)

}
≤ w2

A,e(B,C).

Proof. Let x ∈ H with ∥x∥A = 1. Then we have,

| ⟨Bx, x⟩A + ⟨Cx, x⟩A |2 + | ⟨Bx, x⟩A − ⟨Cx, x⟩A |2 = 2(| ⟨Bx, x⟩A |2 + | ⟨Cx, x⟩A |2).

This implies that

| ⟨(B + C)x, x⟩A |
2 + | ⟨(B − C)x, x⟩A |

2 = 2(| ⟨Bx, x⟩A |2 + | ⟨Cx, x⟩A |2)
≤ 2w2

A,e(B,C).
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Thus,

| ⟨(B + C)x, x⟩A |
2
≤ 2w2

A,e(B,C) − | ⟨(B − C)x, x⟩A |
2

≤ 2w2
A,e(B,C) − c2

A(B − C).

Taking supremum over all x ∈ H with ∥x∥A = 1, we get

w2
A(B + C) ≤ 2w2

A,e(B,C) − c2
A(B − C),

that is,

w2
A(B + C) + c2

A(B − C) ≤ 2w2
A,e(B,C). (18)

Similarly,

w2
A(B − C) + c2

A(B + C) ≤ 2w2
A,e(B,C). (19)

Combining the inequalities (18) and (19) we obtain

1
2

max
{
w2

A(B + C) + c2
A(B − C),w2

A(B − C) + c2
A(B + C)

}
≤ w2

A,e(B,C),

as desired.

Note that, for A-selfadjoint operators B and C, the bound in Theorem 2.17 is of the form

1
2

max
{
∥B + C∥2A + c2

A(B − C), ∥B − C∥2A + c2
A(B + C)

}
≤ w2

A,e(B,C). (20)

Also observe that the bound obtained in Theorem 2.17 is stronger then the first bound in [14, Theorem
2.7]. Next inequality reads as follows:

Theorem 2.18. If B,C ∈ BA(H), then

max
{
w2

A(B) + c2
A(C),w2

A(C) + c2
A(B)
}
≤ w2

A,e(B,C).

Proof. Let x ∈ H with ∥x∥A = 1. Then we have,

| ⟨Bx, x⟩A + ⟨Cx, x⟩A |2 + | ⟨Bx, x⟩A − ⟨Cx, x⟩A |2 = 2(| ⟨Bx, x⟩A |2 + | ⟨Cx, x⟩A |2),

that is,

| ⟨(B + C)x, x⟩A |
2 + | ⟨(B − C)x, x⟩A |

2 = 2(| ⟨Bx, x⟩A |2 + | ⟨Cx, x⟩A |2).

This implies that

w2
A,e(B + C,B − C) = 2w2

A,e(B,C). (21)

Now, replacing B by B + C and C by B − C in Theorem 2.17, we obtain

2 max
{
w2

A(B) + c2
A(C),w2

A(C) + c2
A(B)
}
≤ w2

A,e(B + C,B − C). (22)

The desired inequality follows from (22) together with the equality (21).

Finally, we obtain the following upper and lower bounds for A-Euclidean operator radius involving
A-numerical radius.

Theorem 2.19. Let B,C ∈ B(H), then

w2
A(
√
αB ±

√

1 − αC) ≤ w2
A,e(B,C) ≤ w2

A(
√
αB +

√

1 − αC) + w2
A(
√

1 − αB +
√
αC),

for all α ∈ [0, 1].
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Proof. Let x ∈ H with ∥x∥A = 1. Then we have,

√
α|⟨Bx, x⟩A| +

√

1 − α|⟨Cx, x⟩A|

≤ (|⟨Bx, x⟩A|2 + |⟨Cx, x⟩A|2)
1
2 ((
√
α)2 + (

√

1 − α)2)
1
2

= (|⟨Bx, x⟩A|2 + |⟨Cx, x⟩A|2)
1
2 .

Therefore,

(|⟨Bx, x⟩A|2 + |⟨Cx, x⟩A|2)
1
2 ≥ |⟨

√
αBx, x⟩A| + |⟨

√

1 − αCx, x⟩A|

≥ |⟨
√
αBx, x⟩A ± ⟨

√

1 − αCx, x⟩A|

= |⟨

(√
αB ±

√

1 − αC
)

x, x⟩A|.

Taking supremum over all x inH with ∥x∥A = 1, we get the first inequality, i.e.,

wA,e(B,C) ≥ wA(
√
αB ±

√

1 − αC).

Next, we prove the second inequality. By simple calculation, we get

|⟨Bx, x⟩A|2 + |⟨Cx, x⟩A|2

= |⟨
√
αBx, x⟩A + ⟨

√

1 − αCx, x⟩A|2 + |⟨
√

1 − αBx, x⟩A − ⟨
√
αCx, x⟩A|2

= |⟨(
√
αB +

√

1 − αC)x, x⟩A|2 + |⟨(
√

1 − αB −
√
αC)x, x⟩A|2

≤ w2
A(
√
αB +

√

1 − αC) + w2
A(
√

1 − αB −
√
αC).

Taking supremum over all x inH with ∥x∥A = 1, we get

w2
A,e(B,C) ≤ w2

A(
√
αB +

√

1 − αC) + w2
A(
√

1 − αB −
√
αC),

as desired.

Remark 2.20. (i) It is easy to verify that

w2
A,e(B,C) ≥ max

0≤α≤1
w2

A(
√
αB ±

√

1 − αC)

≥
1
2

max w2
A(B ± C)

≥
1
2

wA(B2 + C2).

(ii) Putting B =ℜA(T) and C = ℑA(T) in (i) we obtain that

w2
A(T) ≥

1
2

max
∥∥∥ℜA(T) ± ℑA(T)

∥∥∥2
A

≥
1
4
∥T♯T + TT♯∥A.

See also [16].
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