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Abstract. In this work, we study the existence of weak solution for the following nonlinear parabolic
initial boundary value problem associated to the p-Kirchhoff-type equation,

∂u
∂t
−M

( ∫
Ω

(
A(x, t,∇u) +

1
p
|u|p
)
dx
)
div
(
a(x, t,∇u) − |∇u|p−2

∇u
)
= f

inQ. = Ω× (0,T) whereΩ ⊂ Rn (N ≥ 2) is a bounded domain with Lipschitz boundar ∂Ω,M : R+ −→ R+ is
the p-Kirchhoff-type function and a : Q ×RN

−→ RN is a Carathéodory function. Under some appropriate
assumptions, we obtain the existence of a weak solution for the problem above by using Berkovits and
Mustonen topological degree theory, in the space Lp(0,T,W1,p

0 (Ω)).

1. Introduction

In this article, we are interested in the following class of p-Kirchhoff parabolic problem:

(P)


∂u
∂t
−M

(
K (u)

)
div
(
a(x, t,∇u) − |∇u|p−2

∇u
)
= f (x, t) in Q := Ω × (0,T)

u(x, 0) = u0(x) in Ω

u(x, t) = 0 on Γ = ∂Ω × (0,T).

Where

K (u) =
∫
Ω

(A(x, t,∇u) +
1
p
|∇u|p) dx.

In the problem (P) and in the sequel, Ω designantes a bounded and open domain in RN , N ≥ 2, with
smooth boundary ∂Ω, and we denote by Q the cylinder Ω × (0,T) that Γ = ∂Ω × (0,T) is its lateral surface,
where T > 0 is a fixing time, the terme −div (a(x, t,∇u) is a Leray-Lions operator acting fromH to its dual
H
∗, such that

H = Lp(0,T,W1,p
0 (Ω)) andH ∗ = Lp′ (0,T,W−1,p′ (Ω)) (p ≥ 2),
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where 1
p +

1
p′ = 1. The right-hand side f is assumed to belong to H ∗ and the Kirchhoff type function,

M : R+ −→ R+ is continuous and satisfying certain assumptions.
The problem (P) is related to the stationary version of the Kirchhoff equation

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u∂x ∣∣∣∣2dx
)∂2u
∂x2 = 0 (1)

introduced in 1883 by Kirchhoff see [16] for mor details. This equation is an extension of the classical
d’Alembert’s wave equation. The parameters in (1) have the following meanings: h is the cross-section
area, E is the Young modulus, ρ is the mass density, L is the length of the string, and ρ0 is the initial tension.
In the last few years there has been a lot of interest in problems of the Kirchhoff type, see for example
[3, 5, 9–11, 13, 15, 19, 23–25, 30] in which the authors have used variational, Galerkin approximation
method, topological methods and sub- and super-solutions concept, to get the existence of solutions. This
interest is due to their contributions to the modelling of many physical and biological phenomena. We refer
the reader to [12, 18] for some interesting results and further references.
Motivated by the above, we consider (P) to study the existence of at least one weak solutions solution, using
a different approach. This approach is based on the topological degree theory for operators of the type type
L+S, where L is a linear densely defined maximal monotone map and S is a bounded demicontinuous map
of type (S+) with respect to a domain of L. For more information on the history of this theory, the reader is
referred to ([1, 4, 6–8, 14, 17, 21, 22, 26–28]).
The rest of the paper is organized as follows. In section 2, we give some mathematical preliminaries about
the functional framework in which we will treat our problem. In Section 3, we introduce some classes of
operators and then the associated topological degree. The last Section, is devoted to giving the proof of the
main result of our paper.

2. Mathematical preliminaries

In this section, we recall some necessary definitions and basic properties of the functional framework
required to investigate the problem (P).

Let Ω ⊆ RN be a bounded open set with smooth boundary, p ≥ 2 and p′ =
p

p − 1
, we will denote by

Lp(Ω) the space of all measurable functions φ defined in Ω such that

∥φ∥Lp(Ω) =
( ∫
Ω

|φ(x)|pdx
)1/p
< ∞.

We define the Sobolev Space

W1,p(Ω) =
{
φ ∈ Lp(Ω) : ∇φ ∈ Lp(Ω)

}
,

with respect to the norm

∥φ∥W1,p(Ω) =
(
∥φ∥pLp(Ω) + ∥∇φ∥

p
Lp(Ω)

)1/p
.

We define the functional space W1,p
0 (Ω) as the closure of C∞0 (Ω) in the Sobolev space W1,p(Ω).

Note that, according to the Poincaré inequality, the norm ∥ · ∥W1,p(Ω) is equivalent to the norm ∥ · ∥1,p setting
by

∥φ∥1,p = ∥∇φ∥Lp(Ω) for φ ∈W1,p
0 (Ω).

Remember that the Sobolev space W1,p
0 (Ω) is a uniformly convex Banach space and the embedding

W1,p
0 (Ω) ↪→↪→ Lp(Ω) is compact (see [29]).

In this work, we consider the following space
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H := Lp(0,T; W1,p
0 (Ω)) (T > 0),

that is a separable and reflexive Banach space with the norm

|φ|H =
( ∫ T

0
∥φ∥p

W1,p(Ω)
dt
)1/p
.

Thanks to Poincaré inequality, the expression

∥φ∥H =
( ∫ T

0
∥∇φ∥pLp(Ω)dt

)1/p
,

is a norm defined onH and is equivalent to the norm |φ|H .
Note that the (H , ∥ · ∥H ) is a separable and reflexive Banach space.

3. Classes of mappings and Topological degree

Now, we give some results and properties from the Berkovits and Mustonen degree theory for demicon-
tinuous operators of generalized (S+) type in real reflexive Banach. In what follows, letX be a real separable
reflexive Banach space with dual X∗ and with continuous dual pairing ⟨ · , · ⟩ and given a nonempty subset
Ω of X, and⇀ represents the weak convergence.
Let T : X −→ 2X

∗

be a multi-values mapping. We denote by G(T) the graph of T , given by

G(T ) =
{
(u, v) ∈ X × X∗ : v ∈ T (u)

}
.

Definition 3.1. The multi-values mapping T is called

1. monotone, if for each pair of elements (u1,u1), (v2, v2) in G(T ), we have the inequality

⟨u1 − u2, v1 − v2⟩ ≥ 0.

2. maximal monotone, if it is monotone and maximal in the sense of graph inclusion among monotone multi-values
mappings from X to 2X

∗ . An equivalent version of the last clause is that for any (u0, v0) ∈ X × X∗ for which
⟨u0 − u, v0 − v⟩ ≥ 0, for all (u, v) ∈ G(T) , we have (u0, v0) ∈ G(T).

Definition 3.2. letY be another real Banach space. A mapping F: D(F) ⊂ X → Y is said to be

1. bounded, if it takes any bounded set into a bounded set.
2. demicontinuous, if for each sequence (un) ⊂ Ω, un → u implies F(un)⇀ F(u) .
3. of type (S+), if for any sequence (un) ⊂ D(F) with un ⇀ u and lim sup

n→∞
⟨Fun,un − u⟩ ≤ 0, we have un → u.

In the sequel, let L : D(L) ⊂ X → X∗ be a linear maximal monotone map such that D(L) is dense in X.
For each open and bounded subset G on X, we consider the following classes of operators:

FG(Ω) :=
{
L + S : G ∩D(L)→ X∗ | S is bounded, demicontinuous

and of type (S+) with respect to D(L) from G to X∗
}
,

HG :=
{
L + S(t) : G ∩D(L)→ X∗ | S(t) is a bounded homotopy

of type (S+) with respect to D(L) from G to X∗
}
.
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Remark 3.3. ([6]). Remark that the classHG contains all affine homotopy

L + (1 − t)S1 + tS2 with (L + Si) ∈ FG and i = 1, 2.

We give the Berkovits and Mustonen topological degree for a class of demicontinuous operator satisfying
condition (S+)T for more details see [6].

Theorem 3.4. Let L be a linear maximal monotone densely defined map from D(L) ⊂ X to X∗. There exists a unique
degree function

d :
{
(F,G, h) : F ∈ FG, G an open bounded subset in X, h < F

(
∂G ∩D(L)

)}
−→ Z,

which satisfies the following properties :

1. (Normalization) L+ J is a normalising map, where J is the duality mapping ofX intoX∗, that is, d(L+ J,G, h) =
1, when h ∈ (L + J)(G ∩D(L)).

2. (Additivity) Let F ∈ FG. If G1 and G2 are two disjoint open subsets of G such that h < F
(
(G\(G1∪G2))∩D(L)

)
then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h) .

3. (Homotopy invariance) If F(t) ∈ HG and h(t) < F(t)(∂G∩D(L)) for every t ∈ [0, 1], where h(t) is a continuous
curve in X∗, then

d(F(t), G, h(t)) = constant, ∀t ∈ [0, 1].

4. (Existence) if d(F,G, h) , 0, then the equation Fu = h has a solution in G ∩D(L).

Lemma 3.5. Let L + S ∈ FX and h ∈ X∗. Suppose that there exists R > 0 such that

⟨Lu + Su − h,u⟩ > 0, (2)

for any u ∈ ∂BR(0) ∩D(L). Then

(L + S)(D(L)) = X∗. (3)

Proof. Let ε > 0, t ∈ [0, 1] and

Fε(t,u) = Lu + (1 − t)Ju + t(Su + εJu − h).

As 0 ∈ L(0) and applying the boundary condition (2), we have

⟨Fε(t,u),u⟩ = ⟨t(Lu + Su − h,u⟩ + ⟨(1 − t)Lu + (1 − t + ε)Ju,u⟩
≥ ⟨(1 − t)Lu + (1 − t + ε)Ju,u⟩
= (1 − t)⟨Lu,u⟩ + (1 − t + ε)⟨Ju,u⟩

≥ (1 − t + ε)∥u∥2 = (1 − t + ε)R2 > 0.

Which means that 0 < Fε(t,u). Since J and S + εJ are bounded, continuous and of type (S+), {Fε(t, ·)}t∈[0,1] is
an admissible homotopy. Hence, by using the normalisation and invariance under homotopy, we get

d(Fε(t, ·),BR(0), 0) = d(L + J,BR(0), 0) = 1.

As a result, there exists uε ∈ D(L) such that 0 ∈ Fε(t, ·).
If we take t = 1 and when ε→ 0+, then we have h ∈ Lu+ Su for some u ∈ D(L). Since h ∈ X∗ is arbitrary, we
deduce that (L + S)(D(L)) = X∗.
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4. Basic assumptions and main result

We use the following assumptions: a(x, t, ξ) : Q × RN
−→ RN is a Carathéodory, and a continuous

derivative with respect to ξ of the continuous mapping A(x, t, ξ) : Q × RN
−→ R. for all (x, t) ∈ Q and all

ξ, ξ′ ∈ RN, with (ξ , ξ′).

(h1) A(x, t, 0) = 0 and a(x, t, ξ) = ∇ξA(x, t, ξ),

(h2) α|ξ|p ≤ a(x, t, ξ) · ξ ≤ pA(x, t, ξ),

(h3) |a(x, t, ξ)| ≤ k(x, t) + β |ξ|p−1,

(h4) [a(x, t, ξ) − a(x, t, ξ′)] · (ξ − ξ′) > 0,

where α, β are some real positive number and k(x, t) is a positive function in Lq(Q).
In order to obtain the existence of weak solutions, the authors always assume that the Kirchhoff function

M : R+ → R+ is continuous and non-decreasing function, and satisfies the following conditions:

(M0) there exist two positive constant m0 and m1, such that, m0 ≤ M(t) ≤ m1, for all t ∈ [0,+∞[.

Lemma 4.1. ([2]). Assume that (h2)-(h4) hold, let (un)n be a sequence in Lp
(
0,T,W1,p

0 (Ω)
)

such that un ⇀

u weakly in Lp
(
0,T,W1,p

0 (Ω)
)

and∫
Q

[
a(x, t,∇un) − a(x, t,∇u)

]
∇(un − u)dx −→ 0. (4)

Then un −→ u strongly in Lp
(
0,T,W1,p

0 (Ω)
)
.

Let us consider the following functional

G(u) =
∫ T

0
M̂

( ∫
Ω

(
A(x,∇u) +

1
p
|∇u|p

)
dx
)
dt ∀u ∈ H ,

where M̂ : [0,+∞[−→ [0,+∞[ be the primitive of the functionM, defned by

M̂(n) =
∫ n

0
M(ξ)dξ.

It is well known that G is well defined and continuously Gâteaux differentiable whose Gâteaux deriva-
tives at point u ∈ H is the functional G′(u) ∈ H ∗ setting by

⟨G
′(u) , φ⟩ =∫ T

0

{
M

( ∫
Ω

(A(x, t,∇u) +
1
p
|∇u|p) dx

) [ ∫
Ω

a(x, t,∇u)∇φ dx +
∫
Ω

|∇u|p−2
∇u∇φ dx

]}
dt

for all φ ∈ H .

Lemma 4.2. Suppose that the assumption (h2)-(h4) and (M0) hold, then

• G′ is continuous and bounded mapping.

• the mapping G′ is of class (S+).
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Proof. • Given that G is continuously Gâteaux differentiable and whose Gâteaux derivatives at point
u ∈ H , is G′u ∈ H ∗ with

⟨G
′u, φ⟩ =

∫ T

0

{
M

( ∫
Ω

(A(x, t,∇u) +
1
p
|∇u|p) dx

) [ ∫
Ω

a(x, t,∇u)∇φ dx +
∫
Ω

|∇u|p−2
∇u∇φ dx

]}
dt,

∀φ ∈ H .
Therefore G′ is the Fréchet derivative of G. So we can conclude that the operator G′ is continuous.
Now, we prove that the operator G′ is bounded.

| ⟨G
′u, φ⟩ | =

∣∣∣∣ ∫ T

0

{
M

( ∫
Ω

(Ax, t,∇u) +
1
p
|∇u|p)dx

)
×

( ∫
Ω

a(x, t,∇u)∇φ dx +
∫
Ω

|∇u|p−2
∇u∇φdx

}
dt
∣∣∣∣

≤

∫ T

0
m1 ×

( ∫
Ω

|a(x, t,∇u)| · |∇φ| dx +
∫
Ω

|∇u|p−1
· |∇φ|dx

)
dt

≤ m1

( ∫ T

0

∫
Ω

|a(x, t,∇u)| · |∇φ| dxdt +
∫ T

0

( ∫
Ω

|∇u|p−1
· |∇φ|dx

)
dt
)

≤ 2m1

∫ T

0

(
∥a(x, t,∇u)∥Lp′ (Ω) · ∥∇φ∥Lp(Ω)

)
dt +
∫ T

0
∥∇u∥

p
p′

Lp(Ω) · ∥∇φ∥Lp(Ω)dt

≤ C
∫ T

0

(
∥a(x, t,∇u)∥Lp′ (Ω)∥φ∥1,pdt + C

∫ T

0
∥u∥

p
p′

Lp(Ω)∥φ∥1,p dt.

From the growth condition (h2), we can easily show that ∥a(x, t,∇u)∥Lp′ (Ω) is bounded for all u ∈W1,p
0 (Ω).

Then

|⟨G
′, φ⟩| ≤ C1

∫ T

0
∥φ∥1,p + C2

∫ T

0
∥φ∥1,p.

By the continuous embedding X ↪→ L1
(
0,T,W1,p(Ω)

)
, we concludes that

|⟨G
′, φ⟩| ≤ Const ∥φ∥H .

Which means that the operator G′ is bounded.

• Next, we verify that the operator G′ is of type (S+).
Assume that (un)n ⊂ H and un ⇀ u in H

lim sup
n→∞

⟨G
′un,un − u⟩ ≤ 0. (5)

We will show that un → u in H .
On the one hand, in fact un ⇀ u in H , so (un)n is a bounded sequence in H and since H embeds

compactly in Lp(Q), then there exist a subsequence still denoted by (un)n such that un → u in Lp(Q).
On the other hand, we have

lim sup
n→∞

⟨G
′un,un − u⟩ = lim sup

n→∞
⟨G
′un − G

′u, un − u⟩ = lim
n→∞
⟨G
′un − G

′u, un − u⟩ ≤ 0. (6)
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Then

lim
n→∞
⟨G
′un − G

′u, un − u⟩ =

lim
n→∞

( ∫ T

0
M

(
K (un)

) [ ∫
Ω

a(x, t,∇un)∇(un − u)dx +
∫
Ω

|∇un|
p−2
∇un∇(un − u)dx

]
dt

−

∫ T

0
M

(
K (u)

) [ ∫
Ω

a(x, t,∇u)∇(un − u)dx +
∫
Ω

|∇u|p−2
∇u∇(un − u)dx

]
dt
)
≤ 0.

Or by (A1) we have for any x ∈ Ω and ξ ∈ Rn

A(x, ξ) =
∫ 1

0

d
ds

A(x, sξ)ds =
∫ 1

0
a(x, t, sξ)ξds,

by combining (h3), Fubini’s theorem and Young’s inequality we have∫
Ω

A(x, t,∇u)dx =
∫
Ω

∫ 1

0
a(x, t, s∇un)∇uds dx

=

∫ 1

0

[ ∫
Ω

a(x, t, s∇un)∇udx
]
ds

≤

∫ 1

0

[
Cp′

∫
Ω

∣∣∣a(x, t, s∇u)
∣∣∣p′dx + Cp

∫
Ω

|∇u|pdx
]
ds (7)

≤ C1 + C′
∫ 1

0

∫
Ω

|s∇u|p dx ds + Cp∥u∥
p
Lp(Ω)

≤ C1 + C2

∫
Ω

|∇u|p dx + Cp∥u∥
p
1,p

≤ C∥u∥p1,p.

By (7), then
∫
Ω

(A(x, t,∇un)dx is bounded.

AsM is continuous, up to a subsequence there is k ≥ 0 by

M

(
K (un)

)
−→M(k) ≥ m0 as n→∞. (8)

In addition by appliying the assumption (M0), we have

lim
n→∞

m0

( ∫ T

0

[ ∫
Ω

a(x, t,∇un)∇(un − u)dx +
∫
Ω

|∇un|
p−2
∇un∇(un − u)dx

]
dt

−

∫ T

0

[ ∫
Ω

a(x, t,∇u)∇(un − u)dx +
∫
Ω

|∇u|p−2
∇u∇(un − u)dx

]
dt
)
≤ 0.

Using the compact embeddingH ↪→↪→ Lp(Q), we have

lim
n→∞

∫
Ω

|∇un|
p−2
∇un(∇un − ∇u)dx = 0. and lim

n→∞

∫
Ω

|∇u|p−2
∇u(∇un − ∇u)dx = 0.

Since m0 ≥ 0 then, we have

lim
n→∞

( ∫ T

0

∫
Ω

a(x, t,∇un)∇(un − u)dxdt −
∫ T

0

∫
Ω

a(x, t,∇u)∇(un − u)dxdt
)
≤ 0

which means

lim
n→∞

∫ T

0

∫
Ω

[
a(x, t,∇un) − a(x, t,∇u)

]
(∇un − ∇u)dxdt ≤ 0. (9)
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By combining (9) and (h4), we deduce that

lim
n→∞

∫ T

0

∫
Ω

[
a(x, t,∇un) − a(x, t,∇u)

]
(∇un − ∇u)dxdt = 0.

In light of Lemma 4.1, we obtain
un −→ u in H ,

which implies that G′ is of type (S+).

Let us consider the following operator L defined from the subset D(L) ofH into its dualH ∗, such that

D(L) =
{
φ ∈ H : φ′ ∈ H ∗, φ(0) = 0

}
,

by

⟨Lu, φ⟩ = −
∫

Q
uφt dxdt, for all u ∈ D(L), φ ∈ H .

Consequently, the operator L is generated by ∂/∂t by means of the relation

⟨Lu, φ⟩ =
∫ T

0
⟨u′(t), φ(t)⟩dt, for all u ∈ D(L), φ ∈ H .

Lemma 4.3. ([29]). L is a linear maximal monotone densely defined map.

Our main result is the following existence theorem:

Theorem 4.4. Let f ∈ H ∗ and u0 ∈ L2(Ω), there exists at least one weak solution u ∈ D(L) of problem (1) in the
following sense

−

∫
Q

uφt dxdt +
∫ T

0

{
M(K (u))

[ ∫
Ω

a(x, t,∇u)∇φ|dx +
∫
Ω

|∇u|p−2
∇u∇φ dx

]}
dt

=

∫ T

0
⟨ f , φ⟩ dt.

Proof. On the one hand, from the Lemma 4.3, the operator

L : D(L) ⊂ H −→ H ,

⟨Lu, φ⟩H =
∫ T

0
⟨u′(t), φ(t)⟩dt, for all u ∈ D(L), φ ∈ H .

is a densely defined maximal monotone operator.
By the monotonicity of L we have

⟨Lu,u⟩ ≥ 0 for all u ∈ D(L) ,

then we obtain

⟨Lu +G′u,u⟩ ≥ ⟨G′u,u⟩

=

∫ T

0

{
M

( ∫
Ω

A(x, t,∇u) +
1
p |∇u|p

)
dx
) ∫
Ω

a(x, t,∇u)∇udx +
∫
Ω

|∇u|p dx
}
dt,
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by using th assumptions (h2) and (M0), we get

⟨Lu +G′u,u⟩ ≥
∫ T

0
m0

∫
Ω

a(x, t,∇u)∇udxdt +
∫ T

0
m0

∫
Ω

|∇u|p dxdt

≥ m0

∫
Q

a(x, t,∇u)∇udxdt +m0

∫
Q

|∇u|p dxdt (10)

≥ m0α

∫
Q
|∇u|pdxdt +m0

∫
Q

|∇u|p dxdt

≥ Cmin∥u∥
p
H
,

for all u ∈ H .
Since the right side of the above inequality (10) tends to ∞ as ∥u∥H → ∞, then for each f ∈ G∗ there exists
R = R( f ) such that

⟨Lu +G′u − f ,u⟩ > 0, (11)

for all u ∈ BR(0) ∩D(L).
By appliying Lemma 3.5, we infer that the equation

Lu +G′u = f ,

is solvable in D(L).
Which implies that the problem (P) admits at least one-weak solution. This ends the proof.
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