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Abstract. In this paper we use the type I induced sequence {uik : i ∈ I, k ∈ Ki} of a given g-Bessel sequence
{Λi : i ∈ I} to characterize whether {Λi : i ∈ I} are g-Riesz frames, near g-Riesz bases and near exact g-frames,
and vice versa. We also characterize the precise relationship between the synthesis operators of a given
g-Bessel sequence and its type II induced sequence. Finally, we discuss whether the sums Λ + ∆ and Γ + Θ
are woven, where {Λi : i ∈ I} and {Γi : i ∈ I} are woven and ∆,Θ are g-Bessel sequences.

1. Introduction

G-frame, which was proposed by sun [19, 20] in 2006, is a more general frame expressed by bounded
linear operators in order to popularize several types of frames such as classical frame, fusion frame, etc.
at that time. After that g-frames have been widely studied by many scholars. For more information on
g-frames the readers can consult [1, 7–9, 12, 14, 16–21, 25–27] and the papers therein.

In [20], the author introduced an induced sequence {uik : i ∈ I, k ∈ Ki} of a g-Bessel sequence {Λi : i ∈ I}
in U (for more details please see (2.5)), which is called the type I induced sequence in this paper, and
investigated the interrelation between {uik : i ∈ I, k ∈ Ki} and {Λi : i ∈ I}. In detail, Sun [20] obtained that
{Λi : i ∈ I} is a g-frame (respectively g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis)
for U if and only if {uik : i ∈ I, k ∈ Ki} is a frame (respectively Bessel sequence, tight frame, Riesz basis,
orthonormal basis) for U. Motivated by this, in this paper we will continue to use the type I induced
sequence {uik : i ∈ I, k ∈ Ki} to characterize whether {Λi : i ∈ I} is a g-Riesz frame, a near exact g-frame, and a
near g-Riesz basis. From the results obtained we know that in general {Λi : i ∈ I} being a near g-Riesz basis
(respectively near exact g-frame), is not equivalent to {uik : i ∈ I, k ∈ Ki} being a near Riesz basis (respectively
near exact frame).

Let {Λi : i ∈ I} be a g-Bessel sequence inU w.r.t. {Vi : i ∈ I}. If the orthonormal basis forVi is relaxed to
a Riesz basis {hik}k∈Ki , by the same way as in [20] we introduce the type II induced sequence {vik : i ∈ I, k ∈ Ki}

of {Λi : i ∈ I}. Then we characterize the precise relation between the synthesis operators of the g-Bessel
sequence {Λi : i ∈ I} and its type II induced sequence {vik : i ∈ I, k ∈ Ki}.
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Recall that weaving of frames was first introduced by Bemrose, Casazza, Grochenig, et al. in [2] to
simulate a problem in distributed signal processing. Due to the potential applications in wireless sensor
networks and signal preprocessing, etc., the weaving of frames has become a hot topic studied by many
researchers. Later, the weaving principle has been applied to other frame settings, such as weaving g-frames
[6, 13, 15], weaving K-frames [5], weaving Schauder frames [4], etc. For more information on the weaving
of frames, the reader can consult [2, 3, 5, 13, 15, 22, 23]. In this paper we continue to investigate whether
the sums Λ + ∆ and Γ + Θ are woven on a Hilbert space U, where Λ,Γ,∆,Θ are g-Bessel sequences in U.
At the same time, we also consider the case where the sums Λ + ∆ and Γ + Θ are woven onU, whether Λ
and Γ (or ∆ and Θ) are woven onU?

Throughout this paper, we will use such notations. U and V are Hilbert spaces, with inner product
⟨·, ·⟩, and norm ∥ · ∥; L(U,V) is denoted by the collection of all the linear bounded operators fromU toV,
ifU = V, then L(U,V) is abbreviated to L(U); {Vi}i∈I is a sequence of closed subspaces ofV, where I is a
subset of the integer set Z.

2. Preliminaries of g-frames in Hilbert spaces

Let me first recall the definitions of g-frame, weaving of g-frames, (near) g-Riesz basis, g-Riesz frame
and near exact g-frame in Hilbert spaces.

Definition 2.1 [20] A sequence {Λi ∈ L(U,Vi) : i ∈ I} is called a g-frame forU with respect to (w.r.t.) {Vi : i ∈ I},
if there exist A,B > 0 such that

A∥ f ∥2 ≤
∑
i∈I

∥Λi f ∥2 ≤ B∥ f ∥2, ∀ f ∈ U. (2.1)

We call A,B the lower frame bound and upper frame bound of g-frame {Λi : i ∈ I}, respectively. We call
{Λi : i ∈ I} the g-Bessel sequence if the right-hand of (2.1) holds. We call {Λi : i ∈ I} the tight g-frame if A = B,
the parseval g-frame if A = B = 1.

We call {Λi : i ∈ I} an exact g-frame forU w.r.t. {Vi : i ∈ I} if it ceases to be a g-frame whenever any one
of its elements is removed.

Weaving g-frames were first introduced by combining the weaving principle with g-frames by the
authors in [6, 13, 15].

Definition 2.2 [6, 13, 15] Let {Λi : i ∈ I} and {Γi : i ∈ I} be g-frames for U w.r.t. {Vi : i ∈ I}. If for any partition
{σ j}

2
j=1 of I, there exist A,B > 0 such that {Λi}i∈σ1 ∪ {Γi}i∈σ2 is a g-frame for U with g-frame bounds A,B, then

{Λi : i ∈ I} and {Γi : i ∈ I} are said to be woven onU with universal g-frame bounds A,B, each {Λi}i∈σ1 ∪ {Γi}i∈σ2 is
called a weaving.

Suppose that {Λi : i ∈ I} is a g-frame forU w.r.t. {Vi : i ∈ I}. If there exists a g-Bessel sequence {Γi : i ∈ I}
inU w.r.t. {Vi : i ∈ I} such that

f =
∑
i∈I

Γ∗iΛi f =
∑
i∈I

Λ∗iΓi f , ∀ f ∈ U, (2.2)

then {Γi : i ∈ I} is called an alternate dual of {Λi : i ∈ I}. In fact, {Γi : i ∈ I} satisfying (2.2) is also a g-frame for
U.

Definition 2.3 [20] A sequence {Λi ∈ L(U,Vi) : i ∈ I} is called a g-Riesz basis for U w.r.t. {Vi : i ∈ I}, if the
following two conditions hold:

(i) {Λi : i ∈ I} is g-complete, namely { f : Λi f = 0, i ∈ I} = {0};
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(ii) There exist two positive constants A,B such that for any J ⊂ I, and 1i ∈ Vi, i ∈ J,

A
∑
i∈J

∥1i∥
2
≤

∥∥∥∥∥∑
i∈J

Λ∗i1i

∥∥∥∥∥2 ≤ B
∑
i∈J

∥1i∥
2.

Definition 2.4 [1, 17] A sequence {Λi ∈ L(U,Vi) : i ∈ I} is called a g-Riesz frame for U w.r.t. {Vi : i ∈ I}, if for
any subset J ⊂ I, {Λi : i ∈ J} is a g-frame forUJ w.r.t. {Vi : i ∈ J} with uniform g-frame bounds A and B, where

UJ =
{∑

i∈J

Λ∗i1i : ∀1i ∈ Vi, i ∈ J
}
. (2.3)

Definition 2.5 [11] Let fi ∈ U,∀i ∈ I. If there exists a finite subset σ ⊂ I such that { fi : i ∈ I\σ} is a Riesz basis for
U, then { fi : i ∈ I} is called a σ− near Riesz basis forU.

Since a Riesz basis is also an exact frame, Definition 2.5 can be expressed in another way.

Definition 2.6 Let fi ∈ U,∀i ∈ I. If there exists a finite subset σ ⊂ I such that { fi : i ∈ I\σ} is an exact frame forU,
then { fi : i ∈ I} is called a σ− near exact frame forU.

Now we recall the definition of near g-Riesz basis.

Definition 2.7 [1] Let Λi ∈ L(U,Vi),∀i ∈ I. If there exists a finite subset σ ⊂ I such that {Λi : i ∈ I\σ} is a g-Riesz
basis forU, then {Λi : i ∈ I} is called a σ− near g-Riesz basis forU w.r.t. {Vi : i ∈ I}.

Since an exact g-frame is not a g-Riesz basis in general, it’s necessary to introduce the definition of near
exact g-frame.

Definition 2.8 Let Λi ∈ L(U,Vi),∀i ∈ I. If there exists a finite subset σ ⊂ I such that {Λi : i ∈ I\σ} is an exact
g-frame forU, then {Λi : i ∈ I} is called a σ− near exact g-frame forU w.r.t. {Vi : i ∈ I}.

Since a g-Riesz basis is an exact g-frame, a near g-Riesz basis must be a near exact g-frame, but the
converse is not true in general.

Remark 2.9 Note that for a near g-Riesz basis (resp. near exact g-frame, near Riesz basis, near exact frame), we
mean that we can only delete finite elements from {Λi : i ∈ I} such that the left is a g-Riesz basis (resp. an exact
g-frame, a Riesz basis, an exact frame).

Let {Λi : i ∈ I} be a g-Bessel sequence inU w.r.t. {Vi : i ∈ I}. The synthesis operator TΛ of {Λi : i ∈ I} is
defined as follows

TΛ : l2({Vi}i∈I)→U, T({1i}i∈I) =
∑
i∈I

Λ∗i1i, (2.4)

where l2({Vi}i∈I) is a Hilbert space, and is defined as follows:

l2({Vi}i∈I) =
{
{1i}i∈I : 1i ∈ Vi, i ∈ I and

∑
i∈I

∥1i∥
2 < +∞

}
,

with the inner product ⟨{ fi}i∈I, {1i}i∈I⟩ =
∑

i∈I⟨ fi, 1i⟩.
Let {Λi : i ∈ I} be a g-Bessel sequence inUw.r.t. {Vi : i ∈ I} and for any i ∈ I, let {eik}k∈Ki be an orthonormal

basis for Vi, and {hik}k∈Ki be a Riesz basis for Vi with Riesz bounds Ci,Di, where 0 < C = infi∈I{Ci},
D = supi∈I{Di} < ∞, and Ki is a subset of Z. In [20] Sun introduced a sequence {uik : i ∈ I, k ∈ Ki}

corresponding to {Λi : i ∈ I}with {eik}k∈Ki ,∀i ∈ I in the following

uik = Λ
∗

i eik, ∀i ∈ I, k ∈ Ki. (2.5)
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By the same way we define {vik : i ∈ I, k ∈ Ki} corresponding to {Λi : i ∈ I} and {hik}k∈Ki ,∀i ∈ I as follows

vik = Λ
∗

i hik, ∀i ∈ I, k ∈ Ki. (2.6)

Obviously {uik : i ∈ I, k ∈ Ki} is a special case of {vik : i ∈ I, k ∈ Ki}. In the rest of this paper {uik : i ∈ I, k ∈ Ki}

and {vik : i ∈ I, k ∈ Ki} are respectively called type I and type II induced sequences of {Λi : i ∈ I}.
At the end of this section we recall several results obtained by Sun, Zhu.

Lemma 2.10 [20] Let {uik}i∈I,k∈Ki be defined as in (2.5). Then {Λi : i ∈ I} is a g-frame (resp. g-Riesz basis) for U
w.r.t. {Vi : i ∈ I} with g-frame bounds A and B, if and only if its type I induced sequence {uik : i ∈ I, k ∈ Ki} is a frame
(resp. Riesz basis) forU with frame bounds A and B.

Lemma 2.11 [27] {Λi : i ∈ I} is a g-frame forU w.r.t {Vi : i ∈ I}, if and only if the corresponding synthesis operator
TΛ defined as in (2.4) is bounded and surjective onU.

3. Characterizations of kinds of g-frames by type I and type II induced sequences

Let {Λi : i ∈ I} be a g-Bessel sequence in U w.r.t. {Vi : i ∈ I}, with type I induced sequence {uik : i ∈
I, k ∈ Ki}. In [20] the author studied the relationship between {Λi : i ∈ I} and its type I induced sequence
{uik : i ∈ I, k ∈ Ki}, and obtained some important results (see Lemma 2.10). Motivated by sun [20] in this
paper we continue to investigate such problems: If {Λi : i ∈ I} are near g-Riesz bases (resp. near exact
g-frames, g-Riesz frames) forU, can we deduce that its type I induced sequence {uik : i ∈ I, k ∈ Ki} are near
Riesz bases (resp. near exact frames, Riesz frames) for U, and vice versa? In fact, if {Λi : i ∈ I} is a near
g-Riesz basis forU, then {uik : i ∈ I, k ∈ Ki} is not a near Riesz basis forU in general. The reader can check
the following counterexample.

Example 3.1 Suppose that {ei}
∞

i=1 is an orthonormal basis forU, andV1 =U,V2 = span{e1, e2},V3 = span{e3, e4},
Vi = span{ei+1}, i ≥ 4. Now for any f ∈ U, define

Λ1 f = ⟨ f , e5⟩e5, Λ2 f = 2
2∑

i=1

⟨ f , ei⟩ei,

Λ3 f =
4∑

i=3

⟨ f , ei⟩ei, Λi f = ⟨ f , ei+1⟩ei+1, i ≥ 4.

We first show that {Λi}
∞

i=2 is a g-Riesz basis forU. For any f ∈ U, we have

∥ f ∥2 ≤
∞∑

i=2

∥Λi f ∥2 ≤ 4∥ f ∥2,

hence {Λi}
∞

i=2 is a g-frame forU, and consequently {Λi}
∞

i=2 is g-complete onU. For any f ∈ U, 12 ∈ V2, there exist
c1, c2 such that 12 =

∑2
i=1 ciei, now we have

⟨Λ∗212, f ⟩ = ⟨12,Λ2 f ⟩ = 2
〈 2∑

i=1

ciei,
2∑

i=1

⟨ f , ei⟩ei

〉
= 2

2∑
i=1

ci⟨ f , ei⟩ =
〈
2

2∑
i=1

ciei, f
〉
= ⟨212, f ⟩.

Since f ∈ U is arbitrary, hence Λ∗212 = 212. Similarly we can get Λ∗i1i = 1i, i ≥ 3. And since {1i}
∞

i=2 is orthogonal,
for any subset J ⊂ I = {2, 3, · · · }, we have∑

i∈J

∥1i∥
2
≤

∥∥∥∥∥∑
i∈J

Λ∗i1i

∥∥∥∥∥2 ≤ 4
∑
i∈J

∥1i∥
2.
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Therefore {Λi}
∞

i=2 is a g-Riesz basis forU, and {Λi}
∞

i=1 is a near g-Riesz basis forU.
Next we show that the type I induced sequence {uik}

∞

i=1,k∈Ki of {Λi}
∞

i=1 is not a near Riesz basis for U. By direct
calculations we get

u15 = Λ
∗

1e5 = e5, u1k = Λ
∗

1ek = 0, k , 5,u2k = Λ
∗

2ek = 2ek, k = 1, 2,
u3k = Λ

∗

3ek+2 = ek+2, k = 1, 2, ui1 = Λ
∗

i ei+1 = ei+1, i ≥ 4.

Obviously {u21,u22,u31,u32,ui1, i ≥ 4} and {u21,u22,u31,u32,u15,ui1, i ≥ 6} are Riesz bases forU. But both cases we
have to erase infinite elements from {uik}

∞

i=1,k∈Ki , hence {uik}
∞

i=1,k∈Ki of {Λi}
∞

i=1 is not a near Riesz basis forU. □

The following counterexample tells us that if the type I induced sequence {uik : i ∈ I, k ∈ Ki} is a near
Riesz basis forU, then in general {Λi : i ∈ I} is not a near g-Riesz basis forU.

Example 3.2 Let {ei}
∞

i=1 be an orthonormal basis forU, and letVi = span{ei, ei+1}, i = 1, 2, 3,Vi = span{ei}, i ≥ 4.
Now for any f ∈ U, define

Λ1 f =
2∑

i=1

⟨ f , ei⟩ei, Λi f = ⟨ f , ei⟩ei, i ≥ 2.

By direct calculations we get

Λ∗i1i = ciei,∀1i = ciei + ci+1ei+1 ∈ Vi, i = 2, 3, Λ∗i1i = 1i,∀1i ∈ Vi, i = 1, 4, 5, · · · .

Now we have

ui1 = Λ
∗

i ei = ei, i ≥ 1, u12 = e2, ui2 = Λ
∗

i ei+1 = 0, i = 2, 3.

Since we can erase u12,u22,u32 from {uik : i ∈ N, k ∈ Ki} such that the left is an orthonormal basis for U, hence
{uik : i ∈ N, k ∈ Ki} is a near Riesz basis forU. Next we show that {Λi}

∞

i=1 is not a near g-Riesz basis forU. For that
we divide two cases as follows.

Case I The subset σ in Definition 2.7 is an empty set. It means that we can delete no elements from {Λi}
∞

i=1. We
show that {Λi}

∞

i=1 is not a g-Riesz basis forU. If we take 12 = e3 ∈ V2, 13 = e4 ∈ V3, otherwise 1i = 0 ∈ Vi, then
we have∥∥∥∥∥ ∞∑

i=1

Λ∗i1i

∥∥∥∥∥2 = ∥Λ∗212 + Λ
∗

313∥
2 = ∥Λ∗2e3 + Λ

∗

3e4∥
2 = 0,

and
∑
∞

i=1 ∥1i∥
2 = ∥e3∥

2 + ∥e4∥
2 = 2. So the condition (ii) in Definition 2.3 doesn’t hold, and {Λi}

∞

i=1 is not a g-Riesz
basis forU.

Case II The subset σ in Definition 2.7 is not empty. Note that we can only deleteΛ2 such that the left {Λ1}∪{Λi}
∞

i=3
is a g-frame for U. But {Λ1} ∪ {Λi}

∞

i=3 is not a g-Riesz basis for U. In fact, if we take 13 = e4 ∈ V3, otherwise
1i = 0 ∈ Vi, then we have∥∥∥∥∥ ∞∑

i=1

Λ∗i1i

∥∥∥∥∥2 = ∥Λ∗313∥
2 = ∥Λ∗3e4∥

2 = 0,

and
∑
∞

i=1 ∥1i∥
2 = ∥13∥

2 = ∥e4∥
2 = 1. So the condition (ii) in Definition 2.3 doesn’t hold, hence {Λ1} ∪ {Λi}

∞

i=3 is not a
g-Riesz basis forU.

In conclusion there are no g-Riesz bases contained in {Λi}
∞

i=1, therefore {Λi}
∞

i=1 is not a near g-Riesz basis forU. □

We first use the type I induced sequence of {Λi : i ∈ I} to characterize {Λi : i ∈ I} to be a near g-Riesz
basis.
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Theorem 3.3 Let Λi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. Suppose
that for any i ∈ I, dimVi = 1. If {uik : i ∈ I, k ∈ Ki} is a near Riesz basis for U, then {Λi : i ∈ I} is a near g-Riesz
basis forU.

Proof. Suppose that {uik : i ∈ I, k ∈ Ki} is a near Riesz basis forU. For the trivial case, if {uik : i ∈ I, k ∈ Ki}

is a Riesz basis for U, by Lemma 2.10 we obtain that {Λi : i ∈ I} is a g-Riesz basis for U. Next we show
the nontrivial case. Assume that there exist ∅ , σ ⊂ I, ∅ , τi ⊂ Ki, i ∈ σ with

∑
i∈σ |τi| < ∞, such that

{uik : i ∈ I\σ, k ∈ Ki} ∪ {uik : i ∈ σ, k ∈ Ki\τi} is a Riesz basis forU. For any i ∈ I, dimVi = 1, so |Ki| = 1, i ∈ I.
And since ∅ , τi ⊂ Ki, i ∈ σ, {uik : i ∈ I\σ, k ∈ Ki}∪{uik : i ∈ σ, k ∈ Ki\τi} can be rewritten as {uik : i ∈ I\σ, k ∈ Ki}.
Hence {uik : i ∈ I\σ, k ∈ Ki} is a Riesz basis forU. Again by Lemma 2.10 then {Λi : i ∈ I\σ} is a g-Riesz basis
forU. Since

∑
i∈σ |τi| < ∞, we have |σ| < ∞. Therefore {Λi : i ∈ I} is a near g-Riesz basis forU. □

We also obtain a result as follows.

Theorem 3.4 Let Λi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. If
{uik : i ∈ I, k ∈ Ki} is a ∪i∈σKi-near Riesz basis forU, then {Λi : i ∈ I} is a σ-near g-Riesz basis forU.

Proof. {uik : i ∈ I, k ∈ Ki} is a ∪i∈σKi-near Riesz basis for U, so
∑

i∈σ |Ki| < ∞ and {uik : i ∈ I\σ, k ∈ Ki} is
a Riesz basis for U. By Lemma 2.10 {Λi : i ∈ I\σ} is a g-Riesz basis for U. Since

∑
i∈σ |Ki| < ∞, we obtain

|σ| < ∞. Hence {Λi : i ∈ I\σ} is a g-Riesz basis forU by deleting |σ|(< ∞) elements from {Λi : i ∈ I}. Therefore
{Λi : i ∈ I} is a σ-near g-Riesz basis forU. □

We then use {Λi : i ∈ I} to characterize its type I induced sequence to be a near Riesz basis.

Theorem 3.5 Let Λi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. If
{Λi : i ∈ I} is a σ-near g-Riesz basis forU, and for any i ∈ σ, dimVi < ∞, then {uik : i ∈ I, k ∈ Ki} is a ∪i∈σKi-near
Riesz basis forU.

Proof. Suppose that {Λi : i ∈ I} is a σ-near g-Riesz basis forU. Then {Λi : i ∈ I\σ} is a g-Riesz basis forU. By
Lemma 2.10 {uik : i ∈ I\σ, k ∈ Ki} is a Riesz basis forU. Since |Ki| = dimVi < ∞, i ∈ σ, and |σ| < ∞, we have∑

i∈σ |Ki| < ∞. It means that by deleting
∑

i∈σ |Ki| elements from {uik : i ∈ I, k ∈ Ki} the left {uik : i ∈ I\σ, k ∈ Ki}

is a Riesz basis forU. Therefore {uik : i ∈ I, k ∈ Ki} is a near Riesz basis forU. □

The next result is easily followed by Theorem 3.5.

Corollary 3.6 LetΛi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. Suppose
that for any i ∈ I, dimVi < ∞. If {Λi : i ∈ I} is a near g-Riesz basis forU, then {uik : i ∈ I, k ∈ Ki} is a near Riesz
basis forU.

Combing with Theorems 3.3 and 3.5 we can obtain the following corollary.

Corollary 3.7 LetΛi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. Suppose
that for any i ∈ I, dimVi = 1. Then {Λi : i ∈ I} is a near g-Riesz basis forU, if and only if {uik : i ∈ I, k ∈ Ki} is a
near Riesz basis forU.

Next we use the type I induced sequence of {Λi : i ∈ I} to characterize {Λi : i ∈ I} to be a near exact
g-frame.

Theorem 3.8 Let Λi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. If
{uik : i ∈ I, k ∈ Ki} is a near exact frame forU, then {Λi : i ∈ I} is a near exact g-frame forU.
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Proof. Suppose that {uik : i ∈ I, k ∈ Ki} is a near exact frame forU. So {uik : i ∈ I, k ∈ Ki} is also a frame for
U, by Lemma 2.10 we obtain that {Λi : i ∈ I} is a g-frame forU. By contradiction we assume that {Λi : i ∈ I}
is not a near exact g-frame forU. Then there exists a subset σ ⊂ I with |σ| = ∞ such that {Λi : i ∈ I\σ} is a
g-frame forU. Again by Lemma 2.10 {uik : i ∈ I\σ, k ∈ Ki} is a frame forU. Since |σ| = ∞, so

∑
j∈σ |K j| = ∞.

{uik : i ∈ I\σ, k ∈ Ki} being a frame forU, means that we can delete infinite elements from {uik : i ∈ I, k ∈ Ki}

such that the left is a frame for U. We can also delete infinite elements from {uik : i ∈ I, k ∈ Ki} such that
the left is an exact frame for U. By Remark 2.9 {uik : i ∈ I, k ∈ Ki} is not a near exact frame for U. Hence
{Λi : i ∈ I} is indeed a near exact g-frame forU. □

An exact frame is also a Riesz basis, so a near exact frame is a near Riesz basis. Suppose that {Λi : i ∈ I}
is a near exact g-frame forU, Example 3.1 also implies that {uik : i ∈ I, k ∈ Ki} is not a near exact frame for
U. But if we make some restrictions on dim Vi, i ∈ I, {Λi : i ∈ I} is a near exact g-frame for U can deduce
that {uik : i ∈ I, k ∈ Ki} is a near exact frame forU.

Theorem 3.9 Let Λi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}. Suppose
that for any i ∈ I, dimVi = 1. If {Λi : i ∈ I} is a near exact g-frame for U, then {uik : i ∈ I, k ∈ Ki} is a near exact
frame forU.

Proof. Assume that {Λi : i ∈ I} is a near exact g-frame for U. Then there exists a subset σ ⊂ I with
|σ| < ∞ such that {Λi : i ∈ I\σ} is an exact g-frame for U. By Lemma 2.10 {uik : i ∈ I\σ, k ∈ Ki} is a
frame for U. Next we show that {uik : i ∈ I\σ, k ∈ Ki} is an exact frame for U. By contradiction we
assume that {uik : i ∈ I\σ, k ∈ Ki} is not exact. Then there exist ∅ , τ ⊂ I\σ, ∅ , κi ⊂ Ki, i ∈ τ, such that
{uik : i ∈ I\σ\τ, k ∈ Ki} ∪ {uik : i ∈ τ, k ∈ Ki\κi} is a frame forU. Since |Ki| = dimVi = 1, i ∈ I, and ∅ , κi ⊂ Ki,
i ∈ τ, so Ki\κi = ∅ for any i ∈ τ. Hence {uik : i ∈ I\σ\τ, k ∈ Ki} is a frame for U. Again by Lemma 2.10
{Λi : i ∈ I\σ\τ} is a g-frame for U. It contradicts that {Λi : i ∈ I\σ} is an exact g-frame for U. Therefore
{uik : i ∈ I\σ, k ∈ Ki} is an exact frame for U. It implies that {uik : i ∈ I, k ∈ Ki} is a near exact frame for U
since

∑
i∈σ |Ki| = |σ| < ∞. □

The following result can be obtained by combining the Theorems 3.8 and 3.9.

Corollary 3.10 Let Λi ∈ L(U,Vi), i ∈ I, and {uik : i ∈ I, k ∈ Ki} be the type I induced sequence of {Λi : i ∈ I}.
Suppose that for any i ∈ I, dimVi = 1. Then {uik : i ∈ I, k ∈ Ki} is a near exact frame forU, if and only if {Λi : i ∈ I}
is a near exact g-frame forU.

The following result tells us that the type I induced sequence of {Λi : i ∈ I}, which is a Riesz frame, can
infer that {Λi : i ∈ I} is a g-Riesz frame.

Theorem 3.11 Let {Λi : i ∈ I} be a g-Bessel sequence in U w.r.t. {Vi : i ∈ I}, with the type I induced sequence
{uik : i ∈ I, k ∈ Ki}. If {uik : i ∈ I, k ∈ Ki} is a Riesz frame for U, then {Λi : i ∈ I} is a g-Riesz frame for U w.r.t.
{Vi}i∈I.

Proof. Suppose that {uik : i ∈ I, k ∈ Ki} is a Riesz frame for U with uniform frame bounds A and B. Then
for any subset J ⊂ I, {uik : i ∈ J, k ∈ Ki} is a frame forWJ with frame bounds A and B, where

WJ =
{∑

i∈J

∑
k∈Ki

cikuik : ∀i ∈ J, k ∈ Ki

}
.

By Lemma 2.10 {Λi : i ∈ J} is a g-frame forWJ with g-frame bounds A and B. It follows thatUJ = R(TJ) =WJ
by Lemma 2.11, where TJ is the synthesis operator of {Λi : i ∈ J}, UJ is defined by (2.3). Hence we obtain
that for any J ⊂ I, {Λi : i ∈ J} is a g-frame forUJ with uniform g-frame bounds A and B. Hence {Λi : i ∈ I} is
a g-Riesz frame forU. □

Let {Λi : i ∈ I} be a g-Bessel sequence in U w.r.t. {Vi : i ∈ I}, with the type I induced sequence
{uik : i ∈ I, k ∈ Ki}. At the moment we can’t answer, if {Λi : i ∈ I} is a g-Riesz frame for U, whether
{uik : i ∈ I, k ∈ Ki} is a Riesz frame forU. We can only get such a result under the condition dimVi = 1,∀i ∈ I.
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Theorem 3.12 Let {Λi : i ∈ I} be a g-Bessel sequence in U w.r.t. {Vi : i ∈ I}, with the type I induced sequence
{uik : i ∈ I, k ∈ Ki}. Suppose that for any i ∈ I, dimVi = 1. If {Λi : i ∈ I} is a g-Riesz frame forU w.r.t. {Vi}i∈I, then
{uik : i ∈ I, k ∈ Ki} is a Riesz frame forU.

Proof. Assume that {Λi : i ∈ I} is a g-Riesz frame for U with uniform g-frame bounds A and B. For any
∅ , σ ⊂ I, ∅ , τi ⊂ Ki, i ∈ σ, we need to show that {uik}i∈σ,k∈τi is a frame forWσ with uniform frame bounds,
where

Wσ =
{∑

i∈σ

∑
k∈τi

cikuik : ∀i ∈ σ, k ∈ τi

}
.

Since for any i ∈ I, dimVi = 1, so |Ki| = 1, i ∈ I. And since ∅ , τi ⊂ Ki, i ∈ σ, hence τi = Ki, i ∈ σ. Therefore
{uik}i∈σ,k∈τi can be rewritten as {uik}i∈σ,k∈Ki , andWσ can be rewritten as {

∑
i∈σ
∑

k∈τi
cikuik : ∀i ∈ σ, k ∈ Ki}. Since

{Λi : i ∈ I} is a g-Riesz frame for U with uniform g-frame bounds A and B, so {Λi : i ∈ σ} is a g-frame for
Uσ = {

∑
i∈σΛ

∗

i1i : ∀1i ∈ Vi, i ∈ σ}with g-frame bounds A and B, by Lemma 2.10 {uik}i∈σ,k∈Ki is a frame forUσ
with frame bounds A and B. We can also have Wσ = R(Tσ) = Uσ, where Tσ is the synthesis operator of
{uik}i∈σ,k∈Ki . Hence {uik}i∈σ,k∈τi is a frame forWσ with uniform frame bounds A and B. And σ ⊂ I, τi ⊂ Ki,
i ∈ σ are arbitrary, therefore {uik : i ∈ I, k ∈ Ki} is a Riesz frame forU. □

Combining with Theorems 3.11 and 3.12 we can obtain the following result.

Corollary 3.13 Let {Λi : i ∈ I} be a g-Bessel sequence in U w.r.t. {Vi : i ∈ I}, with the type I induced sequence
{uik : i ∈ I, k ∈ Ki}. Suppose that for any i ∈ I, dimVi = 1. Then {Λi : i ∈ I} is a g-Riesz frame forU, if and only if
{uik : i ∈ I, k ∈ Ki} is a Riesz frame forU.

At the end of this section, we give the exact relationship between the synthesis operators of {Λi : i ∈ I}
and its type II induced sequence.

Theorem 3.14 Let {Λi : i ∈ I} be a g-Bessel sequence in U w.r.t. {Vi : i ∈ I} and for any i ∈ I, {hik}k∈Ki be a Riesz
basis for Vi with Riesz bounds Ci,Di, where 0 < C = infi∈I{Ci}, D = supi∈I{Di} < ∞. Let {vik : i ∈ I, k ∈ Ki} be
the type II induced sequence of {Λi : i ∈ I}. Then there exists an invertible operator Q ∈ L(l2({Vi}i∈I), l2), such that
TΛ = TvQ, where TΛ and Tv are respectively the synthesis operators of {Λi : i ∈ I} and {vik : i ∈ I, k ∈ Ki}.

Proof. Define Q ∈ L(l2({Vi}i∈I), l2) as follows

Q({1i}i∈I) = {⟨1i,S−1
i hik⟩}i∈I,k∈Ki , (3.1)

where Si is the frame operator of {hik}k∈Ki , i ∈ I.
We first show that Q is a bounded operator on l2({Vi}i∈I). For any i ∈ I, {hik}k∈Ki is a Riesz basis for

Vi with Riesz bounds Ci,Di, so {S−1
i hik}k∈Ki is also a frame for Vi with frame bounds 1

Di
, 1

Ci
. Now for any

{1i}i∈I ∈ l2({Vi}i∈I), we have

∥Q({1i}i∈I)∥2 = ∥{⟨1i,S−1
i hik⟩}i∈I,k∈Ki∥

2

=
∑
i∈I

∑
k∈Ki

|⟨1i,S−1
i hik⟩|

2

≤

∑
i∈I

1
Ci
∥1i∥

2
≤

∑
i∈I

1
C
∥1i∥

2 =
1
C
∥{1i}i∈I∥

2.

Hence Q ∈ L(l2({Vi}i∈I), l2).
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We then calculate Q∗. For any {1i}i∈I ∈ l2({Vi}i∈I), {cik}i∈I,k∈Ki ∈ l2, we obtain

⟨{1i}i∈I,Q∗({cik}i∈I,k∈Ki )⟩ = ⟨Q({1i}i∈I), {cik}i∈I,k∈Ki⟩

= ⟨{⟨1i,S−1
i hik⟩}i∈I,k∈Ki , {cik}i∈I,k∈Ki⟩

=
∑
i∈I

∑
k∈Ki

⟨1i,S−1
i hik⟩cik

=
∑
i∈I

∑
k∈Ki

⟨1i, cikS−1
i hik⟩

=
∑
i∈I

〈
1i,
∑
k∈Ki

cikS−1
i hik

〉
=
〈
{1i}i∈I,

{∑
k∈Ki

cikS−1
i hik

}
i∈I

〉
.

It follows that Q∗({cik}i∈I,k∈Ki ) = {
∑

k∈Ki
cikS−1

i hik}i∈I since {1i}i∈I ∈ l2({Vi}i∈I) is arbitrary.
Next we prove that Q is invertible on l2({Vi}i∈I). Suppose that there exists some 1 = {1i}i∈I ∈ l2({Vi}i∈I)

such that 0 = Q1 = Q({1i}i∈I) = {⟨1i,S−1
i hik⟩}i∈I,k∈Ki . Then ⟨1i,S−1

i hik⟩ = 0,∀i ∈ I, k ∈ Ki. Since for any i ∈ I,
{S−1

i hik}k∈Ki is a frame forVi, it follows that 1i = 0,∀i ∈ I and 1 = 0. Hence Q is injective. Suppose that there
exists c = {cik}i∈I,k∈Ki ∈ l2 such that 0 = Q∗c = Q∗({cik}i∈I,k∈Ki ) = {

∑
k∈Ki

cikS−1
i hik}i∈I. It follows that for any i ∈ I,

0 =
∑

k∈Ki
cikS−1

i hik = S−1
i (
∑

k∈Ki
cikhik). Since S−1

i is invertible on Vi, we get
∑

k∈Ki
cikhik = 0. It follows that

cik = 0,∀i ∈ I, k ∈ Ki since {hik}k∈Ki is a Riesz basis forVi, i ∈ I. Hence Q∗ is injective on l2 and consequently
Q is surjective on l2({Vi}i∈I). Therefore Q is invertible on l2({Vi}i∈I).

It suffices to show that TΛ = TvQ. In fact, for any {1i}i∈I ∈ l2({Vi}i∈I), we obtain

TvQ({1i}i∈I) = Tv({⟨1i,S−1
i hik⟩}i∈I,k∈Ki )

=
∑
i∈I

∑
k∈Ki

⟨1i,S−1
i hik⟩vik

=
∑
i∈I

∑
k∈Ki

⟨1i,S−1
i hik⟩Λ

∗

i hik

=
∑
i∈I

Λ∗i

(∑
k∈Ki

⟨1i,S−1
i hik⟩hik

)
=
∑
i∈I

Λ∗i1i = TΛ({1i}i∈I).

It follows that TΛ = TvQ since {1i}i∈I ∈ l2({Vi}i∈I) is arbitrary. □

4. Weaving of g-frames in Hilbert spaces

In this section we mainly discuss the weaving of the sums {Λi +∆i}i∈I and {Γi +Θi}i∈I whether are woven
onU, whereU is a Hilbert space and {Λi}i∈I, {Γi}i∈I, {∆i}i∈I, {Θi}i∈I are g-Bessel sequences inU.

Theorem 4.1 Suppose that {Λi : i ∈ I} and {Γi : i ∈ I} are woven on U with universal g-frame bounds A,B. Let
T1,T2 ∈ L(U) and {∆i : i ∈ I}, {Θi : i ∈ I} be g-Bessel sequences inU with g-Bessel bounds B∆,BΘ, respectively. If
A > 2(B∆∥T1∥

2 + BΘ∥T2∥
2), then {Λi + ∆iT∗1 : i ∈ I} and {Γi + ΘiT∗2 : i ∈ I} are woven onU with universal g-frame

bounds
1
2

[A − 2(B∆∥T1∥
2 + BΘ∥T2∥

2)], 2(B + B∆∥T1∥
2 + BΘ∥T2∥

2).
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Proof. For any partition {σ j}
2
j=1 of I, and any f ∈ U, we have∑

i∈σ1

∥Λi f ∥2 =
∑
i∈σ1

∥(Λi + ∆iT∗1) f − ∆iT∗1 f ∥2

≤ 2
∑
i∈σ1

∥(Λi + ∆iT∗1) f ∥2 + 2
∑
i∈σ1

∥∆iT∗1 f ∥2 (4.1)

≤ 2
∑
i∈σ1

∥(Λi + ∆iT∗1) f ∥2 + 2
∑
i∈I

∥∆iT∗1 f ∥2

≤ 2
∑
i∈σ1

∥(Λi + ∆iT∗1) f ∥2 + 2B∆∥T∗1 f ∥2

≤ 2
∑
i∈σ1

∥(Λi + ∆iT∗1) f ∥2 + 2B∆∥T1∥
2
· ∥ f ∥2. (4.2)

Similarly we obtain∑
i∈σ2

∥Γi f ∥2 =
∑
i∈σ2

∥(Γi + ΘiT∗2) f −ΘiT∗2 f ∥2

≤ 2
∑
i∈σ2

∥(Γi + ΘiT∗2) f ∥2 + 2BΘ∥T2∥
2
· ∥ f ∥2. (4.3)

For any partition {σ j}
2
j=1 of I and any f ∈ U, combing with (4.2) and (4.3) we have∑

i∈σ1

∥(Λi + ∆iT∗1) f ∥2 +
∑
i∈σ2

∥(Γi + ΘiT∗2) f ∥2

≥
1
2

(∑
i∈σ1

∥Λi f ∥2 +
∑
i∈σ2

∥Γi f ∥2
)
− (B∆∥T1∥

2 + BΘ∥T2∥
2)∥ f ∥2

≥
A
2
∥ f ∥2 − (B∆∥T1∥

2 + BΘ∥T2∥
2)∥ f ∥2

=
1
2

[A − 2(B∆∥T1∥
2 + BΘ∥T2∥

2)]∥ f ∥2,

where the second inequality is deduced by that {Λi : i ∈ I} and {Γi : i ∈ I} are woven onU.
On the other hand, we have∑

i∈σ1

∥(Λi + ∆iT∗1) f ∥2 +
∑
i∈σ2

∥(Γi + ΘiT∗2) f ∥2

≤ 2
(∑

i∈σ1

∥Λi f ∥2 +
∑
i∈σ2

∥Γi f ∥2
)
+ 2
∑
i∈σ1

∥∆iT∗1 f ∥2 + 2
∑
i∈σ2

∥ΘiT∗2 f ∥2

≤ 2(B + B∆∥T1∥
2 + BΘ∥T2∥

2)∥ f ∥2.

Therefore {Λi + ∆iT∗1 : i ∈ I} and {Γi + ΘiT∗2 : i ∈ I} are woven onU. □

If T1 = T2 = IU in Theorem 4.1, the following corollary is followed by Theorem 4.1.

Corollary 4.2 Suppose that {Λi : i ∈ I} and {Γi : i ∈ I} are woven on U with universal g-frame bounds A,B. Let
{∆i : i ∈ I}, {Θi : i ∈ I} be g-Bessel sequences inU with g-Bessel bounds B∆,BΘ, respectively. If A > 2(B∆ +BΘ), then
{Λi+∆i : i ∈ I} and {Γi+Θi : i ∈ I} are woven onU with universal g-frame bounds 1

2 [A−2(B∆+BΘ)], 2(B+B∆+BΘ).

Moreover, if {∆i : i ∈ I} and {Θi : i ∈ I} are also woven onU, from the proof of Theorem 4.1 we can obtain
another corollary as follows.
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Corollary 4.3 Suppose that {Λi : i ∈ I} and {Γi : i ∈ I}, {∆i : i ∈ I} and {Θi : i ∈ I} are woven onU with universal
g-frame bounds A,B and C,D, respectively. If A > 2D, then {Λi + ∆i : i ∈ I} and {Γi + Θi : i ∈ I} are woven onU
with universal g-frame bounds A

2 −D, 2(B +D).

Proof. For any partition {σ j}
2
j=1 of I and any f ∈ U, similar to (4.1) we have∑

i∈σ2

∥Γi f ∥2 =
∑
i∈σ2

∥(Γi + Θi) f −Θi f ∥2

≤ 2
∑
i∈σ2

∥(Γi + Θi) f ∥2 + 2
∑
i∈σ2

∥Θi f ∥2. (4.4)

Combing with (4.1) and (4.4) we obtain∑
i∈σ1

∥(Λi + ∆i) f ∥2 +
∑
i∈σ2

∥(Γi + Θi) f ∥2

≥
1
2

(∑
i∈σ1

∥Λi f ∥2 +
∑
i∈σ2

∥Γi f ∥2
)
−

(∑
i∈σ1

∥∆i f ∥2 +
∑
i∈σ2

∥Θi f ∥2
)

≥ (
A
2
−D)∥ f ∥2.

The upper bound of each weaving is trivial. Hence {Λi + ∆i : i ∈ I} and {Γi + Θi : i ∈ I} are woven onU. □

Next we consider the converse of the Corollary 4.3. That is, if {Λi+∆i : i ∈ I} and {Γi+Θi : i ∈ I}, {Λi : i ∈ I}
and {Γi : i ∈ I} are woven on U, can we deduce that the g-Bessel sequences {∆i : i ∈ I} and {Θi : i ∈ I} are
whether woven onU? We give a sufficient condition for this question as follows.

Theorem 4.4 Suppose that {Λi : i ∈ I}, {Γi : i ∈ I}, {∆i : i ∈ I}, and {Θi : i ∈ I} are g-Bessel sequences in U. If
{Λi : i ∈ I} and {Γi : i ∈ I}, {Λi + ∆i : i ∈ I} and {Γi + Θi : i ∈ I} are woven onU with universal g-frame bounds A,B
and C,D, respectively, and C > B, then {∆i : i ∈ I} and {Θi : i ∈ I} are woven onU with universal g-frame bounds
(
√

C −
√

B)2, (
√

B +
√

D)2.

Proof. For any partition {σ j}
2
j=1 of I and any f ∈ U, we obtain(∑

i∈σ1

∥∆i f ∥2 +
∑
i∈σ2

∥Θi f ∥2
) 1

2

= ∥{∆i f }i∈σ1 + {Θi f }i∈σ2∥l2({Vi}i∈I)

= ∥{∆i f + Λi f }i∈σ1 + {Θi f + Γi f }i∈σ2

−({Λi f }i∈σ1 + {Γi f }i∈σ2 )∥l2({Vi}i∈I) (4.5)
≥ ∥{∆i f + Λi f }i∈σ1 + {Θi f + Γi f }i∈σ2∥l2({Vi}i∈I)

−∥({Λi f }i∈σ1 + {Γi f }i∈σ2 )∥l2({Vi}i∈I)

=
(∑

i∈σ1

∥(∆i + Λi) f ∥2 +
∑
i∈σ2

∥(Θi + Γi) f ∥2
) 1

2

−

(∑
i∈σ1

∥Λi f ∥2 +
∑
i∈σ2

∥Γi f ∥2
) 1

2

≥ (
√

C −
√

B)∥ f ∥,

where the last inequality is deduced by that {Λi : i ∈ I} and {Γi : i ∈ I}, {Λi + ∆i : i ∈ I} and {Γi + Θi : i ∈ I} are
woven onU. It follows that∑

i∈σ1

∥∆i f ∥2 +
∑
i∈σ2

∥Θi f ∥2 ≥ (
√

C −
√

B)2
∥ f ∥2.
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On the other hand, from (4.5) we have(∑
i∈σ1

∥∆i f ∥2 +
∑
i∈σ2

∥Θi f ∥2
) 1

2

≤ ∥{∆i f + Λi f }i∈σ1 + {Θi f + Γi f }i∈σ2∥l2({Vi}i∈I) + ∥({Λi f }i∈σ1 + {Γi f }i∈σ2 )∥l2({Vi}i∈I)

=
(∑

i∈σ1

∥(∆i + Λi) f ∥2 +
∑
i∈σ2

∥(Θi + Γi) f ∥2
) 1

2

+
(∑

i∈σ1

∥Λi f ∥2 +
∑
i∈σ2

∥Γi f ∥2
) 1

2

≤ (
√

B +
√

D)∥ f ∥.

It follows that∑
i∈σ1

∥∆i f ∥2 +
∑
i∈σ2

∥Θi f ∥2 ≤ (
√

B +
√

D)2
∥ f ∥2.

Therefore {∆i : i ∈ I} and {Θi : i ∈ I} are woven onU. □
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