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Existence of pyramidal traveling fronts to the buffered bistable systems
in R3

Xin-Tian Zhanga, Zhen-Hui Bua,∗, Jing-Xiang Wua

aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China

Abstract. This paper studies the pyramidal calcium concentration waves for buffered bistable systems
in R3. We show the existence of three-dimensional pyramidal traveling fronts by using the fixed point
theory and the super-subsolution method combined with the comparison principle. Our result implies that
multiple immobile buffers (where all buffers do not diffuse) do not affect the existence of pyramidal calcium
concentration waves.

1. Introduction

For a long time, many researchers have sought to understand the traveling fronts of the reaction-diffusion
equation [4, 5, 29] and they have observed the phenomenon of wave propagation in various fields, such as
biology and chemistry with regards to the FitzHugh-Nagumo model [22] and the Belousov-Zhabotinskii
reaction [7, 12]. Among them, the study on the propagation of calcium concentration waves between cells
and within them has received widespread attention [1, 3, 9, 17]. In general, the mechanism of calcium wave
generation is based on reaction-diffusion, which can be documented by the equation

ut (x, t) = D∆u (x, t) + f (u (x, t)), x ∈ RN, t > 0, (1)

where u represents the concentration of free cytosolic calcium, ∆ is the Laplace operator, D > 0 represents
diffusion coefficient of free cytosolic calcium in the cytoplasm, N denotes the spatial dimension of cells
and the bistable nonlinear reaction term f (u) not only maintains stable self-sustaining waves [4], but also is
considered to be critical for the fertilization of calcium waves in mature Xenopus oocytes [6, 33].

Due to the presence of calcium buffers in cells [15], the study of calcium waves is slightly different from
other excitable systems. Calcium buffer is a kind of protein in the cytoplasm that can bind to free calcium,
thereby limiting the diffusion of free calcium and controlling the release and uptake of calcium [17, 32].
Consequently, whether calcium buffers have an effect on calcium waves has aroused wide concern. One of
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buffered systems can be written as ut (x, t) = D∆u + f (u) +
∑n

i=1

[
ki
−

bi
0 −

(
ki
+u + ki

−

)
vi

]
,

vi,t (x, t) = Di∆vi + ki
−

bi
0 −

(
ki
+u + ki

−

)
vi, i = 1, 2, · · · ,n,

(2)

for all (x, t) ∈ RN
× (0,+∞), where vi and Di ≥ 0 represent the concentration and diffusion coefficient of the

i-th free buffer in the cytoplasm respectively, n is the number of species of the free buffer, bi
0 > 0 represents

the amount of the total concentration of the i-th buffer, including the concentration of the i-th free buffer
and the i-th non-free buffer, and ki

±
are reaction rates of calcium ions and the i-th free buffer through the

following reaction

Ca2+ + Bi
ki
+⇌

ki
−

CaBi, i = 1, · · · ,n,

where Bi represents the i-th free buffer and CaBi represents the i-th non-free buffer.
As a special solution of the development model based on the unbounded region, the traveling front

can well describe the properties of the solution of the reaction-diffusion equation. In high-dimensional
space, under the influnce of curvature, the equation has traveling fronts whose level set is not hyperplane.
Thus it is very vital to study nonplanar traveling fronts in high-dimensional space. For the Fisher-KPP
monostable case, Hamel and Nadirashvili [8] proved the existence of an infinite-dimensional manifold of
nonplanar traveling fronts in RN (N ≥ 2). For the degenerate Fisher-KPP monostable case, Wang and Bu
[31] established the existence of pyramidal traveling fronts in R3 and showed the existence and stability
of V-shaped traveling fronts. In [2], they further studied the stability of pyramidal traveling fronts in R3.
When the nonlinear term reaction f (u) is bistable, Ninomiya and Taniguchi [16] obtained the existence
of the V-shaped traveling fronts in R2 by constructing supersolutions and subsolutions and using the
comparison principle. Later, Taniguchi [23, 24] used a similar method to prove the existence and stability of
the pyramidal traveling fronts inR3. Wang [30] studied the existence, uniqueness and stability of V-shaped
traveling fronts for reaction-diffusion bistable systems in R2. Wang, Li and Ruan [34] also showed the
existence, uniqueness and stability of three-dimensional traveling fronts for monotone bistable systems of
reaction-diffusion equations in R3 by using the super-subsolution method combined with the comparison
argument. For more research on higher dimensional space, we can refer to literatures [13, 19–21, 25, 26]
and the references therein. With regard to system (2), Tsai and Sneyd [27, 28] showed the existence, local
stability and uniqueness of one-dimensional traveling waves for Di = 0(i = 1, 2, · · · ,n) and the stability
and uniqueness of one-dimensional traveling waves for Di ≥ 0(i = 1, 2, · · · ,n). Jia et al. [10, 11] obtained
the existence, global stability and uniqueness of V-shaped traveling fronts of the buffered bistable systems
in R2. As mentioned above, reaction-diffusion equations may have traveling curved fronts with different
types of level sets in spaces of different dimensions. For system (2) with Di = 0, (i = 1, 2, · · · ,n), there is no
relevant conclusion on whether a pyramidal traveling front exists in R3. In this paper, we will answer that
question in the affirmative. It is worth noting that only the first equation has a positive diffusion term, while
the other n equations have no positive diffusion term which makes the equation lose the regularization
estimation, so that the existence of the solution cannot be verified by the prior estimation. Therefore, when
improving the regularity of the solution, the requirements are higher and the difficulty will be increased.

In this paper, assume that the nonlinear term f (u) is a simple form

f (u) = u(u − a)(1 − u), 0 < a <
1
2
.

Without loss of generality, we can research system (2) with only one free buffer. That is, we study the
buffered bistable system{

ut
(
x, y, z, t

)
= D∆u + f (u) + [k−b0 − (k+u + k−) v] ,

vt
(
x, y, z, t

)
= k−b0 − (k+u + k−) v, (3)
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for all
(
x, y, z, t

)
∈ R3

× (0,+∞), where D, k+, k− and b0 are positive constants. Studying the existence of
traveling fronts of system (3) is complicated by the fact that the diffusion coefficient of the second equation
is 0, which makes the system lose regular estimate. Thus we will apply the Banach’s fixed point theory to
show the existence of pyramidal traveling fronts of system (3).

Let us now give two symbolic definitions. For any two vectors a, a′ ∈ R3, a ≤ (<)a′ means ai ≤ (<)a′i with
i = 1, 2, 3. The interval [a, a′] =

{
x ∈ R3

|a ≤ x ≤ a′
}
. After defining ϕ1(x, y, z, t) = u(x, y, z, t), ϕ2(x, y, z, t) =

b0 − v(x, y, z, t),Φ = (ϕ1, ϕ2) and D = diag(D, 0), then system (3) can be simplified as

Φt
(
x, y, z, t

)
= D∆Φ

(
x, y, z, t

)
+ F(Φ

(
x, y, z, t

)
), (4)

where

F(Φ) = ( f1(Φ), f2(Φ)) = ( f (ϕ1) + k−ϕ2 − k+ϕ1(b0 − ϕ2),−k−ϕ2 + k+ϕ1(b0 − ϕ2)).

For convenience, we always denote 0 = (0, 0) and G = (1, b0− b1) =
(
1, b0 −

k−b0
k−+k+

)
. Obviously 0 < b1 < b0,

and 0 and G are two equilibria of system (4). From [27], it follows that the Eq.(4) has a unique positive
traveling front Ψ(ς) = (ψ1(ς), ψ2(ς)) connecting 0 and G and the wave speed c∗ is positive, where ς =(
x, y, z

)
· e + c∗t and e ∈ S2. That is, (ψ1(ς), ψ2(ς)) satisfies
Dψ′′1 − c∗ψ′1 + f (ψ1) + k−ψ2 − k+ψ1(b0 − ψ2) = 0,
−c∗ψ′2 − k−ψ2 + k+ψ1(b0 − ψ2) = 0,
0 < ψ1 < 1, 0 < ψ2 < b0 − b1, ψ′1 > 0, ψ′2 > 0,
ψ1(−∞) = 0, ψ1(+∞) = 1,
ψ2(−∞) = 0, ψ2(+∞) = b0 − b1.

(5)

In addition, the traveling front (ψ1(ς), ψ2(ς)) has the following asymptotic behavior.

Lemma 1.1. [10, Lemma 1.1] There exist two positive constants C0 and β0 such that

max
{
|1 − ψ1(ς)|, |b0 − b1 − ψ2(ς)|

}
+max

{
|ψ′1(ς)|, |ψ′2(ς)|

}
+ |ψ′′1 (ς)| ≤ C0e−β0ς, ς ≥ 0,

max
{
|ψ1(ς)|, |ψ2(ς)|

}
+max

{
|ψ′1(ς)|, |ψ′2(ς)|

}
+ |ψ′′1 (ς)| ≤ C0e−β0 |ς|, ς ≤ 0.

This paper mainly studies the existence of the three-dimensional pyramidal shaped traveling front of

Eq.(4). Affected by curvature, we can assume c > c∗ and define m∗ =
√

c2−c2
∗

c∗
. Let

Φ(x, y, z, t) = v(x1, x2, x3, t), (x1, x2, x3) = (x, y, z + ct), (6)

which travels in the direction of the z-axis. Substituting v into Eq.(4), we have{
vt = D∆v − cvx3 + F(v), x ∈ R3, t > 0,
v0(x) = v(x, 0), x ∈ R3,

(7)

where x = (x′, x3) and x′ = (x1, x2). The goal of this paper is to find the solution W(x) = (W1(x),W2(x))
satisfying the equation

L[W] := −D∆W + cWx3 − F(W) = 0, x ∈ R3. (8)

Now we construct a pyramid which comes from [23]. Let l ∈N and l ≥ 3. Assume that
{
θ j

}
1≤ j≤l

satisfies

0 ≤ θ1 < θ2 < · · · < θl < 2π and max
1≤ j≤l

(
θ j+1 − θ j

)
< π, (9)
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whereθl+1 = θ1+2π. And then
(
m∗ cosθ j,m∗ sinθ j, 1

)
is the normal vector of surface

{
x ∈ R3

| −x3 = h j (x1, x2)
}
,

where h j (x1, x2) = m∗
(
x1 cosθ j + x2 sinθ j

)
(1 ≤ j ≤ l). For any (x1, x2) ∈ R2, let

h (x1, x2) = max
1≤ j≤l

h j (x1, x2) = m∗max
1≤ j≤l

(
x1 cosθ j + x2 sinθ j

)
.

Then
{
x ∈ R3

| −x3 = h (x1, x2)
}

is a pyramid in R3, and for any (x1, x2) ∈ R2,

h (x1, x2) ≥ 0, lim
R→∞

inf
x2

1+x2
2≥R2

h (x1, x2) = ∞.

Let

Ω j =
{
x′ ∈ R2

| h (x1, x2) = h j (x1, x2)
}
, j = 1, 2, · · · , l,

then R2 =
⋃l

j=1Ω j. (9) yields that the planes Ω1,Ω2, · · · ,Ωl are arranged in a counterclockwise direction.

Let ∂Ω j be the boundary of Ω j and K =
⋃l

j=1 ∂Ω j. Each side of
{
x ∈ R3

| −x3 = h (x1, x2)
}

can be represented
as

S j =
{
x ∈ R3

| −x3 = h j (x1, x2) , (x1, x2) ∈ Ω j

}
, j = 1, 2, · · · , l.

Denote each edge of the pyramid
{
x ∈ R3

| −x3 = h (x1, x2)
}

as

Γ j =

{
S j ∩ S j+1, 1 < j < l − 1,
Sl ∩ S1, j = l,

then
⋃l

j=1 S j ⊂ R3 represents the set of all lateral surfaces of the pyramid, and Γ =
⋃l

j=1 Γ j represents the set
of all edges of the pyramid. For any γ̄ ≥ 0, define

D(γ̄) =
{
x ∈ R3

| dist(x,Γ) ≥ γ̄
}
.

For any 1 ≤ j ≤ l, it is obvious thatΨ
(

c∗
c

(
x3 + h j (x1, x2)

))
is the solution of Eq.(8). Define

v−(x) =Ψ
(c∗

c
(x3 + h (x1, x2))

)
= max

1≤ j≤l
Ψ

(c∗
c

(
x3 + h j (x1, x2)

))
, (10)

then v−(x) is a subsolution of Eq.(8), andΨ′(ς) > 0 yields v−x3
(x) > 0 for any x ∈ R3.

The main result of this paper is the existence of three-dimensional pyramidal traveling front.

Theorem 1.2. For any c > c∗, the Eq.(4) exists a nonplanar traveling front W(x) which satisfies Eq.(8), W(x) > v−(x),
Wx3 (x) > 0 for any x ∈ R3, W(x′1, x3) =W(x′2, x3) if

∣∣∣x′1∣∣∣ = ∣∣∣x′2∣∣∣,
Wx1 (0, x2, x3) = 0, Wx1 (x) > 0, ∀(x1, x2, x3) ∈ (0,+∞) ×R2,

Wx2 (x1, 0, x3) = 0, Wx2 (x) > 0, ∀(x1, x2, x3) ∈ R × (0,+∞) ×R,

and

lim
γ̄→∞

sup
x∈D(γ̄)

∣∣∣W (x) − v− (x)
∣∣∣ = 0. (11)

The rest of this paper is organized as follows. In Section 2, we list some vital and useful notations and
preliminaries. In Section 3, we establish the existence of three-dimensional pyramidal traveling front by
constructing the supersolution and using comparison principle and fixed point theory. That is, we give the
proof of Theorem 1.2.



X.-T. Zhang et al. / Filomat 38:9 (2024), 3069–3084 3073

2. Preliminaries

First of all, we consider the qualitative properties of Jacobian matrix DF(Φ).

DF(Φ) =

 f11(Φ) f12(Φ)

f21(Φ) f22(Φ)

 =


∂ f1
∂ϕ1

∂ f1
∂ϕ2

∂ f2
∂ϕ1

∂ f2
∂ϕ2


=

 −3ϕ2
1 + 2(a + 1)ϕ1 + k+ϕ2 − k+b0 − a k+ϕ1 + k−

−k+ϕ2 + k+b0 −k+ϕ1 − k−

 .
(12)

Similar to the process in [10], we obtain λ− < 0 and λ+ < 0, where λ− and λ+ are the principal eigenvalues
of DF(0) and DF(G), respectively. In addition, we can get that there exist positive eigenvectors of DF(0) and
DF(G), which we shall name P− = (P−1 ,P

−

2 ) and P+ = (P+1 ,P
+
2 ) respectively.

Let δ1 > 0 be a small enough constant such that P+ > δ1P−, and define

Q− = δ1P− = (Q−1 ,Q
−

2 ), Q+ = P+ = (Q+1 ,Q
+
2 ).

Obviously, there hold Q+ > Q− > 0. Define

H− = (H−1 ,H
−

2 ) = λ−Q− = DF(0)Q− < 0, H+ = (H+1 ,H
+
2 ) = λ+Q+ = DF(G)Q+ < 0. (13)

Since DF(Φ) is continuous, by (13), we can choose 0 < δ2 < 1 small enough such that

DF(Φ)Q− <
1
2

H−, Φ ∈ [G−, δ2P−], (14)

DF(Φ)Q+ <
1
2

H+, Φ ∈ [G − δ2P+,G+], (15)

k− − δ2k+P−1 > 0, b1 − δ2P+2 > 0, (16)

and

F(G−) = F(0) − δ2DF(0)P− + o(δ2

∣∣∣P−∣∣∣) = −δ2λ
−P− + o(δ2

∣∣∣P−∣∣∣) > 0,

F(G+) = F(G) + δ2DF(G)P+ + o(δ2

∣∣∣P+∣∣∣) = δ2λ
+P+ + o(δ2

∣∣∣P+∣∣∣) < 0,
(17)

where G− = (G−1 ,G
−

2 ) = −δ2P− and G+ = (G+1 ,G
+
2 ) = G+ δ2P+. In this paper, we fix the constant δ2 satisfying

(14)–(17) and define

Q̂ = max
{
Q+1 ,Q

+
2

}
, Q̌ = min

{
Q−1 ,Q

−

2

}
, Ĥ = max

{
H+1 ,H

+
2

}
, Ȟ = max

{
H−1 ,H

−

2

}
.

Let µ1 = k+b0, µ2 = k−, f̄1(Φ) = f (ϕ1) + k−ϕ2 + k+ϕ1ϕ2 and f̄2(Φ) = k+b0ϕ1 − k+ϕ1ϕ2, then Eq.(4) can be
rewriten as ∂ϕ1

∂t = D∆ϕ1 − µ1ϕ1 + f̄1(Φ),
∂ϕ2

∂t = −µ2ϕ2 + f̄2(Φ).
(18)

Following from (17), G− and G+ are the subsolution and supersolution of system (18) respectively. For any
(ϕ1, ϕ2) ∈ [G−,G+], (16) yields that

∂ f̄1
∂ϕ2

(ϕ1, ϕ2) = k− + k+ϕ1 ≥ k− − δ2k+P−1 > 0,

∂ f̄2
∂ϕ1

(ϕ1, ϕ2) = k+(b0 − ϕ2) ≥ k+(b1 − δ2P+2 ) > 0,
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which shows that system (18) is cooperative on [G−,G+]. Let E = BUC
(
R3,R2

)
be the Banach space

that consists of all bounded and uniformly continuous vector-valued functions from R3 to R2 and denote
E+ =

{
u ∈ E|u(x, y, z) ≥ 0, (x, y, z) ∈ R3

}
, then E+ is a closed cone of E. Define a strongly continuous semigroup

on E as

T(t) = diag(T1(t),T2(t)), t > 0,

where for any (x, y, z) ∈ R3 and t > 0,

T1(t)u1(x, y, z) = e−µ1t
∫
R3

1(
2
√
πDt

)3 e−
(x−y1)2

+(y−y2)2
+(z−y3)2

4Dt u1
(
y1, y2, y3

)
dy1dy2dy3,

T2(t)u2(x, y, z) = e−µ2tu2(x, y, z).

(19)

Now we give the definitions of classical and mild subsolution (supersolution) respectively.

Definition 2.1. If functions ϕ1(x, y, z, t) ∈ C2,1
(
R3
× (0,+∞)

)
∩ C

(
R3
× [0,+∞)

)
and

ϕ2(x, y, z, t) ∈ C0,1
(
R3
× (0,+∞)

)
∩ C

(
R3
× [0,+∞)

)
satisfy{

ϕ1,t −D∆ϕ1 + µ1ϕ1 − f̄1(Φ) ≤ 0 (≥ 0), ∀(x, y, z, t) ∈ R3
× (0,+∞),

ϕ2,t + µ2ϕ2 − f̄2(Φ) ≤ 0 (≥ 0), ∀(x, y, z, t) ∈ R3
× (0,+∞),

then the vector-valued functionΦ(x, y, z, t) is called a classical subsolution (supersolution) of system (18).

Definition 2.2. If the continuous vector-valued functionΦ(x, y, z, t) : R3
× [0,+∞)→ [G−,G+] satisfies

Φ ≤ (≥)T(t − s)Φ(s) +
∫ t

s
T(t − r)F̄(Φ(r))dr, (20)

for 0 ≤ s < t, where F̄(Φ) = ( f̄1(Φ), f̄2(Φ)), then the vector-valued functionΦ(x, y, z, t) is called a mild subsolution
( mild supersolution ) of system (18). Particularly, when (20) takes the equal sign, the vector-valued function
Φ(x, y, z, t) can be called a mild solution of system (18).

By an argument similar to Theorem 2.3 of [10], we can obtain the following comparison principle.

Lemma 2.3. Suppose thatΦ− andΦ+ are mild subsolution and mild supersolution of system (18) on R3
× [0,+∞)

respectively, andΦ−,Φ+ ∈ [G−,G+] andΦ−(x, y, z, 0) ≤Φ+(x, y, z, 0) for any (x, y, z) ∈ R3. ThenΦ−(x, y, z, t) ≤
Φ+(x, y, z, t) for any (x, y, z, t) ∈ R3

× [0,+∞). Moreover, if the initial valueΦ0 ∈ E satisfies

Φ−(x, y, z, 0) ≤Φ0(x, y, z) ≤Φ+(x, y, z, 0), (x, y, z) ∈ R3,

then system (18) exists a unique mild solutionΦ(x, y, z, t;Φ0) such that

Φ−(x, y, z, t) ≤Φ(x, y, z, t;Φ0) ≤Φ+(x, y, z, t), (x, y, z, t) ∈ R3
× [0,+∞).

Obviously, the above lemma implies that for anyΦ0 ∈ [G−,G+], one has

G− ≤Φ(x, y, z, t;Φ0) ≤ G+, ∀(x, y, z, t) ∈ R3
× [0,+∞).

Similarly, for anyΦ0 ∈ [0,G], we can also get

0 ≤Φ(x, y, z, t;Φ0) ≤ G, ∀(x, y, z, t) ∈ R3
× [0,+∞).

Next, we are going to mollify the pyramid
{
x ∈ R3

| −x3 = h(x1, x2)
}

which will play a vital role in the
subsequent proofs, see [23].
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Define ρ (x1, x2) = ρ̃
(√

x2
1 + x2

2

)
, where function ρ̃(r) ∈ C∞[0,∞) have the properties:

(1) ρ̃(r) > 0, ρ̃r(r) ≤ 0, for any r ≥ 0;
(2) ρ̃(r) = 1, for any r > 0 small enough;
(3) ρ̃(r) = e−r, for any r > R0 > 1 large enough, where R0 is a constant;

(4)
∫
R2 ρ̃

(√
x2

1 + x2
2

)
dx1dx2 = 2π

∫
∞

0 rρ̃(r)dr = 1.

Then ρ ∈ C∞
(
R2

)
and

∫
R2 ρ (x1, x2) dx1dx2 = 1. For all integers i1 ≥ 0 and i2 ≥ 0 with 0 ≤ i1 + i2 ≤ 3, one has∣∣∣Di1

x1
Di2

x2
ρ (x1, x2)

∣∣∣ ≤Mρ (x1, x2) , ∀ (x1, x2) ∈ R2,

where 0 < M < +∞ is a constant, Di1
x1
= ∂i1

∂xi1
1

and Di2
x2
= ∂i2

∂xi2
2

. Define φ (x1, x2) = ρ ∗ h. That is,

φ (x1, x2) =
∫
R2
ρ
(
x1 − x′1, x2 − x′2

)
h
(
x′1, x

′

2

)
dx′1dx′2

=

∫
R2
ρ
(
x′1, x

′

2

)
h
(
x1 − x′1, x2 − x′2

)
dx′1dx′2, ∀ (x1, x2) ∈ R2. (21)

We call
{
x ∈ R3

| −x3 = φ (x1, x2)
}

the mollified pyramid of
{
x ∈ R3

| −x3 = h (x1, x2)
}
. Define

S (x1, x2) =
c√

1 +
∣∣∣∇φ (x1, x2)

∣∣∣2 − c∗, (22)

where ∇φ (x1, x2) =
(
φx1 (x1, x2) , φx2 (x1, x2)

)
.

The following two lemmas can be obtained from [23, 24, 31], which show some properties of the functions
φ (x1, x2) and S (x1, x2).

Lemma 2.4. The functions φ and S are defined as (21) and (22) respectively. Then we have

sup
(x1,x2)∈R2

∣∣∣Di1
x1

Di2
x2
φ (x1, x2)

∣∣∣ < ∞,
h (x1, x2) < φ (x1, x2) ≤ h (x1, x2) + 2πm∗

∫
∞

0
r2ρ̃(r)dr,∣∣∣∇φ (x1, x2)

∣∣∣ < m∗, 0 < S (x1, x2) ≤ c − c∗, ∀ (x1, x2) ∈ R2,∣∣∣φx1x1 (x1, x2)
∣∣∣ , ∣∣∣φx2x2 (x1, x2)

∣∣∣ ≤ m∗M, ∀ (x1, x2) ∈ R2 (23)

and

lim
λ→∞

sup
{
S (x1, x2) | (x1, x2) ∈ R2,dist ((x1, x2) ,K) ≥ λ

}
= 0,

lim
λ→∞

sup
{
φ (x1, x2) − h (x1, x2) | (x1, x2) ∈ R2,dist ((x1, x2) ,K) ≥ λ

}
= 0.

Lemma 2.5. There exist two constants β1 and β2 such that

0 < β1 = inf
(x1,x2)∈R2

φ (x1, x2) − h (x1, x2)
S (x1, x2)

≤ sup
(x1,x2)∈R2

φ (x1, x2) − h (x1, x2)
S (x1, x2)

= β2 < ∞.

In addition, for any integers i1, i2 ≥ 0 satisfying 2 ≤ i1 + i2 ≤ 3, there exists a positive constantH such that

sup
(x1,x2)∈R2

∣∣∣∣∣∣Di1
x1

Di2
x2
φ (x1, x2)

S (x1, x2)

∣∣∣∣∣∣ < H < +∞.
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3. Existence of three-dimensional pyramidal traveling fronts

In this section, we will establish the existence of the three-dimensional pyramidal traveling front W (x)
of Eq.(8). That is, we give the proof of Theorem 1.2.

3.1. Construction of the supersolution
In this subsection, we use the perturbation method to construct the classical supersolution.
For any α ∈ (0, 1), there holds 1

αh (αx1, αx2) = h (x1, x2). Let z3 = αx3, z = (z1, z2, z3) = αx = (αx1, αx2, αx3),
z′ = αx′ and

σ (x1, x2) = S (αx1, αx2) = S (z′) ,

ϖ(x) =
c∗
c

(
x3 +

1
α
φ (αx1, αx2)

)
=

c∗
c

z3 + φ (z′)
α

, (24)

ϱ(x) =
x3 +

1
αφ (αx1, αx2)√

1 +
∣∣∣∇φ (αx1, αx2)

∣∣∣2 =
z3 + φ (z′)

α
√

1 +
∣∣∣∇φ (z′)

∣∣∣2 . (25)

Calculate them directly, one has

σxi (x1, x2) = αSzi (z′) and σxixi (x1, x2) = α2Szizi (z′) , i = 1, 2,

ϖx3 =
c∗
c
, ϖx3x3 = 0, ϖxi =

c∗
c
φzi , ϖxixi = α

c∗
c
φzizi ,

ϱx3 =
1√

1 +
∣∣∣∇φ (z′)

∣∣∣2 , ϱx3x3 = 0

and for i = 1, 2,

ϱxi =

(√
1 +

∣∣∣∇φ (z′)
∣∣∣2)−1

φzi − αϱ(x)Xi (z′) , ϱxixi = αYi (z′) − α2ϱ(x)Zi (z′) ,

where

Xi (z′) =
√

1 +
∣∣∣∇φ (z′)

∣∣∣2 ∂
∂zi

(√
1 +

∣∣∣∇φ (z′)
∣∣∣2)−1

,

Yi (z′) =
∂
∂zi

(√1 +
∣∣∣∇φ (z′)

∣∣∣2)−1

φzi

 − Xi (z′)√
1 +

∣∣∣∇φ (z′)
∣∣∣2φzi ,

Zi (z′) =
∂Xi (z′)
∂zi

− X2
i (z′) .

Now we define a function ω(x) ∈ C∞(R) satisfying
ω(x) = 1, if x ≥ 1,

0 < ω(x) < 1, 0 < ω′(x) < 1, if − 1 < x < 1,
ω(x) = 0, if x ≤ −1,

(26)

which plays an important role in later proofs.

Lemma 3.1. There exist a positive constant 0 < ε+0 < 1 and a positive function α+0 (ε) such that, for any ε ∈
(
0, ε+0

)
and α ∈

(
0, α+0 (ε)

)
, the function

v+(x; ε, α) =Ψ(ϱ(x)) + εσ(x′)
[
ω(ϖ(x))Q+ + (1 − ω(ϖ(x)))Q−

]
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is a classical supersolution of Eq.(8). Furthermore, the function v+(x; ε, α) satisfies the properties

lim
γ̄→∞

sup
x∈D(γ̄)

∣∣∣∣v+j (x; ε, α) − v−j (x)
∣∣∣∣ ⩽ ε(c − c∗)Q̂, j = 1, 2, (27)

v+(x; ε, α) > v−(x), ∀x ∈ R3, (28)

v+x3
(x; ε, α) > 0, ∀x ∈ R3. (29)

Proof. First of all, we prove v+(x; ε, α) is a supersolution of Eq.(8). Assume 0 < ε ≤ δ2, where δ2 is defined
in Section 2. For the sake of convenience, we abbreviate v+(x; ε, α) as v+(x), ϖ(x) as ϖ, ϱ(x) as ϱ andΨ(ϱ(x))
asΨ(ϱ). In order to show v+(x) is a supersolution of Eq.(8), we only have to prove that it satisfies L1 [v+] (x) = −D

(
v+1,x1x1

+ v+1,x2x2
+ v+1,x3x3

)
+ cv+1,x3

− f1(v+(x)) ≥ 0, ∀x ∈ R3,
L2 [v+] (x) = cv+2,x3

− f2(v+(x)) ≥ 0, ∀x ∈ R3.
(30)

By calculating directly and combining with (5), we can obtain

L1
[
v+

]
(x) =D

(
1 − ϱ2

x1
− ϱ2

x2
− ϱ2

x3

)
ψ′′1 −D

(
ϱx1x1 + ϱx2x2

)
ψ′1

−Dεσ(x′)ω′′
(
ϖ2

x1
+ ϖ2

x2
+ ϖ2

x3

) (
Q+1 −Q−1

)
−Dεσ(x′)ω′

(
ϖx1x1 + ϖx2x2

) (
Q+1 −Q−1

)
−Dε

(
σx1x1 + σx2x2

) [
ωQ+1 + (1 − ω) Q−1

]
− 2Dεω′

(
Q+1 −Q−1

) (
σx1ϖx1 + σx2ϖx2

)
+

 c√
1 +

∣∣∣∇φ (z′)
∣∣∣2 − c∗

ψ′1 + cεσ(x′)ω′ϖx3

(
Q+1 −Q−1

)
−

[
f1 (v+(x)) − f1

(
Ψ(ϱ)

)]
and

L2
[
v+

]
(x) =

 c√
1 +

∣∣∣∇φ (z′)
∣∣∣2 − c∗

ψ′2 + cεσ(x′)ω′ϖx3

(
Q+2 −Q−2

)
−

[
f2 (v+(x)) − f2

(
Ψ(ϱ)

)]
.

Let

A1 = sup
z′∈R2

∑
i=1,2

∣∣∣Szizi (z
′)
∣∣∣

S(z′)
and A2 = sup

z′∈R2

∑
i=1,2

∣∣∣Szi (z
′)
∣∣∣

S(z′)
.

By Lemma 1.1, Lemma 2.4 and Lemma 2.5, there are two positive constants A3 and A4 such that∣∣∣∣∣∣∣D
1 −

3∑
i=1

ϱ2
xi

ψ′′1
∣∣∣∣∣∣∣ ≤ A3ασ(x′) and

∣∣∣∣∣∣∣D ∑
i=1,2

ϱxixiψ
′

1

∣∣∣∣∣∣∣ ≤ A4ασ(x′).

Now we divide our proof into three steps.
Step 1: ϱ < −X′, where X′ > 0 is a large enough constant.
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If ϱ < 0, there is c
c∗
ϖ < ϱ < ϖ < 0. Let’s suppose ϖ ≤ −X1 < −1, where X1 > 0 is a constant. Then the

definition of ω(x) from (26) yields ω ≡ 0. Thus we obtain

−Dε

∑
i=1,2

σxixi (x
′)

 [ωQ+1 + (1 − ω) Q−1
]

= −Dε

∑
i=1,2 σxixi (x

′)
σ(x′)

σ(x′)Q−1 = −Dεα2

∑
i=1,2 Szizi (z

′)
S(z′)

σ(x′)Q−1 ≥ −Dεα2σ(x′)Q−1 A1.

For the nonlinear term f j, we have

f j (v+(x)) − f j
(
Ψ(ϱ)

)
=

∑
i=1,2

f ji

(
θ̃ jv+(x) +

(
1 − θ̃ j

)
Ψ(ϱ)

)
εσ(x′)Q−i

=
∑
i=1,2

f ji

(
Ψ(ϱ) + εθ̃ jσ(x′)Q−

)
εσ(x′)Q−i ,

where 0 < θ̃ j < 1, j = 1, 2. From Lemma 1.1, it follows that

Ψ(ς)→ 0 and
∑
i=1,2

f ji (Ψ(ς)) Q−i → H−j , j = 1, 2, as ς→∞.

And hence, there is a constant X2 > 0 large enough such that for any ε ∈
(
0, δ2Q̌

Q̂

)
,

−δ2P− <Ψ(ϱ) + εθ̃σ(x′)Q− < δ2P−, ϱ < −X2, θ̃ ∈ (0, 1).

Besides, by (14), it follows that∑
i=1,2

f ji

(
Ψ(ϱ) + εθ̃ jσQ−

)
εσ(x′)Q−i <

1
2
εσ(x′)H−j , ϱ < −X2, θ̃ j ∈ (0, 1), j = 1, 2.

Set X′ = max
{

c
c∗

X1,X2

}
and recall c

c∗
ϖ < ϱ < ϖ < 0 if ϱ < 0. Thus, for ϱ < −X′, if

0 < α < min

 −εȞ

2
(
A3 + A4 +DA1Q̂

) , 1 ,
then one has

L1
[
v+

]
(x) ≥ −A3ασ(x′) − A4ασ(x′) −Dεα2σ(x′)Q−1 A1 −

1
2
εσ(x′)H−1

>
[
−α

(
A3 + A4 +DεαQ−1 A1

)
−

1
2
εH−1

]
σ(x′) > 0,

and

L2
[
v+

]
(x) ≥ −

1
2
εσ(x′)H−2 > 0.

Step 2: ϱ > X′′, where X′′ > 0 is a large enough constant.
If ϱ > 0, there is c

c∗
ϖ > ϱ > ϖ > 0. Without loss of generality, we assume ϖ ≥ X3 > 1, where X3 is a

constant. Then the definition of ω(x) from (26) yields ω ≡ 1. Thus one has

−Dε

∑
i=1,2

σxixi (x
′)

 [ωQ+1 + (1 − ω) Q−1
]

= −Dε

∑
i=1,2 σxixi (x

′)
σ(x′)

σ(x′)Q+1 = −Dεα2

∑
i=1,2 Szizi (z

′)
S(z′)

σ(x′)Q+1 ≥ −Dεα2σ(x′)Q+1 A1.
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For the nonlinear term f j, we have

f j (v+(x)) − f j
(
Ψ(ϱ)

)
=

∑
i=1,2

f ji

(
θ̃ jv+(x) +

(
1 − θ̃ j

)
Ψ(ϱ)

)
εσ(x′)Q+i

=
∑
i=1,2

f ji

(
Ψ(ϱ) + εθ̃ jσ(x′)Q+

)
εσ(x′)Q+i ,

where 0 < θ̃ j < 1, j = 1, 2. From Lemma 1.1, it follows that

Ψ(ς)→ G and
∑
i=1,2

f ji (Ψ(ς)) Q+i → H+j , j = 1, 2, as ς→ +∞.

Therefore, there is a constant X4 > 0 large enough such that for any ε ∈
(
0, δ2Q̌

Q̂

)
,

G − δ2P− <Ψ(ϱ) + εθ̃σ(x′)Q+ < G + δ2P−, ϱ > X4, θ̃ ∈ (0, 1).

And hence, by (15), we can get∑
i=1,2

f ji

(
Ψ(ϱ) + εθ̃ jσQ+

)
εσ(x′)Q+i <

1
2
εσ(x′)H+j , ϱ > X4, θ̃ j ∈ (0, 1), j = 1, 2.

Take X′′ = max
{

c
c∗

X3,X4

}
and review c

c∗
ϖ > ϱ > ϖ > 0 if ϱ > 0. Thus, for ϱ > X′′, if

0 < α < min

 −εĤ

2
(
A3 + A4 +DA1Q̂

) , 1 ,
then we have

L1
[
v+

]
(x) ≥ −A3ασ(x′) − A4ασ(x′) −Dεα2σ(x′)Q+1 A1 −

1
2
εσ(x′)H+1

>
[
−α

(
A3 + A4 +DεαQ+1 A1

)
−

1
2
εH+1

]
σ(x′) > 0,

and

L2
[
v+

]
(x) ≥ −

1
2
εσ(x′)H+2 > 0.

Step 3: −X′ ≤ ϱ ≤ X′′.
Define

A5 = sup
−X′≤x≤X′′

ω′′(x)
(
1 +m2

∗

)
, N∗ = max

j∈{1,2}

(
Q+j −Q−j

)
, p∗ = min

−X′≤x≤X′′, j∈{1,2}
ψ′j(x)

and for any i, j ∈ {1, 2},

M ji = sup
Φ∈[G−,G+]

∣∣∣ f ji (Φ)
∣∣∣ , M j =

(
M j1,M j2

)
and C j =M jQ+,
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where f ji is defined by (12). By direct calculations, we can get

−Dεσ(x′)
[
ω′′

(
ϖ2

x1
+ ϖ2

x2
+ ϖ2

x3

)
+ ω′

(
ϖx1x1 + ϖx2x2

)] (
Q+1 −Q−1

)
= −Dεσ(x′)

[
ω′′

c2
∗

c2

(
1 + φ2

z1
+ φ2

z2

) (
Q+1 −Q−1

)
+ ω′α

c∗
c

(
φz1z1 + φz2z2

) (
Q+1 −Q−1

)]
≥ −Dεσ(x′)

c∗
c

(
Q+1 −Q−1

) [
ω′′

c∗
c

(
1 +m2

∗

)
+ 2ω′αm∗M

]
≥ −Dεσ(x′)N∗ (A5 + 2αm∗M) ,

−Dε
(
σx1x1 + σx2x2

) [
ωQ+1 + (1 − ω) Q−1

]
= −Dεα2

∑
i=1,2 Szizi (z

′)
S(z′)

σ(x′)
[
ωQ+1 + (1 − ω) Q−1

]
≥ −Dεα2σ(x′)A1Q̂,

− 2Dεω′
(
Q+1 −Q−1

) (
σx1ϖx1 + σx2ϖx2

)
= −2Dαεω′

(
Q+1 −Q−1

) (c∗
c

Sz1φz1 +
c∗
c

Sz2φz2

)
≥ −2Dαεω′

(
Q+1 −Q−1

) c∗
c

A2σ(x)m∗ ≥ −2DαεN∗m∗A2σ(x′), c√
1 +

∣∣∣∇φ (z′)
∣∣∣2 − c∗

ψ′j ≥ σ(x′)p∗

and

f j (v+(x)) − f j
(
Ψ(ϱ)

)
≤ C jεσ(x′), j = 1, 2.

Thus if α < min
{

p∗
2(A3+A4+DQ̂A1) , 1

}
and ε < min

{ p∗
2[DN∗(A5+2m∗M)+2DN∗m∗A2+C1] , 1

}
, one has

L1
[
v+

]
(x) ≥ −A3ασ(x′) − A4ασ(x′) −Dεσ(x′)N∗ (A5 + 2αm∗M) −Dεα2σ(x′)Q̂A1

− 2DαεN∗m∗A2σ(x′) + σ(x)p∗ − C1εσ(x′)

≥ σ
[
−

(
A3 + A4 +DQ̂A1

)
α + p∗ − (DN∗ (A5 + 2m∗M) + 2DN∗m∗A2 + C1) ε

]
> 0

and if ε < p∗
C2

, we can also get

L2
[
v+

]
(x) ≥ p∗σ(x) − C2εσ(x) > 0.

Combining with the above three steps, v+(x) is proved to be the supersolution of Eq.(8) if

0 < ε < min
{
1, δ2Q̌

Q̂
,

p∗
C2
,

p∗
2[DN∗(A5+2m∗M)+2DN∗m∗A2+C1]

}
and

0 < α < min
{
1, −εȞ

2(A3+A4+DA1Q̂) ,
−εĤ

2(A3+A4+DA1Q̂) ,
p∗

2(A3+A4+DQ̂A1)

}
.

Secondly, we can prove (27) and (28) by similar discussions of [31, ineqality (2.6)] and [31, ineqality
(2.7)] respectively, hence we omit the details.

Finally, we can get v+x3
> 0 from the definition of v+(x; ε, α), which proves (29). In conclusion, let

ε+0 = min
{
1, δ2Q̌

Q̂
,

p∗
C2
,

p∗
2[DN∗(A5+2m∗M)+2DN∗m∗A2+C1]

}
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and

α+0 (ε) = min
{
1, −εȞ

2(A3+A4+DA1Q̂) ,
−εĤ

2(A3+A4+DA1Q̂) ,
p∗

2(A3+A4+DQ̂A1) ,
εc3
∗ e2β2

0β1Q̌
4cC0

}
.

We completed the proof of this lemma.

3.2. Existence

In this subsection, we show the existence of pyramidal traveling fronts to Eq.(8). Before this, we give
two theorems which play important roles in the proof of Theorem 1.2.

Theorem 3.2. If the initial value Φ0(x, y, z) ∈ BUC
(
R3, [G−,G+]

)
is differentiable with respect to the variable

z , even on x, y ∈ R and non-decreasing in x, y ∈ [0,+∞), and 0 ≤ Φ0,z(x, y, z) ∈ BUC
(
R3

)
, then there is

a unique solution Φ(x, y, z, t;Φ0) ∈ BUC
(
R3
× [0,+∞) , [G−,G+]

)
to Eq.(4) such that ϕ1(x, y, z, t) is of C2 in

(x, y, z) ∈ R3 and is of C1 in t ∈ (0,+∞), ϕ2(x, y, z, t) is of C1 in both z ∈ R and t ∈ (0,+∞), Φz(x, y, z, t) ≥ 0 in
(x, y, z, t) ∈ R3

× [0,+∞) andΦ(x, y, z, t;Φ0) is even on x, y ∈ R and non-decreasing in x, y ∈ [0,+∞).

Proof. Define

ν1 > sup
Φ∈[G−,G+]

∣∣∣µ1 − ∂ϕ1 f̄1(Φ)
∣∣∣ , ν2 > max

 sup
Φ∈[G−,G+]

∣∣∣µ2 − ∂ϕ2 f̄2(Φ)
∣∣∣ , k+(b0 − G−2 ), 1


and

11 = −µ1ϕ1 + ν1ϕ1 + f̄1(Φ), 12 = −µ2ϕ2 + ν2ϕ2 + f̄2(Φ).

Then for any (x, y, z, t) ∈ R3
× [0,+∞), Eq.(4) is equivalent to the integral formula

ϕ1(x, y, z, t) =e−ν1t
∫
R3

1(
2
√
πDt

)3 e−
(x−y1)2

+(y−y2)2
+(z−y3)2

4Dt ϕ01
(
y1, y2, y3

)
dy1dy2dy3

+

∫ t

0
e−ν1(t−s)

∫
R3

1(
2
√
πD(t − s)

)3 e−
(x−y1)2

+(y−y2)2
+(z−y3)2

4D(t−s)

× 11
(
Φ

(
y1, y2, y3, s

))
dy1dy2dy3ds,

ϕ2(x, y, z, t) =e−ν2tϕ02(x, y, z) +
∫ t

0
e−ν2(t−s)12(Φ(x, y, z, s))ds.

(31)

For any fixed T ∈
(
0, ln 2

ν2

]
, we construct a set of vector-valued functions

ST =


Φ(x, y, z, t)

Φ(x, y, z, t) ∈ BUC
(
R3
× [0,T], [G−,G+]

)
;

0 ≤Φz(x, y, z, t) ∈ BUC
(
R3
× [0,T]

)
;

Φ is non-decreasing in x ∈ [0,+∞) and even on x ∈ R;
Φ is non-decreasing in y ∈ [0,+∞) and even on y ∈ R;

sup(x,y,z)∈R3,t∈[0,T]

∣∣∣ϕ j,z
(
x, y, z, t

)∣∣∣ ≤ Ĉ j, j = 1, 2.


,

where

Ĉ1 = sup
(x,y,z)∈R3

∣∣∣ϕ01,z((x, y, z))
∣∣∣ + √

ln 2
Dπ
∥11∥L∞([G−,G+]) and Ĉ2 = 2 sup

(x,y,z)∈R3

∣∣∣ϕ02,z((x, y, z))
∣∣∣ + 2Ĉ1.
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Define the norm on ST by

∥Φ∥τ = sup
(x,y,z)∈R3,t∈[0,T]

∣∣∣ϕ1(x, y, z, t)
∣∣∣ e−τt + sup

(x,y,z)∈R3,t∈[0,T]

∣∣∣∣∣ ∂∂z
ϕ1(x, y, z, t)

∣∣∣∣∣ e−τt

+ sup
(x,y,z)∈R3,t∈[0,T]

∣∣∣ϕ2(x, y, z, t)
∣∣∣ e−τt + sup

(x,y,z)∈R3,t∈[0,T]

∣∣∣∣∣ ∂∂z
ϕ2(x, y, z, t)

∣∣∣∣∣ e−τt,

where τ is a positive constant. We can know (ST, ∥ · ∥τ) is a Banach space. For anyΦ ∈ ST and (x, y, z, t) ∈
R3
× [0,T], defineAT = (A1T,A2T) by

A1T[Φ](x, y, z, t) = e−ν1t
∫
R3

1

(2
√
πDt)3 e−

y2
1+y2

2+y2
3

4Dt ϕ01
(
x − y1, y − y2, z − y3

)
dy1dy2dy3

+
∫ t

0 e−ν1(t−s)
∫
R3

1(
2
√
πD(t−s)

)3 e−
y2
1+y2

2+y2
3

4D(t−s) 11
(
Φ

(
x − y1, y − y2, z − y3, s

))
dy1dy2dy3ds,

A2T[Φ](x, y, z, t) = e−ν2(t−s)ϕ02(x, y, z) +
∫ t

0 e−ν2(t−s)12(Φ(x, y, z, s))ds.

Applying the Banach’s fixed point theory, the rest of the proof process are similar to Theorem 3.2 of [10],
we omit the details.

Similarly to the proof of Theorem 3.3 in [10], and combining with Theorem 5.1.4 in [14], we can obtain
the following theorem.

Theorem 3.3. There is a constant L > 0 such that Eq.(4) exists a unique solution Φ
(
x, y, z, t; v−

)
with the initial

value v− satisfying∣∣∣ϕ j,z
(
x, y, z, t

)∣∣∣ ≤ L,
(
x, y, z, t

)
∈ R3

× [0,+∞), j = 1, 2,∣∣∣ϕ j
(
x̄, y, z, t

)
− ϕ j

(
x̃, y, z, t

)∣∣∣ ≤ L |x̄ − x̃| , x̄, x̃, y, z ∈ R, t ≥ 0, j = 1, 2,∣∣∣ϕ j
(
x, ȳ, z, t

)
− ϕ j

(
x, ỹ, z, t

)∣∣∣ ≤ L
∣∣∣ȳ − ỹ

∣∣∣ , ȳ, ỹ, x, z ∈ R, t ≥ 0, j = 1, 2,∣∣∣ϕ j,z
(
x̄, y, z, t

)
− ϕ j,z

(
x̃, y, z, t

)∣∣∣ ≤ L |x̄ − x̃| , x̄, x̃, y, z ∈ R, t ≥ 0, j = 1, 2,∣∣∣ϕ j,z
(
x, ȳ, z, t

)
− ϕ j,z

(
x, ỹ, z, t

)∣∣∣ ≤ L
∣∣∣ȳ − ỹ

∣∣∣ , ȳ, ỹ, x, z ∈ R, t ≥ 0, j = 1, 2,∣∣∣ϕ1,zz
(
x, y, z, t

)∣∣∣ ≤ L,
(
x, y, z, t

)
∈ R3

× [0,+∞),∣∣∣ϕ2,z
(
x, y, z̄, t

)
− ϕ2,z

(
x, y, z̃, t

)∣∣∣ ≤ L |z̄ − z̃| , z̄, z̃, x, y ∈ R, t ≥ 0,∣∣∣ϕ2,t
(
x, y, z, t

)∣∣∣ ≤ L,
(
x, y, z, t

)
∈ R3

× [0,+∞).

For any θ ∈ (0, 1) and ε > 0 small enough, there is a positive constant J = J(θ, ε) such that

∥ϕ1∥C2+θ,1(R3×[ε,+∞)) ≤ J.

Now we prove Theorem 1.2. That is, we show the existence of pyramidal traveling front to Eq.(8).

Proof. [Proof of Theorem 1.2] Since v−(x, y, z+ct) is a subsolution of Eq.(4), the comparison principle implies
that v−(x, y, z + ct) ≤ Φ(x, y, z, t; v−). Let t = ε, we have v−(x, y, z + cε) ≤ Φ(x, y, z, ε; v−). From Lemma 2.3,
we haveΦ(x, y, z + cε, t; v−) ≤Φ(x, y, z, t + ε; v−). Recall that v(x, y, z + ct, t; v−) =Φ(x, y, z, t; v−) in (6), thus
v(x, y, z+ c(t+ε), t; v−) ≤ v(x, y, z+ c(t+ε), t+ε; v−). Let (x1, x2, x3) = (x, y, z+ c(t+ε)), and then we can obtain
v(x1, x2, x3, t; v−) ≤ v(x1, x2, x3, t+ ε; v−) for any (x1, x2, x3, t) ∈ R3

× (0,+∞). Therefore, the solution v (x, t; v−)
of system (7) with the initial value v−(x) is non-decreasing in t ∈ [0,+∞) with x = (x1, x2, x3). And because
0 ≤ v(x, t; v−) ≤ G for any (x, t) ∈ R3

× [0,+∞) by v−(x) ∈ [0,G], the limit function

W (x) = lim
t→+∞

v(x, t; v−) (32)
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is well-defined and independent of α and ε. By the properties ofΦ(x, y, z, t; v−), the definition of (32) and
the virtue of Φ(x, y, x3 − ct, t; v−) = v(x1, x2, x3, t; v−), we know that W (x, t) is global Lipschitz continuous
with a positive constant L that is obtained in Theorem 3.3, and is differentiable with respect to x3. Besides,
we have

lim
t→∞

∥∥∥v1
(
x, t; v−

)
−W1(x)

∥∥∥
C2

loc (R3) = 0,

lim
t→∞

∥∥∥v2
(
x, t; v−

)
−W2(x)

∥∥∥
Cloc (R3) = 0,

lim
t→∞

∥∥∥v2,x3

(
x, t; v−

)
−W2,x3 (x)

∥∥∥
Cloc (R3) = 0.

From [18], we know W(x) satisfies Eq.(8) and there holds v−(x) ≤ W(x) ≤ v+(x; ε, α) by the comparison
principle. Since the arbitrariness of α and ε, we can get (11) by (27). Since v−(x) is even on x1, x2 ∈ R, the
definition of W(x) implies that W(x1, x2, x3) =W(−x1, x2, x3) and W(x1, x2, x3) =W(x1,−x2, x3) for any x ∈ R3.

By Theorem 3.2 and the monotonicity of v−(x) on x3, it holds Wx3 (x) ≥ 0 for any x ∈ R3. Using the strong
maximum priciple, and W1,x3 (x) satisfies

−D∆W1,x3 (x) + c∂x3 W1,x3 (x) − f11 (W) W1,x3 (x) ≥ 0, ∀x ∈ R3,

one has W1,x3 (x) > 0 for any x ∈ R3. Using proof by contradiction, we can obtain W2,x3 (x) > 0 for any
x ∈ R3. In fact, if there is a point (x∗1, x

∗

2, x
∗

3) ∈ R3 such that W2,x3 (x∗1, x
∗

2, x
∗

3) = 0, then W2,x3x3 (x∗1, x
∗

2, x
∗

3) = 0 by
W2,x3 (x) ≥ 0 for any x ∈ R3. However, W2,x3 (x) satisfies

cW2,x3x3 (x) = − (k− + k+W1) W2,x3 + k+W1,x3 (b0 −W2) , ∀x ∈ R3,

which implies

W2,x3x3 (x∗1, x
∗

2, x
∗

3) =
k+
c

W1,x3 (x∗1, x
∗

2, x
∗

3)
(
b0 −W2(x∗1, x

∗

2, x
∗

3)
)
> 0.

This is in contradiction with W2,x3x3 (x∗1, x
∗

2, x
∗

3) = 0.
According to Theorem 3.2 and Theorem 3.3, W(x) is differentiable with respect to x1, Wx1 (x) ≥ 0 for any

x ∈ (0,+∞) ×R2 and Wx1 (0, x2, x3) = 0 for any (x2, x3) ∈ R2. And since W1,x1 (x) ≥ 0 satisfies

−D∆W1,x1 (x) + c∂x3 W1,x1 (x) − f11 (W) W1,x1 (x) ≥ 0, ∀x ∈ (0,+∞) ×R2,

using the strong maximum priciple, we have W1,x1 (x) > 0 for any x ∈ (0,+∞) × R2. Using proof by
contradiction again, we can obtain W2,x1 (x) > 0 for any x ∈ (0,+∞) × R2. In fact, since W2,x1 (x) ≥ 0 for any
x ∈ (0,+∞) × R2, if there exists a point (x∗1, x

∗

2, x
∗

3) ∈ (0,+∞) × R2 such that W2,x1 (x∗1, x
∗

2, x
∗

3) = 0, then it is
obvious that W2,x1x3 (x∗1, x

∗

2, x
∗

3) = 0. Moreover, W2,x3 (x) satisfies

cW2,x1x3 (x) = − (k− + k+W1) W2,x1 + k+W1,x1 (b0 −W2) , ∀x ∈ (0,+∞) ×R2,

thus

W2,x1x3 (x∗1, x
∗

2, x
∗

3) =
k+
c

W1,x1 (x∗1, x
∗

2, x
∗

3)
(
b0 −W2(x∗1, x

∗

2, x
∗

3)
)
> 0,

which is in contradiction with W2,x1 (x∗1, x
∗

2, x
∗

3) = 0.
Similar to prove that Wx1 (x) > 0 for any x ∈ (0,+∞) ×R2 and Wx1 (0, x2, x3) = 0 for any (x2, x3) ∈ R2, we

can also prove that Wx2 (x) > 0 for any x ∈ R × (0,+∞) × R and Wx2 (x1, 0, x3) = 0 for any (x1, x3) ∈ R2. We
completed the proof.
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