Cubical simplicial algebras and related crossed structures

Özgün Gürmen Alansal ${ }^{\text {a }}$
${ }^{a}$ Kïtahya Dumlupinar University, Science and Art Faculty, Department of Mathematics, Turkey

Abstract

We introduce the concept of Peiffer pairings in the Moore n-complex of an n-dimensional simplicial commutative algebras and, using these pairings operators demonsrate the connection between n-dimensional simplicial commutative algebras and crossed n-cubes. In the content of dimension 3 , we provide explicit calculations using Peiffer pairings to establish the close relationship between cubical simplicial algebras, crossed cubes and 3-crossed modules on commutative algebras.

1. Introduction

Crossed modules of groups were introduced by Whitehead in [16]. The notion of crossed square introduced by Guin-Walery and Loday in [9], can be thought as a 2-dimensional version of crossed modules. As crossed modules model 2-types of homotopy connected spaces, crossed squares model 3-types. The general form of crossed squares are crossed n-cubes introduced by Ellis in [8]. These structure is an algebraic model for homotopy $(n+1)$-types. If $\mathbf{G}=\left\{G_{n}\right\}$ is a simplicial group with Moore complex $(N \mathbf{G}, \partial)$, then a 1-truncation of $\mathbf{G}, \operatorname{tr}_{1}(\mathbf{G})$ gives a crossed module as $\partial_{1}: N G_{1} \rightarrow N G_{0}$. Then, a 2-truncation of \mathbf{G}, $\operatorname{tr}_{2}(\mathbf{G})$ gives a 2 -crossed module $N G_{2} \xrightarrow{\partial_{2}} N G_{1} \xrightarrow{\partial_{1}} N G_{0}$ introduced by Conduchè in [6]. The connection between n-truncated simplicial groups and crossed n-cubes was proven by Porter in [14]. Using the images of $F_{\alpha, \beta}$ functions introduced by Mutlu and Porter [12], they have proven in theorem 2.2 of [13] that $\overline{\partial_{1}}: N G_{1} /\left(N G_{2} \cap D_{2}\right) \rightarrow N G_{0}$ is a crossed module, where $\partial_{2}\left(N G_{2} \cap D_{2}\right)=\left[\operatorname{ker} d_{1}, \operatorname{ker} d_{0}\right]$ is a commutator subgroup generated by the elements $\partial_{2}\left(F_{(0),(1)}(x, y)\right)=s_{0} d_{1}(x) y s_{0} d_{1}\left(x^{-1}\right)\left(x y x^{-1}\right)^{-1}$ for $x, y \in N G_{1}=\operatorname{ker} d_{0}$ in $N G_{1}$. The original motivation of this result comes from Brown-Loday lemma given for the equivalence between crossed modules and cat ${ }^{1}$-groups (cf. [5]). The connection between 2 -crossed modules and simplicial groups with Moore complex of length 2 has been proven by Mutlu and Porter [13] by using the images of $F_{\alpha, \beta}$ functions in the Moore complex. In [10], the general form of $F_{\alpha, \beta}$ functions for the n-complex of a n-dimensional group has been reformulated and using the images of these functions, it was proven that $t r_{1}(\mathbf{G})$ gives a crossed n-cube over groups for a multisimplicial group G. Then if \mathbf{G} is a bisimplicial group, $\operatorname{tr}_{1}(\mathbf{G})$ gives a crossed square, and if \mathbf{G} is a cubical simplicial group $\operatorname{tr}_{1}(\mathbf{G})$ gives a crossed cube of groups.

In this paper, we will give the commutative algebra version of this result. The commutative algebra version of crossed modules was studied by Porter in [15] and higher dimensional cases has been investigated by Ellis [8]. Arvasi and Porter in [2], by introducing the functions $C_{\alpha, \beta}$ for a simplicial commutative algebra

[^0]E, proved that $\overline{\partial_{1}}: \overline{N E_{1}} \rightarrow N E_{0}$ is a crossed module of commutative algebras, where $\overline{N E_{1}}=N E_{1} / \partial_{2}\left(N E_{2} \cap D_{2}\right)$ and where $\partial_{2}\left(N E_{2} \cap D_{2}\right)$ is an ideal of $N E_{1}$ generated by elements of the form $\partial_{2}\left(C_{(0),(1)}(x, y)\right)=x y-x s_{0} d_{1} y$ for $x, y \in N E_{1}$. Similar applications for higher dimensional crossed modules such as crossed squares, 2-crossed modules has been given by these authors in terms of $C_{\alpha, \beta}$ functions in the Moore complex of a simplicial algebra.

In this work, following [10], we will define $C_{\alpha, \beta}$ functions for n-dimensional simplicial algebras or multisimplicial algebras and using these functions, we prove that $t r_{1}(\mathbf{E})$ gives a crossed n-cube of commutative algebras for multisimplicial algebra E. In particular as an explicit application, to see the role of these functions within these structures, we give detailed calculations in dimension 3 and thus we obtain the close relationship among 1-truncated cubical simplicial algebras, crossed cubes, crossed squares and crossed modules. The results and the general methods for n - dimensional simplicial commutative algebras given in section 2 of this work are, of course, inspired by those given for the corresponding group case in [10]. Although, some of the calculations in this work are similar to the case of commutative algebras, to repeat some arguments can be regarded as advisable, for the readers of this work.

2. Multisimplicial algebras

All algebras discussed in this work will be commutative algebras over a fixed commutative ring k. We will denote the category of commutative algebras by $\mathbf{A l g}_{k}$. A simplicial algebra \mathbf{E} is a collection of algebras $\left\{E_{n}\right\}$ together with the homomorphisms $d_{i}^{n}: E_{n} \rightarrow E_{n-1},(0 \leq i \leq n)$ and $s_{j}^{n}: E_{n} \rightarrow E_{n+1},(0 \leq j \leq n)$ called faces and degeneracies respectively satisfying the usual simplicial identities given in [2]. The Moore complex $(N \mathbf{E}, \partial)$ of a simplicial commutative algebra \mathbf{E} is a chain complex defined by $N E_{n}=\bigcap_{i=0}^{n-1} \operatorname{ker} d_{i}^{n}$ on each level together with the boundaries $\partial_{n}: N E_{n} \rightarrow N E_{n-1}$ induced from d_{i}^{n} by restriction. The Moore complex is of length k if $N E_{n}=0$ for $n \geq k+1$. A crossed module of algebras is a homomorphism of algebras $\bar{\partial}: S \rightarrow R$ together with an algebra action of R on S given by $s \cdot r$ and $r \cdot s$ on the left and right sides, satisfying the conditions CM1. $\partial(s \cdot r)=\partial(s) r, \partial(r \cdot s)=r \partial(s)$ and CM2. $\partial(s) \cdot s^{\prime}=s s^{\prime}=s \cdot \partial\left(s^{\prime}\right)$ for all $r \in R$ and $s, s^{\prime} \in S$. Where the first condition is called the pre crossed module axiom and the second is Peiffer identity. Using the action of R on S, we can say that S is an R-module and from condition CM1, ∂ is an R-module morphism.

We know from [12] that for any simplicial algebra \mathbf{E} and for $x, y \in N E_{1}, C_{(0),(1)}(x, y)=s_{1} x\left(s_{1} y-s_{0} y\right) \in N E_{2}$ and thus, we have $\partial_{2}\left(C_{(0),(1)}(x, y)\right)=x y-x s_{0} d_{1} y \in \partial_{2}\left(N E_{2}\right)$. If I_{2} is an ideal generated by elements of the form $C_{(0),(1)}(x, y)$ of $N E_{2}$, in [3] it was proven the equality $\partial_{2}\left(N E_{2}\right)=\partial_{2}\left(I_{2}\right)$ and thus $\overline{\partial_{1}}: N E_{1} / \partial_{2}\left(N E_{2}\right) \rightarrow N E_{0}$ given by $\overline{\partial_{1}}(\bar{a})=\overline{\partial_{1}}\left(a+\partial_{2}\left(N E_{2}\right)\right)=\partial_{1}(a)$ is a crossed module of algebras together with action of $x \in N E_{0}$ on $a \in N E_{1}$ given by $x \cdot a=s_{0}(x) a$ and $a \cdot x=a s_{0}(x)$. If the Moore complex is length 1 , then we have $N E_{2}=\{0\}$ and $\partial_{2}\left(N E_{2}\right)=\{0\}$ and thus $\partial_{1}: N E_{1} \rightarrow N E_{0}$ is a crossed module. Thus we can give the following result from Arvasi and Porter [3]:

Proposition 2.1. ([3]) Let E be a simplicial (commutative) algebra. Then $\overline{\partial_{2}}: N E_{1} / \partial_{2}\left(N E_{2} \cap D_{2}\right) \rightarrow N E_{0}$ is a crossed module.

To give the general form of this result, firstly, we give some definition about multisimplicial algebras and Peiffer pairings on them.

A multisimplicial algebra or n-simplicial algebra $\mathbf{E}_{\boldsymbol{0}_{1} \bullet_{2} \cdots \bullet_{n}}$ is given by the functor from the product category

$$
\Delta^{o p} \times \Delta^{o p} \times \cdots \times \Delta^{o p}=\left(\Delta^{o p}\right)^{n}
$$

to the category of algebras $\mathbf{A l g}_{k}$, with structural maps denoted by respectively

$$
d_{i_{j}}^{\tau_{j}}: E_{k_{1}, \ldots, k_{j}, \ldots, k_{n}} \longrightarrow E_{k_{1}, \ldots, k_{j}-1, \ldots, k_{n}}, \quad\left(0 \leqslant i_{j} \leqslant k_{j}, 1 \leqslant j \leqslant n,\right)
$$

and

$$
s_{i_{j}}^{\tau_{j}}: E_{k_{1}, \ldots, k_{j}, \ldots, k_{n}} \longrightarrow E_{k_{1}, \ldots, k_{j}+1, \ldots, k_{n}}, \quad\left(0 \leqslant i_{j}<k_{j}, 1 \leqslant j \leqslant n,\right)
$$

where each τ_{j} indicates the directions of n-simplicial commutative algebra. The Moore multi complex or n-complex (cf. [7]) of an n-simplicial algebra can be given by

$$
N E_{k_{1}, k_{2}, \ldots, k_{n}}=\bigcap_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)=(0,0, \ldots, 0)}^{\left(k_{1}-1, k_{2}-1, \ldots, k_{n}-1\right)} \operatorname{Ker} d_{i_{1}}^{1} \cap \operatorname{Ker} d_{i_{2}}^{2} \cap \cdots \cap \operatorname{Ker} d_{i_{n}}^{n}
$$

with the boundary homomorphisms of algebras

$$
\partial_{i_{j}}^{\tau_{j}}: N E_{k_{1}, \ldots, k_{j}, \ldots, k_{n}} \longrightarrow N E_{k_{1}, \ldots, k_{j}-1, \ldots, k_{n}}
$$

induced by $d_{i_{j}}^{\tau_{j}}$. We denote the category of n-simplicial commutative algebras by $\operatorname{SimpAlg}^{n}$.

2.1. Peiffer Pairings in n-simplicial algebras

In this section, we define for multisimplicial algebras the functions $C_{\alpha, \beta}$ given for simplicial algebras in [2]. Recall the following statements about Peiffer pairings in the Moore complex of a simplicial commutative algebra, from $[2,3]$. Define the set $P(n)$ consisting of the pairs of elements in the form (α, β) from $S(n)$ with $\alpha \cap \beta=\emptyset$ and $\beta<\alpha$ where $\alpha=\left(i_{r}, \ldots, i_{1}\right), \beta=\left(j_{s}, \ldots, j_{1}\right) \in S(n)$. The k-linear morphisms are,

$$
\left\{C_{\alpha, \beta}: N E_{n-\# \alpha} \otimes N E_{n-\# \beta} \rightarrow N E_{n} \mid(\alpha, \beta) \in P(n), 0 \leq n\right\}
$$

given by composing:

$$
\begin{aligned}
C_{\alpha, \beta}\left(x_{\alpha} \otimes y_{\beta}\right) & =p \mu\left(s_{\alpha} \otimes s_{\beta}\right)\left(x_{\alpha} \otimes y_{\beta}\right) \\
& =p\left(s_{\alpha}\left(x_{\alpha}\right) s_{\beta}\left(x_{\beta}\right)\right) \\
& =\left(1-s_{n-1} d_{n-1}\right) \ldots\left(1-s_{0} d_{0}\right)\left(s_{\alpha}\left(x_{\alpha}\right) s_{\beta}\left(x_{\beta}\right)\right)
\end{aligned}
$$

where

$$
s_{\alpha}=s_{i_{r}} \ldots s_{i_{1}}: N E_{n-\# \alpha} \rightarrow E_{n}, s_{\beta}=s_{j_{s}} \ldots s_{j_{1}}: N E_{n-\# \beta} \rightarrow E_{n},
$$

$p: E_{n} \rightarrow N E_{n}$ is given as composite projections $p=p_{n-1} \ldots p_{0}$ with

$$
p_{j}=1-s_{j} d_{j} \text { for } j=0,1, \ldots, n-1
$$

and $\mu: E_{n} \otimes E_{n} \rightarrow E_{n}$ denotes multiplication.
Now, we will give this pairings for multisimplicial algebras. For $n, q \in \mathbb{N}$ with $q \leqslant n$ and for $\alpha \in S(n, q)$, the target of α is called $b(\alpha): q=b(\alpha)$. Recall that the set $S(n)$ is partially ordered by the following relation $\alpha \leqslant \beta$ if, for $i \in[n]$, one has $\alpha(i) \geqslant \beta(i)$ where $[b(\alpha)]$ and $[b(\beta)]$ are considered as subsets of \mathbb{N}.

Given $n \neq 0, n \in \mathbb{N}$ and $\mathbf{n}=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$, let $S(\mathbf{n})=S\left(k_{1}\right) \times S\left(k_{2}\right) \times \ldots \times S\left(k_{n}\right)$ with the product (partial) order.

Let $\alpha, \beta \in S(\mathbf{n})$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) ; \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ where $\alpha_{i} \in S\left(k_{i}\right)$ and $\beta_{j} \in S\left(k_{j}\right), 1 \leqslant i, j \leqslant n$.
The n-dimensional case of the functions $C_{\alpha, \beta}$ can be given as follows. The pairings that we will need

$$
\left\{C_{\alpha, \beta}: N E_{\mathbf{n}-\# \alpha} \otimes N E_{\mathbf{n}-\# \beta} \longrightarrow N E_{\mathbf{n}} ; \alpha, \beta \in S(\mathbf{n})\right\}
$$

are given as composites by the diagram

where $s_{\alpha}: s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{n}}$, for $1 \leqslant i \leqslant n$; $s_{\alpha_{i}}: s_{i_{r}} \cdots s_{i_{1}}$ for $\alpha_{i}=\left(i_{r}, \ldots, i_{1}\right) \in S\left(k_{i}\right)$ and similarly $s_{\beta_{i}}$, and p is defined by the composite projection

$$
p=\left(p_{k_{1}-1} \ldots p_{0}\right)\left(p_{k_{2}-1} \ldots p_{0}\right) \ldots\left(p_{k_{n}-1 \ldots p_{0}}\right)
$$

where $p_{j}(x)=x-s_{j} d_{j}(x)$ in each simplicial directions, for any j, and μ is given by the multiplication. Thus the functor $C_{\alpha, \beta}$ is given by $C_{\alpha, \beta}\left(x_{\alpha} \otimes y_{\beta}\right)=p \mu s_{\alpha} \otimes s_{\beta}\left(x_{\alpha} \otimes y_{\beta}\right)$ where $x_{\alpha}, y_{\beta} \in N E_{k_{1}}$.

2.2. Crossed n-cubes and n-simplicial algebras

Crossed n-cubes were defined by Ellis [8] for higher dimensional crossed modules of algebras. The following definition is equivalent to that given in [8]. In this section using the functions $C_{\alpha, \beta}$ for n-simplicial commutative algebras, we will construct a crossed n-cube structure from an n-dimensional simplicial commutative algebra.

Definition 2.2. Let $\langle n\rangle=\{1,2, \ldots, n\}$. A crossed n-cube, \mathbf{K}, is a family of commutative algebras, $\left\{K_{A}: A \subseteq\langle n\rangle\right\}$, together with homomorphisms, $\eta_{i}: K_{A} \rightarrow K_{A \backslash\{i,}$, for $i \in\langle n\rangle, A \subseteq\langle n\rangle$, and functions, $h: K_{A} \times K_{B} \rightarrow K_{A \cup B}$, for all $A, B \subseteq\langle n\rangle$, for $a, a^{\prime} \in K_{A}, b, b^{\prime} \in K_{B}, c \in K_{C}, k \in \mathbf{k}$, where \mathbf{k} is ring and $i, j \in\langle n\rangle$, the following axioms hold:

1. $\eta a=a$ if $i \notin A$
2. $\eta_{i} \eta_{j} a=\eta_{j} \eta_{i} a$
3. $\eta_{i} h(a, b)=h\left(\eta_{i} a, \eta_{i} b\right)$
4. $h(a, b)=h\left(\eta_{i} a, b\right)=h\left(a, \eta_{i} b\right)$ if $i \in A \cap B$
5. $h\left(a, a^{\prime}\right)=a a^{\prime}$
6. $h(a, b)=h(b, a)$
7. $h\left(a+a^{\prime}, b\right)=h(a, b)+h\left(a^{\prime}, b\right)$
8. $h\left(a, b+b^{\prime}\right)=h(a, b)+h\left(a, b^{\prime}\right)$
9. $h(h(a, b), c)=h(a, h(b, c))$
10. $k \cdot h(a, b)=h(k \cdot a, b)=h(a, k \cdot b)$

A morphism of crossed n-cubes

$$
\mathbf{f}:\left\{\mathbf{K}_{A}\right\} \longrightarrow\left\{\mathbf{K}_{A}^{\prime}\right\}
$$

is a family of homomorphisms, $\left\{f_{A}: K_{A} \rightarrow K_{A}^{\prime} \mid A \subseteq\langle n\rangle\right\}$, which commute with the maps, $\eta_{k_{i}}$, and the h maps.

Example 2.3. (a) For $n=1$, a crossed 1-cube is the same as a crossed module $K_{1} \rightarrow K_{\emptyset}$.
(b) For $n=2$, one has a crossed square defined by Ellis in [8]

where each η_{i} is a crossed module. The h-maps give actions and a pairing

$$
h: K_{1} \times K_{2} \rightarrow K_{\{1,2\}} .
$$

(c) For $n=3$, one has a crossed 3-cube

where each η_{i} is a crossed module for $i=1,2,3$. The h-maps give actions and the following pairings

$$
\begin{array}{lll}
h: K_{1} \times K_{2} \rightarrow K_{\{1,2\}} & , & h: K_{1} \times K_{3} \rightarrow K_{\{1,3\}} \\
h: K_{2} \times K_{3} \rightarrow K_{\{2,3\}} & , & h: K_{\{1,2\}} \times K_{3} \rightarrow K_{\{1,2,3\}} \\
h: K_{1} \times K_{\{2,3\}} \rightarrow K_{\{1,2,3\}} & , & h: K_{\{1,3\}} \times K_{2} \rightarrow K_{\{1,2,3\}} \\
h: K_{\{2,3\}} \times K_{\{1,2\}} \rightarrow K_{\{1,2,3\}} & , & h: K_{\{1,2\}} \times K_{\{1,3\}} \rightarrow K_{\{1,2,3\}} \\
h: K_{\{2,3\}} \times K_{\{1,3\}} \rightarrow K_{\{1,2,3\}} & . &
\end{array}
$$

We can give the main result of this section.
Theorem 2.4. Let $\mathbf{E}_{\bullet_{1} \bullet \ldots \cdot \bullet_{n}}$ be an n-simplicial algebra with Moore n-complex $\mathbf{N E}_{\bullet_{1}} \bullet_{2} \cdots \bullet_{n}$, such that $N E_{\bullet_{1} \bullet_{2} \ldots \bullet_{n}}=\{1\}$ for any $\bullet_{j} \geqslant 2$, $(1 \leqslant j \leqslant n)$. Then this Moore n-complex has a crossed n-cube structure over algebras.

Proof. We will use $C_{\alpha, \beta}$ functions in the proof. First, we define K_{A} for any subset $A \subset\langle n\rangle=\{1,2, \ldots, n\}$ by

$$
K_{A}=N E_{\underline{\sigma}}
$$

where $\underline{\sigma}=\left(\sigma_{i} \mid 1 \leq i \leq n\right)$ with $\sigma_{i}=1$ if $i \in A$ and 0 otherwise.
The map

$$
\eta_{i}: K_{A} \longrightarrow K_{A-\{i\}}
$$

is given by the face operator $d_{1}^{\tau_{i}}: N E_{\underline{\sigma}\left(: \sigma_{i}=1\right)} \longrightarrow N E_{\underline{\sigma}\left(: \sigma_{i}=0\right)}$, where τ_{i} indicates the simplicial directions. For the subsets $B \subseteq A \subseteq<n>$, the structure morphism $\eta: K_{A} \rightarrow K_{B}$ is given by the simplicial structure, namely the operator $\prod_{i \in A \backslash B} d_{1}^{i}$.

For $A=\{i, i+1, \ldots j\}$ and $B=\{l, l+1, \ldots m\}$ where $1 \leq i, j, l, m \leq n$, we have

$$
K_{A}=N E_{\underline{\sigma}}
$$

where $\underline{\sigma}=\left(\sigma_{k}: 1 \leq k \leq n\right)$ and for $i \leq k \leq j, \sigma_{k}=1$ and 0 otherwise and

$$
K_{B}=N E_{\underline{\sigma}}
$$

where $\underline{\sigma}=\left(\sigma_{k}: 1 \leq k \leq n\right)$ and for $l \leq k \leq m, \sigma_{k}=1$ and 0 otherwise.
Let

The h maps $h: K_{A} \times K_{B} \rightarrow K_{A \cup B}$ are obtained from the commutative diagram

by composing of the maps $p, \mu,\left(s_{\alpha}, s_{\beta}\right)$, for K_{A}, K_{B} as follows:

$$
\begin{aligned}
C_{\alpha, \beta}(x \otimes y) & =p \mu\left(s_{\alpha}, s_{\beta}\right)(x \otimes y) \\
& =p\left(s_{\alpha}(x) s_{\beta}(y)\right) \\
& =\left(1-s_{0}^{\tau_{i}} d_{0}^{\tau_{i}}\right)\left(1-s_{0}^{\tau_{i+1}} d_{0}^{\tau_{i+1}}\right) \cdots\left(1-s_{0}^{\tau_{m}} d_{0}^{\tau_{m}}\right)\left(s_{\alpha}(x) s_{\beta}(y)\right) \\
& =s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y)
\end{aligned}
$$

where τ_{i} and x_{l} indicate the simplicial directions and

$$
\begin{aligned}
\alpha & =(\underbrace{(\emptyset, \emptyset, \ldots, \emptyset}_{(i-1) \text {-times }}, \underbrace{(0),(0), \ldots,(0)}_{(j-i) \text {-times }}, \underbrace{\emptyset, \emptyset, \ldots, \emptyset}_{(n-j) \text {-times }}) \\
\beta & =\underbrace{(\emptyset, \emptyset, \ldots, \emptyset}_{(l-1) \text {-times }}, \underbrace{(0),(0), \ldots,(0)}_{(m-l) \text {-times }}, \underbrace{\emptyset, \emptyset, \ldots, \emptyset}_{(n-l) \text {-times }})
\end{aligned}
$$

For any subsets $A, B \subseteq<n>=\{1,2, \ldots, n\}$ and $K_{A}=N_{\underline{\sigma}}$ where $\underline{\sigma}=\left(\sigma_{i} \mid 1 \leq i \leq n\right)$ with $\sigma_{i}=1$ if $i \in A$ and $\sigma_{i}=0$ otherwise, and $K_{B}=N_{\underline{\underline{\sigma}}}$ where $\underline{\underline{\sigma}}=\left(\sigma_{j} \mid 1 \leq j \leq n\right) \underline{\text { with }} \sigma_{j}=\overline{1}$ if $j \in A$ and $\sigma_{j}=0$ otherwise.

The structure morphism $\overline{\bar{h}}: K_{A} \times \overline{\overline{K_{B}}} \rightarrow K_{A \cup B}$ is induced by the multiplication on $E_{A \cup B}$ via the homomorphisms of algebras

$$
s_{B \backslash(A \cap B)}:=\prod_{i \in B \backslash(A \cap B)} s_{0}^{i}: E_{A} \rightarrow E_{A \cup B}, s_{A \backslash(A \cap B)}:=\prod_{j \in A \backslash(A \cap B)} s_{0}^{j}: E_{B} \rightarrow E_{A \cup B}
$$

Thus for $x \in K_{A}, y \in K_{B}$ the h-map is induced by the multiplication

$$
s_{B \backslash(A \cap B)}(x) s_{A \backslash(A \cap B)}(y) \in E_{A \cup B} .
$$

Using the projection map $p: E_{\chi} \rightarrow N E_{\chi}$ given above, we obtain the h-map as follows: for $x \in K_{A}, y \in K_{B}$

$$
h(x, y)=p_{0}^{\tau_{k}} \ldots p_{0}^{\tau_{i}}\left(s_{0}^{\tau_{i}} \ldots s_{0}^{\tau_{k}}\right)(x) p_{0}^{\tau_{m}} \ldots p_{0}^{\tau_{j}}\left(s_{0}^{\tau_{j}} \ldots s_{0}^{\tau_{m}}\right)(y) \in K_{A \cup B}
$$

where for any $j, p_{0}^{\tau_{j}}(a)=a s_{0}^{\tau_{j}} d_{0}^{\tau_{j}}(a)^{-1}$ for all $1 \leq i \leq k \leq n ; i, \ldots, k \in A \backslash(A \cap B), 1 \leq j \leq m \leq n ; j, \ldots, m \in B \backslash(A \cap B)$ and where $\tau_{i}, \ldots \tau_{k}, \tau_{j} \ldots x_{n}$ indicate the simplicial directions.

The action of $a \in K_{A}$ and $b \in K_{B}$ for $A \subseteq B \subseteq<n>$, can be given by

$$
a \cdot b=\left(s_{0}^{\tau_{i}} \ldots s_{0}^{\tau_{k}}\right)(a) b
$$

where $i, \ldots, k \in A \backslash B$.
From the definition of $\eta: K_{A} \rightarrow K_{B}$ given by the operator $\prod_{i \in A \backslash B} d_{1}^{i}$, the axioms (1),(2) are immediate.
We show for this h-map the following equalities.
If $i \notin A, a \in K_{A}$ then $\eta_{i}=d_{1}^{\tau_{i}} s_{0}^{\tau_{i}}$. We obtain $\eta_{i}(a)=d_{1}^{\tau_{i}} s_{0}^{\tau_{i}}(a)=i d(a)=a$ from the simplicial identities.
By the commutativity of the face and degeneracy maps in the simplicial directions, we obtain $\eta_{i} \eta_{j}=\eta_{j} \eta_{i}$.

For $K_{A}=N E_{\sigma}$ where $\underline{\sigma}:=\left(\sigma_{i} \mid 1 \leq i \leq n\right), \sigma_{i}=1$ if $i \in A$ and 0 otherwise, we obtain for the simplicial directions τ_{i}, and for $\alpha=\left(\emptyset, \emptyset, \ldots,(0)_{i}, \emptyset, \ldots, \emptyset\right)$ and $\beta=(\emptyset, \emptyset, \ldots,(1), \emptyset, \ldots, \emptyset)$

$$
C_{\alpha, \beta}(x \otimes y)=s_{0}^{\tau_{i}}(x) s_{1}^{\tau_{i}}(y)-s_{1}^{\tau_{i}}(x) s_{1}^{\tau_{i}}(y) \in N E_{\underline{\sigma}}
$$

where $\underline{\underline{\sigma}}:=\left(\sigma_{i} \mid \sigma_{i}=2\right.$, for $i \neq j, \sigma_{j}=1$ if $j \in A$ and 0 otherwise $)$ and since $N E_{\bullet_{1} \cdot \ldots \cdot \bullet_{n}}=\{1\}$ for $j \geq 2$, we obtain

$$
d_{2}^{\tau_{i}}\left(C_{\alpha, \beta}(x \otimes y)\right)=s_{0}^{\tau_{i}} d_{1}^{\tau_{i}}(x) y-x y=0
$$

and then

$$
h\left(\eta_{i}(x), y\right)=s_{0}^{\tau_{i}} d_{1}^{\tau_{i}}(x) y=x y=h(x, y) .
$$

Let $\alpha=(\emptyset, \emptyset, \ldots, \emptyset), \beta=(\emptyset, \emptyset, \ldots, \emptyset)$ and for $x, x^{\prime} \in K_{A}$, we have $h\left(x, x^{\prime}\right): K_{A} \times K_{A} \rightarrow K_{A}$,

$$
h\left(x, x^{\prime}\right)=x x^{\prime}
$$

For $x \in K_{A}, y \in K_{B}$, we have

$$
\begin{aligned}
h(x, y) & =s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) s_{0}^{\tau_{1}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y) \\
& =s_{0}^{\tau_{1}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y) s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) \\
& =h(y, x) .
\end{aligned}
$$

Furthermore we have for $x, x^{\prime} \in K_{A}, y, y^{\prime} \in K_{B}$

$$
\begin{aligned}
h\left(x+x^{\prime}, y\right) & =s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}\left(x+x^{\prime}\right) s_{0}^{\tau_{1}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y) \\
& =\left[s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x)+s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}\left(x^{\prime}\right)\right] s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y) \\
& =s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y)+s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}\left(x^{\prime}\right) s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y) \\
& =h(x, y)+h\left(x^{\prime}, y\right) \\
h\left(x, y+y^{\prime}\right) & =s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}\left(y+y^{\prime}\right) \\
& =s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x)\left[s_{0}^{\tau_{1}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y)+s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}\left(y^{\prime}\right)\right] \\
& =s_{0}^{\tau_{i} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}(y)+s_{0}^{\tau_{i}} s_{0}^{\tau_{i+1}} \cdots s_{0}^{\tau_{j}}(x) s_{0}^{\tau_{l}} s_{0}^{\tau_{l+1}} \cdots s_{0}^{\tau_{m}}\left(y^{\prime}\right)} \\
& =h(x, y)+h\left(x, y^{\prime}\right) .
\end{aligned}
$$

The remaining axioms can be shown similarly.

3. Cubical simplicial algebras and applications

In this section, for dimension 3 , using the functions $C_{\alpha, \beta}$ for a cubical simplicial algebras, we will give the relations among cubical simplicial algebra, crossed modules, crossed squares, 2 -crossed modules, crossed 3 -cubes and 3-crossed modules of algebras.

A cubical simplicial algebra $\mathbf{E}_{0_{1} \bullet_{2} \bullet_{3}}$ is a collection of algebras $\left\{E_{i j k}\right\}$ with $i, j, k \geq 0, i, j, k \in \mathbb{N}$ together the face operators $d_{i}^{n}:\left\{E_{i j k}\right\} \rightarrow\left\{E_{i-1 j k}\right\}, d_{j}^{n}:\left\{E_{i j k}\right\} \rightarrow\left\{E_{i j-1 k}\right\}, d_{k}^{n}:\left\{E_{i j k}\right\} \rightarrow\left\{E_{i j k-1}\right\}$ and $s_{i}^{n}:\left\{E_{i j k}\right\} \rightarrow\left\{E_{i+1 j k}\right\}, s_{j}^{n}:$ $\left\{E_{i j k}\right\} \rightarrow\left\{E_{i j+1 k}\right\}, s_{k}^{n}:\left\{E_{i j k}\right\} \rightarrow\left\{E_{i j k+1}\right\}$ satisfying the usual simplicial identities. A cubical simplicial algebra
$\mathrm{E}_{\mathrm{O}_{1} \mathrm{O}_{2} \cdot{ }_{3}}$ can be represented by the following diagram

The Moore 3-complex of a cubical simplicial algebra can be given by the following diagram

In particular, for example, the Moore complex components given in this diagram can be explained as

$$
N E_{000}=E_{000}, N E_{100}=\operatorname{ker} d_{0}^{\tau_{1}}, N E_{201}=\operatorname{ker} d_{0}^{\tau_{1}} \cap \operatorname{ker} d_{1}^{\tau_{1}} \cap \operatorname{ker} d_{0}^{\tau_{3}} .
$$

3.1. Crossed modules from cubical simplicial algebras

 $\bullet_{j} \geqslant 2,(1 \leqslant j \leqslant 3)$. Then this Moore 3-complex has twelve crossed modules as follows:

$$
\begin{aligned}
& d_{1}{ }^{\tau_{2}}: N E_{111} \rightarrow N E_{101}, \quad d_{1}{ }_{1}{ }^{\tau_{1}}: N E_{111} \rightarrow N E_{011} \\
& d_{1}{ }^{\tau_{3}}: N E_{111} \rightarrow N E_{110}, \quad d_{1}{ }_{1}^{\tau_{1}}: N E_{101} \rightarrow N E_{001} \\
& d_{1}{ }^{\tau_{3}}: N E_{101} \rightarrow N E_{100}, \quad d_{1}{ }^{\tau_{2}}: N E_{110} \rightarrow N E_{100} \\
& d_{1}{ }^{\tau_{1}}: N E_{110} \rightarrow N E_{010}, \quad d_{1}{ }^{\tau_{1}}: N E_{100} \rightarrow N E_{000} \\
& d_{1} \tau_{2}: N E_{011} \rightarrow N E_{001}, \quad d_{1}{ }^{\tau_{3}}: N E_{011} \rightarrow N E_{010} \\
& d_{1}{ }^{\tau_{2}}: N E_{010} \rightarrow N E_{000}, \quad d_{1}{ }^{\tau_{3}}: N E_{001} \rightarrow N E_{000}
\end{aligned}
$$

For example $N E_{011}$ acts on $N E_{111}$ via $s_{0}^{\tau_{1}}$. An action of $x \in N E_{011}$ on $a \in N E_{111}$ is given by

$$
x \cdot a=s_{0}^{\tau_{1}}(x) a
$$

From the Peiffer pairings we know that for $x, y \in N E_{111}$

$$
s_{0}^{\tau_{1}}(x) s_{1}^{\tau_{1}}(y)-s_{1}^{\tau_{1}}(x) s_{1}^{\tau_{1}}(y) \in N E_{211}
$$

Let us explain now how we are using the pairings within this structure.
Since $N E_{\bullet_{1} \bullet_{2} \bullet_{3}}=\{0\}$ for $\bullet_{j} \geqslant 2$, the Moore 3-complex of the cubical simplicial algebra $\mathbf{E}_{\bullet_{1} \bullet_{2} \bullet_{3}}$ is of length 1, we have $N E_{211} \cap D_{211}=\{0\}$ and then we obtain $\partial_{2}\left(N E_{211} \cap D_{211}\right)=\{0\}$ and thus

$$
d_{2}^{\tau_{1}}\left(s_{0}^{\tau_{1}}(x) s_{1}^{\tau_{1}}(y)-s_{1}^{\tau_{1}}(x) s_{1}^{\tau_{1}}(y)\right)=s_{0}^{\tau_{1}} d_{1}^{\tau_{1}}(x) y-x y=0
$$

and then we obtain $\partial_{1}^{\tau_{1}}(x) \cdot y=x y$. Similarly we have for $x \in N E_{011}$

$$
d_{1}^{\tau_{1}}(x \cdot a)=d_{1}^{\tau_{1}}\left(s_{0}^{\tau_{1}}(x) a\right)=x d_{1}^{\tau_{1}}(a)
$$

Thus $d_{1}^{\tau_{1}}: N E_{111} \rightarrow N E_{011}$ is a crossed module of algebras. Same method can be used for other homomorphisms, given above.

3.2. Crossed squares from cubical simplicial algebras

In this section, we will obtain six different crossed squares from a cubical simplicial algebra with Moore 3-complex of length 1. We suppose that $\mathbf{E}_{\boldsymbol{\bullet}_{1} \bullet_{2} \bullet_{3}}$ is a cubical simplicial algebra with Moore complex $\mathbf{N E}_{\bullet_{1} \bullet_{2} \bullet_{3}}=\{0\}$ for $\bullet_{j} \geqslant 2,(1 \leqslant j \leqslant 3)$. Then we have following crossed squares

where h-maps are given by

$$
\begin{aligned}
& h: N E_{110} \times N E_{011} \longrightarrow N E_{111} \quad h: N E_{100} \times N E_{001} \longrightarrow N E_{101} \\
& (x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y), \quad(x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y), \\
& h: N E_{110} \times N E_{101} \rightarrow N E_{111} \quad h: N E_{010} \times N E_{001} \rightarrow N E_{011} \\
& (x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{2}}(y)^{\prime} \quad(x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{2}}(y)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
h: \quad N E_{101} \times N E_{011} & \longrightarrow N E_{111} \\
(x, y) & \longmapsto s_{0}^{\tau_{2}}(x) s_{0}^{\tau_{1}}(y)^{\prime},
\end{aligned} \begin{aligned}
h: N E_{100} \times N E_{010} & \longrightarrow N E_{110} \\
(x, y) & \longmapsto s_{0}^{\tau_{2}}(x) s_{0}^{\tau_{1}}(y)^{\prime}
\end{aligned}
$$

For example we show that

is a crossed square. The h-map $h: N E_{110} \times N E_{011} \rightarrow N E_{111}$ can be defined by

$$
h(x, y)=s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y)
$$

for $x \in N E_{110}$ and $y \in N E_{011}$.
In the following calculations, we will show that the conditions of a crossed square are satisfied

1. $d_{1}^{\tau_{1}}, d_{1}^{\tau_{3}}$ and $d_{1}^{\tau_{1}} d_{1}^{\tau_{3}}=d_{1}^{\tau_{3}} d_{1}^{\tau_{1}}$ crossed modules.
2. The maps are $d_{1}^{\tau_{1}}, d_{1}^{\tau_{3}}$ preserve the actions of $N E_{010}$.
3. $k h(x, y)=k\left(s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y)\right)=s_{0}^{\tau_{3}}(k x) s_{0}^{\tau_{1}}(y)=h(k x, y)$
$k h(x, y)=k\left(s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y)\right)=s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(k y)=h(x, k y)$
4. For $x, x^{\prime} \in N E_{110}$ and $y, y^{\prime} \in N E_{011}$, we have

$$
\begin{aligned}
h\left(x+x^{\prime}, y\right) & =s_{0}^{\tau_{3}}\left(x+x^{\prime}\right) s_{0}^{\tau_{1}}(y) \\
& =\left(s_{0}^{\tau_{3}}(x)+s_{0}^{\tau_{3}}\left(x^{\prime}\right)\right) s_{0}^{\tau_{1}}(y) \\
& =s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y)+s_{0}^{\tau_{3}}\left(x^{\prime}\right) s_{0}^{\tau_{1}}(y) \\
& =h(x, y)+h\left(x^{\prime}, y\right) \\
h\left(x, y+y^{\prime}\right) & =s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}\left(y+y^{\prime}\right) \\
& =s_{0}^{\tau_{3}}(x)\left(s_{0}^{\tau_{1}}(y)+s_{0}^{\tau_{1}}\left(y^{\prime}\right)\right) \\
& =s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y)+s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}\left(y^{\prime}\right) \\
& =h(x, y)+h\left(x, y^{\prime}\right) .
\end{aligned}
$$

5. For $x \in N E_{110}, y \in N E_{011}$ and $r \in N E_{010}$, we have

$$
\begin{aligned}
r \cdot h(x, y) & =r \cdot\left(s_{0}^{\tau_{3}}\left(x+x^{\prime}\right) s_{0}^{\tau_{1}}(y)\right) \\
& =r \cdot s_{0}^{\tau_{3}}\left(x+x^{\prime}\right) s_{0}^{\tau_{1}}(y) \\
& =s_{0}^{\tau_{3}}(r \cdot x) s_{0}^{\tau_{1}}(y) \\
& =h(r \cdot x, y)
\end{aligned}
$$

Similarly $r \cdot h(x, y)=h(x, r \cdot y)$.
The other crossed squares can be proven by a similar way.
3.3. 2-crossed modules from cubical simplicial algebras

For a crossed square

using Loday's mapping cone complex, Conduché in [7] proved that

$$
L \xrightarrow{\left(\lambda, \lambda^{\prime-1}\right)} M \rtimes N \xrightarrow{(\mu, \nu)} P
$$

is a 2-crossed module. The commutative algebra version can be found in Arvasi in [1]. In the previous section, we have obtained six different crossed squares. For each crossed square, we can say that there is a corresponding 2-crossed module. For example from the following diagram

we obtain a 2 -crossed module.

$$
N E_{111} \xrightarrow{\delta_{2}} N E_{110} \times N E_{011} \xrightarrow{\delta_{1}} N E_{010}
$$

where $\delta_{1}(x, y)=d_{1}^{\tau_{1}}(x)+d_{1}^{\tau_{3}}(y)$ and $\delta_{2}(a)=\left(d_{1}^{\tau_{3}}(a),-d_{1}^{\tau_{1}}(a)\right)$ for all $x \in N E_{110}, y \in N E_{011}$ and $a \in N E_{111}$. The Peiffer lifting map for this 2-crossed module can be given by

$$
\begin{gathered}
\{-,-\}:\left(N E_{110} \times N E_{011}\right) \times\left(N E_{110} \times N E_{011}\right) \rightarrow N E_{111} \\
\{(x, y),(a, c)\}=h(x a, c)=s_{0}^{\tau_{3}}(x a) s_{0}^{\tau_{1}}(y) .
\end{gathered}
$$

Similarly, we can define other 2-crossed modules which are associated to the crossed squares given in previous section, by

$$
\begin{aligned}
& N E_{101} \longrightarrow N E_{100} \times N E_{001} \longrightarrow N E_{000} \\
& N E_{111} \longrightarrow N E_{110} \times N E_{101} \longrightarrow N E_{100} \\
& N E_{011} \longrightarrow N E_{010} \times N E_{001} \longrightarrow N E_{000} \\
& N E_{111} \longrightarrow N E_{101} \times N E_{011} \longrightarrow N E_{001} \\
& N E_{110} \longrightarrow N E_{100} \times N E_{010} \longrightarrow N E_{000}
\end{aligned}
$$

4. Crossed cubes from cubical simplicial algebras

A crossed 3-cube can be obtained from a 3-simplicial commutative algebra as follows:
For $\langle n\rangle=\{1,2,3\}$ we have the following diagrams

we show the simplicial directions by

The sets K_{A} can be given by

$$
\begin{array}{ll}
K_{\emptyset}=N E_{000}=E_{000} & , K_{\{1\}}=N E_{100}=\operatorname{Kerd}_{0}^{\tau_{1}} \\
K_{\{2\}}=N E_{010}=\operatorname{Kerd}_{0}^{\tau_{2}} & , K_{\{3\}}=N E_{001}=\operatorname{Kerd}_{0}^{\tau_{3}} \\
K_{\{1,2\}}=N E_{110}=\operatorname{Kerd}_{0}^{\tau_{1}} \cap \operatorname{Kerd}_{0}^{\tau_{2}} & , K_{\{2,3\}}=N E_{011}=\operatorname{Kerd} d_{0}^{\tau_{2}} \cap \operatorname{Kerd}_{0}^{\tau_{3}} \\
K_{\{1,3\}}=N E_{101}=\operatorname{Kerd}_{0}^{\tau_{1}} \cap \operatorname{Kerd}_{0}^{\tau_{3}} & , \\
K_{\{1,2,3\}}=N E_{111}=\operatorname{Kerd} d_{0}^{\tau_{1}} \cap \operatorname{Kerd}_{0}^{\tau_{2}} \cap \operatorname{Kerd}_{0}^{\tau_{3}} .
\end{array}
$$

The maps $\eta_{i}: K_{A} \rightarrow K_{A-\{i\}}$ are given in the above diagram.
The h-maps can be defined as follows:

$$
\begin{aligned}
& h: N E_{100} \times N E_{010} \longrightarrow N E_{110} \quad h: N E_{100} \times N E_{001} \quad \longrightarrow N E_{101} \\
& (x, y) \longmapsto s_{0}^{\tau_{2}}(x) s_{0}^{\tau_{1}}(y), \quad(x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y), \\
& h: N E_{010} \times N E_{001} \quad \longrightarrow N E_{011} \quad h: N E_{110} \times N E_{001} \quad \longrightarrow N E_{111} \\
& (x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{2}}(y), \quad(x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}} s_{0}^{\tau_{2}}(y)^{\prime} \\
& h: N E_{100} \times N E_{011} \rightarrow N E_{111} \quad h: N E_{101} \times N E_{010} \longrightarrow N E_{111} \\
& (x, y) \longmapsto s_{0}^{\tau_{2}} s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{1}}(y)^{\prime} \quad(x, y) \longmapsto s_{0}^{\tau_{2}}(x) s_{0}^{\tau_{1}} s_{0}^{\tau_{3}}(y)^{\prime} \\
& h: N E_{011} \times N E_{101} \longrightarrow N E_{111} \quad h: N E_{110} \times N E_{101} \quad \longrightarrow N E_{111} \\
& (x, y) \longmapsto s_{0}^{\tau_{1}}(x) s_{0}^{\tau_{2}}(y), \quad(x, y) \longmapsto s_{0}^{\tau_{3}}(x) s_{0}^{\tau_{2}}(y) \quad \text {, } \\
& h: N E_{110} \times N E_{011} \longrightarrow N E_{111} \\
& (a, b) \longmapsto s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)
\end{aligned}
$$

We can prove the axioms of crossed 3-cubes as follows:

1. Let $A=\{2,3\}$. Then if we have $i=1 \notin A, \eta_{i}: K_{A} \rightarrow K_{A}$ is given by

$$
\eta_{i}=\eta_{1}=d_{1}^{\tau_{1}} s_{0}^{\tau_{1}} .
$$

From the simplicial identities, we have $d_{1}^{\tau_{1}} s_{0}^{\tau_{1}}=i d$. Therefore, for $i=1 \notin A=\{2,3\}$ we obtain $\eta_{i}(a)=a$.
3. For the h-map given by

$$
\begin{aligned}
h: \quad N E_{110} \times N E_{011} & \longrightarrow N E_{111} \\
(a, b) & \longmapsto s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)
\end{aligned}
$$

we can write,

$$
\begin{aligned}
\eta_{2} h(a, b) & =d_{1}^{\tau_{2}}\left(s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)\right) \\
& =s_{0}^{\tau_{3}} d_{1}^{\tau_{2}}(a) s_{0}^{\tau_{1}} d_{1}^{\tau_{2}}(b)(\because \text { commutativity of simplicial directions }) \\
& =h\left(\eta_{2} a, \eta_{2} b\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\eta_{3} h(a, b) & =d_{1}^{\tau_{3}}\left(s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)\right) \\
& =s_{0}^{\tau_{3}} d_{1}^{\tau_{3}}(a) s_{0}^{\tau_{1}} d_{1}^{\tau_{3}}(b)(\because \text { commutativity of simplicial directions }) \\
& =h\left(\eta_{3} a, \eta_{3} b\right) .
\end{aligned}
$$

By using similar calculations, this result for the other η_{i} maps can be proven.
4. For example, for $x, y \in N E_{110}$, we obtain

$$
C_{((0), 0,0)((1), 0,0)}(x \otimes y)=s_{0}^{\tau_{1}}(x) s_{1}^{\tau_{1}}(y)-s_{1}^{\tau_{1}}(x) s_{1}^{\tau_{1}}(y) \in N E_{110}
$$

Since $N E_{210}=\{0\}$, we obtain

$$
d_{2}^{\tau_{1}}\left(C_{\alpha, \beta}(x \otimes y)\right)=s_{0}^{\tau_{1}} d_{1}^{\tau_{1}}(x) y-x y=0 \in N E_{110} .
$$

Thus we obtain

$$
h\left(\eta_{1}(x), y\right)=s_{0}^{\tau_{1}} d_{1}^{\tau_{1}}(x) y=x y \in N E_{110} .
$$

and for $x, y \in N E_{111}$,

$$
C_{(0,0,(0))(0,0,(1))}(x \otimes y)=s_{0}^{\tau_{3}}(x) s_{1}^{\tau_{3}}(y)-s_{1}^{\tau_{3}}(x) s_{1}^{\tau_{3}}(y) \in N E_{112}
$$

Since $N E_{112}=\{0\}$, we obtain

$$
d_{2}^{\tau_{3}}\left(C_{\alpha, \beta}(x \otimes y)\right)=s_{0}^{\tau_{3}} d_{1}^{\tau_{3}}(x) y-x y=0 \in N E_{111} .
$$

Thus we obtain

$$
h\left(\eta_{1}(x), y\right)=s_{0}^{\tau_{3}} d_{1}^{\tau_{3}}(x) y=x y=h(x, y)
$$

5. Let $\alpha=(\emptyset, \emptyset, \emptyset), \beta=(\emptyset, \emptyset, \emptyset)$ and for $a, a^{\prime} \in K_{A}$, we have $h: K_{A} \times K_{A} \rightarrow K_{A}$,
$h\left(a, a^{\prime}\right)=a a^{\prime}$
6. For the map $h: N E_{110} \times N E_{011} \rightarrow N E_{111}$, we have

$$
h(a, b)=s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)=s_{0}^{\tau_{1}}(b) s_{0}^{\tau_{3}}(a)=h(b, a)
$$

7. For the map $h: N E_{110} \times N E_{011} \rightarrow N E_{111}$, we obtain

$$
\begin{aligned}
h\left(a+a^{\prime}, b\right) & =s_{0}^{\tau_{3}}\left(a+a^{\prime}\right) s_{0}^{\tau_{1}}(b) \\
& =\left[s_{0}^{\tau_{3}}(a)+s_{0}^{\tau_{3}}\left(a^{\prime}\right)\right] s_{0}^{\tau_{1}}(b) \\
& =s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)+s_{0}^{\tau_{3}}\left(a^{\prime}\right) s_{0}^{\tau_{1}}(b) \\
& =h(a, b)+h\left(a^{\prime}, b\right)
\end{aligned}
$$

8. For the map $h: N E_{110} \times N E_{011} \rightarrow N E_{111}$, we obtain

$$
\begin{aligned}
h\left(a, b+b^{\prime}\right) & =s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}\left(b+b^{\prime}\right) \\
& =s_{0}^{\tau_{3}}(a)\left[s_{0}^{\tau_{1}}(b)+s_{0}^{\tau_{1}}\left(b^{\prime}\right)\right] \\
& =s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)+s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}\left(b^{\prime}\right) \\
& =h(a, b)+h\left(a, b^{\prime}\right)
\end{aligned}
$$

9. We must show that

$$
h(h(a, b), c)=h(a, h(b, c))
$$

We calculate that for $a \in N E_{100}, b \in N E_{010}, c \in N E_{001}$,

$$
\begin{aligned}
h(h(a, b), c) & =h\left(s_{0}^{\tau_{2}}(a) s_{0}^{\tau_{1}}(b), c\right) \\
& =s_{0}^{\tau_{3}} s_{0}^{\tau_{2}}(a) s_{0}^{\tau_{3}} s_{0}^{\tau_{1}}(b) s_{0}^{\tau_{1}} s_{0}^{\tau_{2}}(c) \\
& =s_{0}^{\tau_{2}} s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}} s_{0}^{\tau_{3}}(b) s_{0}^{\tau_{1}} s_{0}^{\tau_{2}}(c)(\because \text { commutativity of simplicial directions }) \\
& =h\left(a, s_{0}^{\tau_{3}}(b) s_{0}^{\tau_{2}}(c)\right) \\
& =h(a, h(b, c))
\end{aligned}
$$

10. Finally, we show that

$$
k \cdot h(a, b)=h(k \cdot a, b)=h(a, k \cdot b)
$$

$$
\begin{aligned}
k \cdot h(a, b) & =k \cdot\left(s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b)\right) \\
& =k \cdot s_{0}^{\tau_{3}}(a) s_{0}^{\tau_{1}}(b) \\
& =h(k \cdot a, b) .
\end{aligned}
$$

4.1. 3-crossed modules from cubical simplicial algebras

As an algebraic model for homotopy (connected) 4-types, the notion of a 3-crossed module has been introduced in [4]. The connection between simplicial groups with Moore complex of length 4 and 3-crossed modules has been proven in [4], in terms of hypercrossed complex pairings in the Moore complex of a simplicial group. The commutative algebra version this equivalence has been studied in [11]. In this section, using the Loday's mapping cone complex, we will give a 3-crossed module which is associated to the crossed cube obtained from a cubical simplicial algebra in previous section.

Recall from [11] that a 3-crossed module of algebras is a complex of algebras

together with $\partial_{3}, \partial_{2}, \partial_{1}$, which are C_{0}, C_{1}-algebra morphisms, an action of C_{0} on C_{3}, C_{2}, C_{1}, an action of C_{1} on C_{3}, C_{2}, and an action of C_{2} on C_{3} further C_{0}, C_{1}-bilinear maps satisfying the conditions 3CM1-3CM16 given in [11]

Now consider the crossed cube

obtained from cubical simplicial algebra. Its mapping cone complex C is given by

$$
N E_{111} \xrightarrow{\partial_{3}} N E_{101} \rtimes N E_{011} \rtimes N E_{110} \xrightarrow{\partial_{2}}\left(N E_{100} \rtimes N E_{001}\right) \rtimes\left(N E_{001} \rtimes N E_{010}\right) \rtimes\left(N E_{010} \rtimes N E_{100}\right) \xrightarrow{\partial_{1}} N E_{000}
$$

together with the homomorphisms

$$
\begin{aligned}
& \partial_{3}(\gamma)=\left(d_{1}^{\tau_{2}}(\gamma), d_{1}^{\tau_{1}}(\gamma), d_{1}^{\tau_{3}}(\gamma)\right) \\
& \partial_{2}(\beta)=\left(\left(d_{1}^{\tau_{3}}(x),-d_{1}^{\tau_{1}}(x)\right),\left(d_{1}^{\tau_{2}}(y),-d_{1}^{\tau_{3}}(y)\right),\left(d_{1}^{\tau_{1}}(z),-d_{1}^{\tau_{2}}(z)\right)\right) \\
& \partial_{1}(\alpha)=\left(d_{1}^{\tau_{1}}(a)+d_{1}^{\tau_{3}}\left(a^{\prime}\right)\right)+\left(d_{1}^{\tau_{3}}(b)+d_{1}^{\tau_{2}}\left(b^{\prime}\right)\right)+\left(d_{1}^{\tau_{2}}(c)+d_{1}^{\tau_{1}}\left(c^{\prime}\right)\right)
\end{aligned}
$$

for $\gamma \in N E_{111}, \beta=(x, y, z) \in N E_{101} \rtimes N E_{011} \rtimes N E_{110}$ and $\alpha=\left(\left(a, a^{\prime}\right),\left(b, b^{\prime}\right),\left(c, c^{\prime}\right)\right) \in\left(N E_{100} \rtimes N E_{001}\right) \rtimes\left(N E_{001} \rtimes\right.$ $\left.N E_{010}\right) \rtimes\left(N E_{010} \rtimes N E_{100}\right)$.

$$
\begin{aligned}
\partial_{2} \partial_{3}(\gamma) & =\left(\left(d_{1}^{\tau_{3}} d_{1}^{\tau_{2}}(\gamma),-d_{1}^{\tau_{1}} d_{1}^{\tau_{2}}(\gamma)\right),\left(d_{1}^{\tau_{2}} d_{1}^{\tau_{1}}(\gamma),-d_{1}^{\tau_{3}} d_{1}^{\tau_{1}}(\gamma)\right),\left(d_{1}^{\tau_{1}} d_{1}^{\tau_{3}}(\gamma),-d_{1}^{\tau_{2}} d_{1}^{\tau_{3}}(\gamma)\right)\right) \\
& =((0,0),(0,0),(0,0)) \\
\partial_{1} \partial_{2}(\beta) & =d_{1}^{\tau_{1}} d_{1}^{\tau_{3}}(x)-d_{1}^{\tau_{3}} d_{1}^{\tau_{1}}(x)+d_{1}^{\tau_{3}} d_{1}^{\tau_{2}}(y)-d_{1}^{\tau_{2}} d_{1}^{\tau_{3}}(y)+d_{1}^{\tau_{2}} d_{1}^{\tau_{1}}(z)-d_{1}^{\tau_{1}} d_{1}^{\tau_{2}}(z) \\
& =0
\end{aligned}
$$

Using the mapping cone complex and Conduchés result for crossed squares and 2-crossed modules, the bilinear maps for 3 -crossed module can be obtained, similarly. Thus, we can say that this mapping cone has a 3-crossed modules structure.

References

[1] Z. Arvasi, Crossed squares and 2-crossed modules of commutative algebras, Theory Appl. Categories 3 (1997), 160-181.
[2] Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categories 3 (1997), 1-23.
[3] Z. Arvasi, T. Porter, Freeness conditions for 2-crossed module of commutative algebras, Appl. Categorical Struct. 6 (1998), 455-477.
[4] Z. Arvasi, T. S. Kuzpinari, E. O. Uslu, Three-crossed modules, Homology, Homotopy Appl. 11 (2009), 161-187.
[5] R. Brown, JL. Loday, Van kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335.
[6] D. Conduché, Modules croisés généraliés de longueur 2, J. Pure Appl. Algebra 34 (1984), 155-178.
[7] D. Conduché, Simplicial crossed modules and mapping cones, Georgian Math. J. 10 (2003), 623-636.
[8] G. J. Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra 52 (1988), 277-282.
[9] D. Guin-Walery, J. L. Loday, Obstructions à l'excision en K-théorie algèbrique, in evanston conference on algebraic K-theory, Springer, Lecture Notes Math. 854 (1981), 179-216.
[10] Ö. Gürmen Alansal, E. Ulualan, Peiffer pairings in multisimplicial groups and crossed n-cubes and applications for bisimplicial groups, Turkish J. Math. 45 (2021), 360-386.
[11] T. S. Kuzpinari, A. Odabaş, E. O. Uslu, 3-crossed modules of commutative algebras, arXiv:1003.0985v2, 2010.
[12] A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categories 4 (1998), 148-173.
[13] A. Mutlu, T. Porter, Freeness conditions for 2-crossed modules and complexes, Theory Appl. Categories 4 (1998), 174-194.
[14] T. Porter, N-types of simplicial groups and crossed N-cubes, Topology 32 (1993), 5-24.
[15] T. Porter, Homology of commutative algebras and an invariant of Simis and Vasconceles, J. Algebra 99 (1986), 458-465.
[16] J. H. C. Whitehead, Combinatorial homotopy II, Bull. A,er. Math. Soc. 55 (1949), 453-496.

[^0]: 2020 Mathematics Subject Classification. Primary 18G45; Secondary 55U10.
 Keywords. Bisimplicial algebras, crossed modules, Moore complex
 Received: 05 May 2023; Revised: 25 October 2023; Accepted: 02 November 2023
 Communicated by Ljubiša D. R. Kočinac
 Email address: ozgun.gurmen@dpu.edu.tr (Özgün Gürmen Alansal)

