
Filomat 38:9 (2024), 3179–3191
https://doi.org/10.2298/FIL2409179M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this work, we generalize the truncated max-product (non-linear) Baskakov operators to en-
compass any compact interval [a, b]. Our investigation establishes that these operators exhibit the same
order of uniform approximation as in the specific case of the interval [0, 1]. Furthermore, we demon-
strate the preservation of monotonicity and shape properties by these operators on [a, b], rendering them
highly valuable for approximating fuzzy numbers. For practical applications, we generate a fuzzy number
R̃M

r
(
ρ; [a, b]

)
(t) that preserves the support and core of an arbitrary ρ. This fuzzy number was then employed,

utilizing metrics DC and L1-type metrics, to enhance convergence estimates. Our analysis yields several
direct conclusions. Additionally, when fuzzy numbers ρ are expressed in parametric form, the truncated
max-product Baskakov operator produces a sequence of fuzzy numbers R̃M

r
(
ρ
)
. It has been observed that

R̃M
r

(
ρ
)

uniformly converges to ρ. Furthermore, essential characteristics of R̃M
r

(
ρ
)

also converge to ρ. Fi-
nally, we present a comparison and an illustrative graphic, demonstrating how these operators facilitate
the convergence of fuzzy functions.

1. Introduction

Approximation theory, a significant branch of mathematics, deals with the development of efficient
methods to represent complex mathematical entities through simpler, more manageable ones. The accurate
representation of such entities is essential for numerous real-world applications, including decision-making
processes, pattern recognition, and optimization. This field traces its roots back to the pioneering work of
Weierstrass in 1885, who delved into the problem of approximating continuous functions. Building upon
Weierstrass’ foundations, Bernstein further contributed to this theory by utilizing polynomials.

Building on these foundations, Korovkin made significant progress in 1953 by proving that linear
positive operators uniformly converge to continuous functions. This breakthrough served as a springboard
for researchers to explore the approximation properties of various linear positive operators.

Over the last two decades, a range of non-linear approximation operators has been introduced. In
the period spanning from 2006 to 2008, B. Bede et al. proposed the use of discrete linear approximation
operators to generate nonlinear positive operators. Specifically, they replaced the max-product operation
described in [12] and the max-min operation described in [13] with a pair of sum-product operations. This
innovation resulted in the development of the so-called nonlinear Shepard-type operators.
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In 2008, S.G. Gal [21] posed an open problem that sparked significant interest among academics, which
led to the introduction of the Bernstein of max-product operators. This open problem has attracted the
attention of many academics due to the numerous accomplishments in this area. Later, researchers have
delved into the estimation of approximation using max-product operators and have successfully attained
specific shape preservation characteristics (refer to [1–3, 16, 25, 27]).

In this context, the Truncated Max-Product Baskakov (TMPB) Operators, which are a simplification of
the Max-Product Baskakov Operators [14], have emerged as important tools for approximating functions.
They were introduced in 2011 by B. Bede et al. [15] as follows:

RM
r

(
ρ; [0, 1]

)
(x) =

r
∨

k=0
φr,k (x) · ρ

(
k
r

)
r
∨

k=0
φr,k (x)

, x ∈ [0, 1]

where φr,k (x) =
(r+k−1

k
) xk

(1 + x)r+k
, r ≥ 1.

The concept of fuzzy numbers, introduced by Zadeh in 1965 and further developed by D. Dubois et
al. [20], enables the representation of imprecise and ambiguous quantities. Unlike crisp numbers, fuzzy
numbers possess a degree of membership that allows for a gradual transition between truth values, making
them an ideal candidate for handling uncertain data. The introduction of fuzzy numbers revolutionized the
field of approximation theory, paving the way for novel techniques that could effectively deal with vague
or imprecise information, which classical methods often fail to handle adequately.

Therefore, over the past decade, there has been significant interest in finding efficient methods to
represent and approximate fuzzy numbers. Researchers have explored various approaches to approximate
fuzzy numbers using Intervals (refer to [17, 23]), triangles (refer to [7, 8, 11, 22, 29]), trapezoids (refer to
[9, 10, 24, 28]) and L-U parametric forms (refer to [5, 6, 30]).

The TMPB operators, originally introduced in classical approximation theory, have demonstrated their
effectiveness in handling fuzzy sets and fuzzy numbers. Leveraging the strengths of these operators,
this study presents a novel approach to approximating fuzzy numbers that take into consideration their
inherent fuzziness and imprecision. By utilizing TMPB operators, this approach offers several advantages
over classical approximation techniques, considering the holistic nature of the fuzzy number, including its
shape, membership degrees, and other relevant characteristics.

The contributions of this research lie in both theoretical and practical aspects. Theoretical advancements
in the TMPB operators deepen our understanding of their mathematical properties and provide a solid basis
for their application. Additionally, the practical applications of fuzzy number approximation demonstrate
its efficacy in solving complex problems in fields such as decision-making, pattern recognition, optimization,
and risk analysis.

In summary, this work aims to highlight the superiority of TMPB operators in approximating fuzzy
numbers compared to classical approximation methods. By harnessing the flexibility and expressiveness
of fuzzy numbers, these operators offer a more nuanced and accurate representation of uncertain data.
Furthermore, this research strives to bridge the gap between fuzzy set theory, approximation theory, and
practical applications. Introducing the concept of TMPB operators for approximating fuzzy numbers, con-
tributes to the advancement of fuzzy approximation techniques and provides a valuable tool for handling
imprecise data across various domains, paving the way for future research in the realm of uncertain data
modeling and analysis.

The present paper is organized as follows: Section 2 presents essential information and basic concepts
about fuzzy numbers. Additionally, it redefines RM

r
(
ρ; [0, 1]

)
(x) in the interval [a, b] and provides some

fundamental auxiliary concepts used throughout this paper. In Section 3, we delve into the approximate and
shape-preserving properties of these operators on [a, b], discussing and investigating their characteristics.
Section 4 of the study focuses on the construction of fuzzy numbers R̃M

r
(
ρ; [a, b]

)
(t) and R̃M

r
(
ρ
)

and their
application in achieving improved approximations, particularly with respect to the DC and L1

−type meters.
Theoretical procedures and illustrative examples effectively demonstrate these findings.
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2. Preliminaries

2.1. Basic concepts of fuzzy numbers

Definition 2.1. ([20]) ( fuzzy numbers) A fuzzy number ρ is a fuzzy subset of theRwith µρ (x) : R −→ [0, 1]
if: and only if µρ satisfy:

1. ∃x0 ∈ R such that µρ (x0) = 1 (normal condition);
2. µρ (αx1 + (1 − α) x2) ≥ min{µρ (x1) , µρ (x2)} (fuzzy convex);
3. µρ is upper semicontinuous;
4. support of ρ is compact.

Therefore, for any fuzzy number ρwe can express a membership function µρ as follows:

µρ(x) =


0

lρ (x)
1

rρ (x)
0

i f x < t1
i f t1 ≤ x ≤ t2
i f t2 ≤ x ≤ t3
i f t3 ≤ x ≤ t4
i f t4 < x

where lρ : [t1, t2] → [0, 1] is non-decreasing, and known as the left side of ρ and rρ : [t3, t4] → [0, 1] is
non-increasing, and known as the right side of ρ. And we denote the collection of all fuzzy real numbers
by RF.

Definition 2.2. ([19]) ( α -cut) The α -cut of ρ ∈ RF is the crisp set for some α ∈ (0, 1], defined as ρα = {x ∈
R | µρ (x) ≥ α}.

Then it is obvious that ρα =
[
ρl (α) , ρu (α)

]
, α ∈ (0, 1], where

ρl (α) = inf{x ∈ R | µρ (x) ≥ α},
ρu (α) = sup{x ∈ R | µρ (x) ≥ α}.

Notation 2.3. 1. If α = 1 then , ρ1 =
[
ρl (1) , ρu (1)

]
is referred to as the core of ρ, and denoted by core

(
ρ
)
.

2. If α = 0 then , ρ0 =
[
ρl (0) , ρu (0)

]
= cl {x ∈ R | µρ (x) > 0}, is referred to as the support of ρ, which will

be denoted by supp
(
ρ
)
.

Here it is necessary to mention some definitions of metric spaces between fuzzy numbers, which are
employed in the statement of approximation in this paper.

Definition 2.4. ([19]) Let µ, v ∈ RF, then:
i) Chebyshev-type metric is defined as:
DC

(
µ, v

)
= sup{

∣∣∣µ (x) − v (x)
∣∣∣ : x ∈ R}

and we can denote it DC
(
µ, v

)
=

∥∥∥µ − v
∥∥∥, for simplicity.

With parametric representations, is defined as:
D̃

(
µ, v

)
= sup
α∈[0,1]

max
{∣∣∣µl (α) − vl (α)

∣∣∣ , ∣∣∣µu (α) − vu (α)
∣∣∣}

and denote it D̃
(
µ, v

)
=

∥∥∥µ − v
∥∥∥

LU, for simplicity.
ii) Lp- type metric is defined as:

Dp
(
µ, v

)
=

∫
R

∣∣∣µ (x) − v (x)
∣∣∣p dx


1
p

, p ≥ 1

With parametric representations, is defined as:

Dp
(
µ, v

)
=

 1∫
0

∣∣∣µl (α) − vl (α)
∣∣∣p dα +

1∫
0

∣∣∣µu (α) − vu (α)
∣∣∣p dα


1
p

, p ≥ 1
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Here are some definitions of some of the fundamental characteristics of the fuzzy number.
i) ([26]) The expected of ρ is defined as:

EI(ρ) =

 1∫
0
ρl (α) dα,

1∫
0
ρu (α) dα


ii) ([17]) The width of ρ is defined as:

wid
(
ρ
)
=

1∫
0

(
ρu (α) − ρl (α)

)
dα

iii) ([18]) The value of ρ and the ambiguity of ρ.
For a non-decreasing reduction function δ : [0, 1]→ [0, 1] such that δ(0) = 0 and δ(1) = 1. The value of ρ

is given by:

Valδ
(
ρ
)
=

1∫
0
δ (α)

(
ρl (α) + ρu (α)

)
dα

and the ambiguity of ρ defined by:

Ambδ
(
ρ
)
=

1∫
0
δ (α)

(
ρu (α) − ρl (α)

)
dα

Also we have the particular case of δ, for δm (α) = αm , m ∈ N and α ∈ [0, 1], then we denote Valδm

(
ρ
)
=

Valm
(
ρ
)

and Ambδm

(
ρ
)
= Ambm

(
ρ
)
, i.e.

Valm
(
ρ
)
=

1∫
0
αm

(
ρl (α) + ρu (α)

)
dα

and

Ambm
(
ρ
)
=

1∫
0
αm

(
ρu (α) − ρl (α)

)
dα

2.2. The operators’ construction on compact intervals [a, b] and give some basic concept auxiliary
In this part, RM

r
(
ρ; [0, 1]

)
(x) is defined on the interval [a, b], which means that the interval [0, 1] is

expanded to a compact interval [a, b] based on Weierstrass’s result, as shown below:

Definition 2.5. Let ρ ∈ RF be a positive continuous on [a, b] such that a < c ≤ d < b with core
(
ρ
)
= [c, d] and

supp
(
ρ
)
= [a, b], then for any t ∈ [a, b] we define:

RM
r

(
ρ; [a, b]

)
(t) =

r
∨

k=0
φr,k (t) · ρ

(
a + (b − a) k

r

)
r
∨

k=0
φr,k (t)

where φr,k (t) =
(r+k−1

k
) ( t−a

b−a

)k
·

(
b−a

b+t−2a

)r+k
, r ≥ 1.

Notation 2.6. For short, from now on throughout this paper, we denote the compact interval [a, b] and the
unite interval [0, 1], respectively, by the letters Ĩ and I.

Theorem 2.7. ([15]) Let ρ be a continuous function on I, then for all x ∈ I we have:∣∣∣RM
r

(
ρ; [0, 1]

)
(x) − ρ (x)

∣∣∣ ≤ 24ω1

(
ρ;

1
√

r + 1

)
I

,r ≥ 2.

Corollary 2.8. ([15]) Let ρ be a non-decreasing concave function on I,then for all x ∈ I we have:∣∣∣RM
r

(
ρ; [0, 1]

)
(x) − ρ (x)

∣∣∣ ≤ 2ω1

(
ρ;

1
r

)
I
.

Theorem 2.9. ([15]) Let ρ be a non-decreasing function on I, then RM
r

(
ρ; [0, 1]

)
(x) is non-decreasing, for all r ∈N,

r ≥ 2.

Corollary 2.10. ([15]) Let ρ be a non-increasing function on I, then RM
r

(
ρ; [0, 1]

)
(x) is non-increasing, for all r ∈N,

r ≥ 2.
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Corollary 2.11. ([15]) Let ρ be a quasiconvex continuous function on I, then RM
r

(
ρ; [0, 1]

)
(x) is quasiconvex on I,

for all r ∈N, r ≥ 2.

Definition 2.12. ([21]) Let ρ be continuous on Ĩ. The for all t1, t2 ∈ Ĩ, ρ is known as:
(i) quasi-convex if
ρ(αt1 + (1 − α)t2) ≤ max{ρ (t1) , ρ (t2)}, α ∈ I;
(ii) quasi-concave, if −ρ is quasi-convex.

Remark 2.13. ([16]) Let ρ be a quasi − convex continuous function on Ĩ, then there is a point c ∈ Ĩ such that
ρ is non-increasing on [a, c] and non-decreasing on [c, b]. So, the definition above makes it apparent that if
ρ is a quasi − concave continuous function on Ĩ , then there is a point c ∈ Ĩ such that ρ is non-decreasing on
[a, c] and non-increasing on [c, b].

3. The approximation and preservation of shape properties

In this section, Subsection 3.1 begins with a remark of paramount importance, which builds upon
Weierstrass’s result. This remark plays a pivotal role, as the majority of the proofs in this section heavily
rely on it.

3.1. The approximation by TMPB operators on compact intervals [a, b]

Remark 3.1. Let ρ : Ĩ → R+be continuous on Ĩ, for all a, b ∈ R, and υ : I → R+, such that υ (x) =
ρ (a + (b − a) x)

That is, υ
(

k
r

)
= ρ

(
a + (b − a)

k
r

)
, r ≥ 1.

Also, let x =
t − a
b − a

, so, we can say υ
( t − a

b − a

)
= ρ (t) and t = a + (b − a) x , t ∈ Ĩ

Hence, from the above and for υ
(

k
r

)
expressions we obtain:

RM
r

(
ρ; [a, b]

)
(t) = RM

r (υ; [0, 1]) (x) .

Theorem 3.2. Let ρ be continuous on Ĩ. Then for r ≥ 2 we have:∣∣∣RM
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ ≤ 24 ([b − a] + 1)ω1

(
ρ;

1
√

r + 1

)
Ĩ

, t ∈ Ĩ.

Proof. By Remark 3.1, we have RM
r

(
ρ; [a, b]

)
(t) = RM

r (υ; [0, 1]) (x) .
Hence, υ is continuous on I. Then, from Theorem 2.7, we get:∣∣∣RM

r
(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ = ∣∣∣RM
r (υ; [0, 1]) (x) − υ (x)

∣∣∣ ≤ 24ω1

(
υ;

1
√

r + 1

)
I
.

Hence, ω1

(
υ;

1
√

r + 1

)
I
≤ ω1

(
ρ,

(b − a)
√

r + 1

)
Ĩ

≤ ([b − a] + 1)ω1

(
ρ,

1
√

r + 1

)
Ĩ

.

Theorem 3.3. Let ρ be a non-decreasing concave on Ĩ. Then we have:∣∣∣RM
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ ≤ 2 ([b − a] + 1)ω1

(
ρ;

1
r

)
Ĩ

, t ∈ Ĩ.

Proof. By Remark 3.1, we have, RM
r

(
ρ; [a, b]

)
(t) = RM

r (υ; [0, 1]) (x).
Therefore, ρ is concave on Ĩ. So, ρ(αℓ1 + (1 − α)ℓ2) ≥ αρ (ℓ1) + (1 − α)ρ (ℓ2) for all ℓ1, ℓ2 ∈ Ĩ , α ∈ I.
Therefore, we can write υ as:

υ(α
ℓ1 − a
b − a

+ (1 − α)
ℓ2 − a
b − a

) ≥ αυ
(
ℓ1 − a
b − a

)
+ (1 − α)υ

(
ℓ2 − a
b − a

)
.

That is, υ the concave on I, hence, from Corollary 2.8, we get:
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r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ = ∣∣∣RM
r (υ; [0, 1]) (x) − υ (x)

∣∣∣ ≤ 2ω1

(
υ;

1
r

)
I
,

Hence, ω1

(
υ;

1
r

)
I
≤ ω1

(
ρ,

(b − a)
r

)
Ĩ
≤ ([b − a] + 1)ω1

(
ρ;

1
r

)
Ĩ
.

Remark 3.4. The order of approximation achieved in Theorem 3.3 can be considered an improvement over
the order of approximation obtained in Theorem 3.2 for some subclasses of functions ρ. This can be easily
and empirically demonstrated by assuming that ρ possesses a Lipschitz-type property, following a similar
approach to the proof of Corollary 4.7 in Section 4 of this work.

3.2. Monotony and shape -preserving properties
Theorem 3.5. Let ρ be a non-decreasing function on Ĩ, then for r ≥ 2, RM

r
(
ρ; [a, b]

)
(t) is non-decreasing on Ĩ.

Proof. By Remark 3.1, υ (x) = ρ (a + (b − a) x) , x ∈ I.
So we obtain RM

r
(
ρ; [a, b]

)
(ti) = RM

r (υ; [0, 1]) (xi), i = 1, 2.
Now, since ρ is a non-decreasing function on Ĩ. So, if t1, t2 ∈ Ĩ such that t1 ≤ t2, we have ρ (t1)− ρ (t2) ≤ 0.
Therefore, if x1, x2 ∈ I such that x1 ≤ x2, we get:
υ (x1) − υ (x2) = ρ (a + (b − a) x1) − ρ (a + (b − a) x2) = ρ (t1) − ρ (t2) ≤ 0.
That is υ is a non-decreasing function, hence from Theorem 2.9, we obtain:
RM

r
(
ρ; [a, b]

)
(t1) ≤ RM

r
(
ρ; [a, b]

)
(t2) , and this finishes the proof.

Corollary 3.6. Let ρ be a non-increasing function, then for r ≥ 2, RM
r

(
ρ; [a, b]

)
(t) is non-increasing on Ĩ .

Proof. By the same way as in Theorem 3.5 we have RM
r

(
ρ; [a, b]

)
(ti) = RM

r (υ; [0, 1]) (xi), i = 1, 2.
Now, since ρ is a non-increasing function on Ĩ. So, if t1, t2 ∈ Ĩ such that t1 ≤ t2, we have ρ (t1)− ρ (t2) ≥ 0.
Therefore, if x1, x2 ∈ [0, 1] such that x1 ≤ x2, we get:
υ (x1) − υ (x2) = ρ (a + (b − a) x1) − ρ (a + (b − a) x2) = ρ (t1) − ρ (t2) ≥ 0.
That is υ is a non-increasing function, hence from Corollary 2.10 we obtain:
RM

r
(
ρ; [a, b]

)
(t1) ≥ RM

r
(
ρ; [a, b]

)
(t2), and this proof is completed.

Theorem 3.7. Let ρ be a quasiconvex continuous function on Ĩ, then RM
r

(
ρ; [a, b]

)
(t) is quasiconvex on Ĩ, for all

r ≥ 2.

Proof. Since ρ is a quasiconvex on Ĩ.
So, ρ(αt1 + (1 − α)t2) ≤ max{ρ (t1) , ρ (t2)}, for all t1, t2 ∈ Ĩ, α ∈ I;
Therefore, by Remark 3.1,we can written υ as:

υ(α
t1 − a
b − a

+ (1 − α)
t2 − a
b − a

) ≤ max{υ
( t1 − a

b − a

)
, υ

( t1 − a
b − a

)
}.

That is υ is a quasiconvex function on I, then from Remark 2.13, we can say there is c‵ ∈ I such that υ is
non-increasing on [0, c‵] and non-decreasing on [c‵, 1].

Let c ∈ Ĩ such that c = a + (b − a) c‵

Now, if ti ∈ [a, c], t1 ≤ t2 such that ti = a + (b − a) xi for all xi ∈ [0, c‵], x1 ≤ x2. Then from Remark 3.1 we
obtain:

RM
r

(
ρ; [a, b]

)
(ti) = RM

r (υ; [0, 1]) (xi), for i = 1, 2.
Hence, since υ is non-increasing on [0, c‵], so from Corollary 2.10, we obtain:
RM

r
(
ρ; [a, b]

)
(t1) ≥ RM

r
(
ρ; [a, b]

)
(t2).

Thus, RM
r

(
ρ; [a, b]

)
(t) is non-increasing on [a, c] .

By using the same steps above and Theorem 2.9, we obtain that RM
r

(
ρ; [a, b]

)
(t) is non-decreasing on

[c, b]. This finishes the proof,

Example 3.8. The monotony and shape preservation properties using RM
r

(
ρ; [a, b]

)
(t) operators are illus-

trated in (Fig.1).
Fig. 1 clearly illustrates the preservation properties exhibited by the dashed-line-marked truncated max-

product Baskakov operators. These operators effectively maintain the characteristics of non-decreasing,
non-increasing, and the quasiconvexity of the function ρ (t), indicated by the solid line.



S. Y. Majeed, S. K. Serenbay / Filomat 38:9 (2024), 3179–3191 3185

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Preservation of non-decreasing.
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(b) Preservation of non-increasing.
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(c) Preservation of quasiconvexity.

TMPB operators Function

Figure 1: Monotony and shape-preserving properties

4. Applications to fuzzy number approximation

4.1. The estimation of approximation using DC and D̃C metrics

Lemma 4.1. ([4]) Let mk,r,s (t) =
φr,k (t)
φr,s (t)

, t ∈
(
a +

(b − a) s
r − 1

, a +
(b − a) (s + 1)

r − 1

)
. Then for all r ≥ 2, s = {0, 1, ···, r−2}

and k = {0, 1, · · ·, r}/{s}, we have mk,r,s (t) < 1.

Lemma 4.2. ([4]) Let ρ be a bounded on Ĩ, and a, b ∈ R. Then for all r ≥ 2, s = {0, 1, · · ·, r − 2}, we have:

RM
r

(
ρ; [a, b]

) (
a + (b − a)

s
r

)
≥ ρ

(
a + (b − a)

s
r

)
.

Remark 4.3. If we take ρ ∈ RF, then we can generate a fuzzy number R̃M
r

(
ρ; [a, b]

)
(t) with the same support

and core of ρ. So we can introduce the function R̃M
r

(
ρ; [a, b]

)
(t) : R → [0, 1] and we have R̃M

r
(
ρ; [a, b]

)
(t) =

RM
r

(
ρ; [a, b]

)
(t). So all the results obtained in Section 3 can be applied to the R̃M

r
(
ρ; [a, b]

)
(t).

Theorem 4.4. ([4]) Let ρ ∈ RF with core
(
ρ
)
= [c, d] and supp

(
ρ
)
= [a, b].such that a ≤ c < d ≤ b Then, it follows

that R̃M
r

(
ρ; [a, b]

)
(t) is a fuzzy number when r is sufficiently large, such that:

1. supp
(
ρ
)
=supp

(
R̃M

r
(
ρ; [a, b]

))
;

2. If core
(
ρ
)
= [cr, dr], then |c − cr| ≤

b−a
r and |d − dr| ≤

b−a
r .

Theorem 4.5. Let ρ ∈ RF with core
(
ρ
)
= [c, d] and supp

(
ρ
)
= [a, b]. Then for all r ≥ 2 we get the estimate:∣∣∣R̃M

r
(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ ≤ 24 ([b − a] + 1)ω1

(
ρ;

1
√

r + 1

)
Ĩ

, t ∈ Ĩ.

Proof. ρ is continuous fuzzy number. Then by Theorem 3.2, the proof is complete.
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Remark 4.6.

1. The conclusion drawn from Theorem 4.5 is that when it comes to approximating fuzzy numbers, the
R̃M

r
(
ρ; [a, b]

)
(t) is a preferable choice over the classical Baskakov operators. Although the degree of

uniform approximation remains consistent, the R̃M
r

(
ρ; [a, b]

)
(t) better maintains the original shape of

the fuzzy number being approximated.
2. In order to address practical aspects, it is valuable to examine the issue of approximating fuzzy

numbers characterized by a Lipschitz-type property. Therefore, we present the following Corollary
4.7, based on Theorem 4.5.

Corollary 4.7. Let ρ ∈ RF with core
(
ρ
)
= [c, d] and supp

(
ρ
)
= [a, b], such that ρ ∈ Lip (α) , 0 < α ≤ 1. Then for or

all r ≥ 2, M > 0 we have:∣∣∣R̃M
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ ≤ 24 ([b − a] + 1) M (r + 1)
−α
2 .

Proof. From Theorem 4.5, we get:∣∣∣R̃M
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ ≤ 24 ([b − a] + 1)ω1

(
ρ;

1
√

r + 1

)
Ĩ

.

According to the definitions of ω1
(
ρ; δ

)
and Lip (α) we get:∣∣∣R̃M

r
(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ ≤ 24 ([b − a] + 1)
[
M |x − t|α

]
.

≤ 24 ([b − a] + 1) M (r + 1)
−α
2

When aiming to approximate a fuzzy number with another fuzzy number or perform fuzzy arithmetic
operations, having a measure of similarity or distance becomes crucial. There are various distance functions
defined for fuzzy sets and fuzzy numbers. One of these functions is known as the Chebyshev-type distance.
These distance functions take into account the degree of overlap, membership values, and other fuzzy
characteristics to determine how similar or dissimilar two fuzzy numbers are.

By utilizing this distance function, we can identify the closest approximation of a fuzzy number using
TMPB operators, as shown in Corollary 4.8 below and Figures 2 and 3. This proves to be particularly
useful in fuzzy control systems, optimization problems, and decision-making processes where comparing
or manipulating fuzzy numbers is necessary.

Corollary 4.8. Let ρ ∈ RF with core
(
ρ
)
= [c, d] and supp

(
ρ
)
= [a, b]. Then we get:

lim
r→∞

Dc

(
R̃M

r
(
ρ; [a, b]

)
, ρ

)
= 0, r ≥ 2.

Proof. By above Theorem 4.5, we get:
Dc

(
R̃M

r
(
ρ; [a, b]

)
, ρ

)
= sup

x∈Ĩ

∣∣∣R̃M
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣
≤ 24 ([b − a] + 1)ω1

(
ρ;

1
√

r + 1

)
Ĩ

and because ρ is continuous, we obtain ω1

(
ρ;

1
√

r + 1

)
Ĩ
→ 0.

Finally, the fuzzy numbers represented in the parametric are discussed as follows:

Remark 4.9. Recall, we know the important representation of ρ ∈ RF is that referred to as α − cut (LU
parametric representation).

That is if ρ ∈ RF,we can write it by a pair of functions
(
ρl, ρu

)
where ρl, ρu : [0, 1] → R and satisfy the

conditions of interval numbers of the real lines.
This means (1) ρl is non-decreasing

(2) ρu is non-increasing
(3) ρl (1) ≤ ρu (1).
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So, let ρ ∈ RF, we can construct the fuzzy number R̃M
r

(
ρ
)

as follows:
We consider RM

r

(
ρl; [0, 1]

)
and RM

r
(
ρu; [0, 1]

)
and since RM

r
(
ρ; [0, 1]

)
(x) preserves the monotonicity. There-

fore, RM
r

(
ρl; [0, 1]

)
is non-decreasing over [0, 1] and RM

r
(
ρu; [0, 1]

)
is non-increasing over [0, 1] (because

ρ ∈ RF).
In addition to that, RM

r

(
ρl,u; [0, 1]

)
(0) = ρl,u (0) and RM

r

(
ρl,u; [0, 1]

)
(1) = ρl,u (1) respectively.

Thus, by above we obtain RM
r

(
ρl; [0, 1]

)
(1) ≤ RM

r
(
ρu; [0, 1]

)
(1).

As a result, we get the proper fuzzy number R̃M
r

(
ρ
)
=

(
RM

r

(
ρl; [0, 1]

)
,RM

r
(
ρu; [0, 1]

))
, which preserves

the support and the core of ρ.
Finally, since ρl, ρuare continuous then RM

r

(
ρl,u; [0, 1]

)
are continuous too.

Theorem 4.10. Let ρ =
(
ρl, ρu

)
∈ RF be continuous. Then for all r ≥ 2 we have:

∼

DC

(
R̃M

r
(
ρ
)
, ρ

)
≤ 24 max

{
ω1

(
ρl;

1
√

r + 1

)
I
, ω1

(
ρu;

1
√

r + 1

)
I

}
, x ∈ I.

Proof. Since
∼

DC

(
R̃M

r
(
ρ
)
, ρ

)
= sup

x∈[0,1]

{
max

{∣∣∣∣RM
r

(
ρl

)
(x) − ρl (x)

∣∣∣∣ , ∣∣∣RM
r

(
ρu) (x) − ρu (x)

∣∣∣}}
from Theorem 2.7, we get:
∼

DC

(
R̃M

r
(
ρ
)
, ρ

)
≤ max

{
24ω1

(
ρl;

1
√

r + 1

)
I
, 24ω1

(
ρu;

1
√

r + 1

)
I

}
This finishes the proof.

Theorem 4.11. Let ρ =
(
ρl, ρu

)
∈ RF and let δ be a reduction function on I. Then for all r ≥ 2 we have:

i)lim
r→∞

1∫
0
δ (α) RM

r

(
ρl

)
(α) dα =

1∫
0
δ (α)ρl (α) dα,

ii)lim
r→∞

1∫
0
δ (α) RM

r
(
ρu) (α) dα =

1∫
0
δ (α)ρu (α) dα

Proof. i)

∣∣∣∣∣∣ 1∫
0
δ (α) RM

r

(
ρl

)
(α) dα −

1∫
0
δ (α)ρl (α) dα

∣∣∣∣∣∣ ≤ δ (1)
1∫
0

∣∣∣∣RM
r

(
ρl

)
(α) − ρl (α)

∣∣∣∣ dα
≤ δ (1)

∼

DC

(
R̃M

r
(
ρ
)
, ρ

)
Hence by Theorem 4.10, and properties of modulus of continuity this proof is finished.
ii) It is proven in the same way as i.

Corollary 4.12. Let ρ =
(
ρl, ρu

)
∈ RF and let δ be a reduction function.on I. Then for all r ≥ 2 we have:

1) lim
r→∞

El
(
R̃M

r
(
ρ
))
= El

(
ρ
)

and lim
r→∞

wid
(
R̃M

r
(
ρ
))
= wid

(
ρ
)

2) lim
r→∞

Valδ
(
R̃M

r
(
ρ
))
= Valδ

(
ρ
)

and lim
r→∞

Ambδ
(
R̃M

r
(
ρ
))
= Ambδ

(
ρ
)

Proof. 1) By taking the particular case of reduction function δ for δ (α) = αm , m ∈N
Hence, if m = 0 then δ (α) = α0 = 1 and by Theorem 4.11 this proof is finished.

2) lim
r→∞

Valδ
(
R̃M

r
(
ρ
))
= lim

r→∞

1∫
0
δ (α) RM

r
(
ρu) (α) dα − lim

r→∞

1∫
0
δ (α) RM

r

(
ρl

)
(α) dα

Then from Theorem 4.11, we get:

lim
r→∞

Valδ
(
R̃M

r
(
ρ
))
=

1∫
0
δ (α)ρu (α) dα −

1∫
0
δ (α)ρl (α) dα = Valδ

(
ρ
)

In the same way, we can prove
lim
r→∞

Ambδ
(
R̃M

r
(
ρ
))
= Ambδ

(
ρ
)
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4.2. The estimation of approximation using L1
−type metrics

In this part, estimates of approximations with respect to the metrics D1 are provided. Therefore, before
the conclusions related to approximation are started, some basic things that are needed in these conclusions
must be given.

Definition 4.13. ([16]) Let ρ be any function on Ĩ, and let M > 0 be any constant. Now, if for any partition

of Ĩ, a = t0 < t1 < · · · < tr = b,we have
r∑

i=0

∣∣∣ρ (ti+1) − ρ (ti)
∣∣∣ ≤M. Then ρ is said to be of bounded variation.

The total variation of ρ is the supremum over all the above sums on Ĩ, and is denoted by the symbol
Vb

a
(
ρ
)
.

In other words, by Jordan’s theorem, we can say ρ of bounded variation on Ĩ if and only if it can be
expressed as the difference between two non-decreasing functions ρ1, ρ2 : Ĩ → R. That is, ρ = ρ1 − ρ2 on Ĩ.

Noteworthy, is that every fuzzy number exhibits bounded variation within its support.

Recall, Let ρ ∈ RF, such that a < c ≤ d < b with core
(
ρ
)
= [c, d] and supp

(
ρ
)
= [a, b]. So there exists

lρ, which is non-decreasing on [a, c], known as the left side of ρ, and rρ, which is non-increasing on [d, b],
known as the right side of ρ. Such that ρ (t) = lρ for t ∈ [a, c] , ρ (t) = rρ for t ∈ [d, b] and ρ (1) = 1 for t ∈ [c, d] .

Lemma 4.14. ([16]) Let ρ ∈ RF, so we can say Vb
a
(
ρ
)
≤ 2 and ρ (t) = ρ1 (t) − ρ2 (t) , for all t ∈ Ĩ , such that ρ1 and

ρ2 are non-decreasing, then we get
ρ1 (t) = lρ (t) if t ∈ [a, c] , ρ1 (t) = 1 if t ∈ [c, b] ,
ρ2 (t) = 0 if t ∈ [a, d], ρ2 (t) = 1− rρ if t ∈ [d, b] .

Theorem 4.15. Let ρ be with bounded variation on I, such that ξ (ℓ) =
ρ (ℓ)
ℓ

is non-increasing on (0, 1]. Then for
all r ∈N, r ≥ 2 we have:

1∫
0

∣∣∣RM
r

(
ρ; [0, 1]

)
(x) − ρ (x)

∣∣∣ dx ≤
M

r − 1

where M = 2
[
V1

0
(
ρ1

)
+ V1

0
(
ρ2

)
+

∥∥∥ρ∥∥∥] and ρ = ρ1 − ρ2, with ρ1, ρ2 are non-decreasing.

Proof. This Theorem is proved by applying the same technique as in ([16], Theorem 2.6.9).

And by extending the results obtained in L1
− norm to the arbitrary compact interval Ĩ, a ≤ b, then we

can apply it to the approximation of fuzzy numbers, as follows.
By conclusion of Lemma 4.1 we have:

r
∨

k=0
φr,k (t) = φr,s (t) for all t ∈

[
a +

(b − a) s
r − 1

, a +
(b − a) (s + 1)

r − 1

]
.

Therefore, if ρk,r,s :
[
a +

(b − a) s
r − 1

, a +
(b − a) (s + 1)

r − 1

]
→ R.

Then, ρk,r,s (t) = mk,r,s (t) · ρ
(
a +

(b − a) k
r

)
, k = {0, 1, 2, · · ·, r}, s = {0, 1, 2, · · ·, r − 2}

Thus, ρk,r,s (t) =
(r+k−1

k
)(r+s−1

s
) ( t − a

b + t − 2a

)k−s
· ρ

(
a + (b − a)

k
r

)
.

As a result of the above, we can show the following:

Theorem 4.16. Let ρ be with bounded variation on Ĩ, such that
ρ (t)
t − a

is non-increasing on (a, b]. Then for all r ≥ 2,
s = {0, 1, 2, · · ·, r − 2} there is M > 0 that only depends on ρ, such that:

b∫
a

∣∣∣RM
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ dt ≤
M

r − 1
, for all r ∈N.
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Proof. By Remark 3.1,we have υ (x) = ρ (a + (b − a) x)

Let x =
t − a
b − a

, so, we can say υ
( t − a

b − a

)
= ρ (t) and t = a + (b − a) x for all t ∈ Ĩ. Then we have:∣∣∣RM

r
(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ = ∣∣∣RM
r (υ; [0, 1]) (x) − υ (x)

∣∣∣.
Then, we can easily get:
b∫
a

∣∣∣RM
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ dt = (b − a)
1∫
0

∣∣∣RM
r (υ; [0, 1]) (x) − υ (x)

∣∣∣ dx.

Now, if ξ (x) =
υ (x)

x
=
ρ
(
a+(b−a) t−a

b−a

)
t−a
b−a

= (b − a)
ρ (t)
t − a

.

Then, directly we can say υ satisfies the hypothesis of Theorem 4.15, that is υ is of bounded variation on

I, such that ξ (x) =
υ (x)

x
is non-increasing on (0, 1].

Hence, we obtain of a constant Mυ which only depends on υ, such that
1∫
0

∣∣∣RM
r (υ; [0, 1]) (x) − υ (x)

∣∣∣ dx ≤
Mυ

r − 1
, r ≥ 2.

But because υ is a function that depends on ρ, we can easily determine that Mυ only depends on ρ.
Thus, if we take M = (b − a) Mυ, we get the intended conclusion.

Theorem 4.17. Let ρ ∈ RF, such that a < c ≤ d < b with core
(
ρ
)
= [c, d] and supp

(
ρ
)
= [a, b], and let the restriction

of ρ to its support fulfills the hypotheses of Theorem 4.16, then we have:

D1

(
R̃M

r
(
ρ; [a, b]

)
, ρ

)
≤

6 (b − a)
r − 1

, r ≥ 2

Proof. Since D1

(
R̃M

r
(
ρ; [a, b]

)
, ρ

)
=

∫
R

∣∣∣R̃M
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ dt,

So, we prove this theorem with the same idea as proving the previous Theorem 4.16.
Therefore, we define the ξ ∈ RF, where ξ (x) = ρ (a + (b − a) x), if x ∈ I and ξ (x) = 0 if x < I that is

supp(ξ) = [0, 1] .
Hence, we deal with ξ by the same steps that were dealt with υ in the previous Theorem 4.16, so we get:∫
R

∣∣∣R̃M
r

(
ρ; [a, b]

)
(t) − ρ (t)

∣∣∣ dt ≤
(b − a) Mξ

r − 1
.

Where the hypothesis of Theorem 4.15 is fulfilled by the restriction of ξ to its support, we are able to
take:

Mξ = 2
[
V1

0 (ξ1) + V1
0 (ξ2) + ∥ξ∥

]
,

Now we apply the definition of ρ1 and ρ2 in Lemma 4.14 to ξ1 and ξ2 in the same way, then easily we
get:

V1
0 (ξ1) = V1

0 (ξ2) = 1 and we know the ∥ξ∥ = 1,we obtain that Mξ = 6. This finishes the proof.

Finally, to clarify all the theoretical conclusions mentioned in this paper, we give the following example.

Example 4.18. The approximation of a fuzzy number ρ was illustrated using both the truncated max-
product Baskakov operators and classical operators in (Fig.2 and Fig.3), where:

µρ (t) =


5t2
− 0.25 i f 0 ≤ t < 0.5
1 i f 0.5 ≤ t ≤ 0.8

5 − 5t i f 0.8 < t ≤ 1

In Fig.2 and Fig.3. It’s clear to us that the truncated max-product (non-linear) Baskakov operators
marked with dashed lines are approximations far better than the classical operators marked with dotted
lines. Furthermore, our analysis leads us to the conclusion that as the degree of ’r’ increases, the level of
approximation by these operators improves significantly.
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Figure 2: Approximations by classical and the truncated max-product Baskakov operators, r = 20.
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Figure 3: Approximations by classical and the truncated max-product Baskakov operators, r = 50.

5. Conclusion

This study demonstrates the significant potential of utilizing the truncated max-pro Baskakov operators
as valuable instruments for approximating fuzzy numbers. Our findings indicate that these operators
proficiently preserve both the support and, to a substantial extent, the core of the approximated fuzzy
number. From this approximation, several noteworthy conclusions can be drawn:

• The uniform convergence of R̃M
r

(
ρ; [a, b]

)
(t) for the fuzzy number ρ was established when the µρ (x)

is continuous.

• R̃M
r

(
ρ; [a, b]

)
(t) successfully preserves the monotony and shape properties of the approximate ρ ∈ RF.

• In the parametric case, it was observed that R̃M
r

(
ρ
)

uniformly converges to ρ. Additionally, important
aspects of R̃M

r
(
ρ
)
, such as widths, expected intervals, and ambiguities, converge to ρ.

• Improved estimates of convergence, in relation to metrics spaces DC and L1
−type, were obtained

through the utilization of R̃M
r

(
ρ; [a, b]

)
(t).
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