Spectral Turán problem on Berge- $K_{2, t}$ hypergraphs

Zhongxun Zhu ${ }^{\text {a }}$, Liyi Zheng ${ }^{\text {b }}$, Yuan Wang ${ }^{\text {c,** }}$, Yaping Zhao ${ }^{\text {b }}$
${ }^{a}$ College of Preparatory Education, South Central Minzu University, Wuhan 430074, P.R. China
${ }^{b}$ Faculty of Mathematics and Statistics, South Central Minzu University, Wuhan 430074, P.R. China ${ }^{c}$ Qiongshan Middle School, Haikou City, Haikou 571199, P.R. China

Abstract

It is well-known that Turán problem is a classical problem in combinatorics, and the spectral Turán-type problem is the special form of Turán problem. Given a graph F, a hypergraph is called Berge- F if it can be obtained by replacing each edge in F by a hyperedge containing it. In this paper, we investigate the spectral Turán-type problem on linear r-uniform hypergraphs without Berge- $K_{2, t}$, and attain an upper bound of its spectral radius.

1. Introduction

It is well-known that Turán type problem is a classical problem in combinatorics, that is, for a given graph H (or a family graphs \mathcal{H}), what is the maximal size of an H-free (\mathcal{H}-free) graph of order n ? The extremal value is called Turán number of $H(\mathcal{H})$ and denoted by $e x(n, H)(e x(n, \mathcal{H}))$. In 2013, Füredi and Simonovits [7] extended Turán type problem to the following general form.
(P1) For a class \mathcal{G} of graphs, $G \in \mathcal{G}$ does not contain some subgraph H (or subgraph family \mathcal{H}), there are two parameters on \mathcal{G} (for example, order and size), to maximize the second parameter under the condition that G is H-free (\mathcal{H}-free) and the first parameter is given.

In 1986, Brualdi and Solheid [2] proposed the following problem, which became one of the classic problems in spectral graph theory.
(P2) Given a set \mathcal{G} of graphs, find $\min \left\{\lambda_{1}(G): G \in \mathcal{G}\right\}$ and $\max \left\{\lambda_{1}(G): G \in \mathcal{G}\right\}$, and characterize the graphs which achieve the minimum or maximum value.

If the first parameter is the order $n(G)$ of G and the second is spectral radius $\lambda_{1}(G)$ of G in $\mathbf{P 1}$, Nikiforov [21] proposed the following problem, which is named as Spectral Turán-type problem:
(P3) What is the maximal spectral radius $\lambda_{1}(G)$ of an H-free (\mathcal{H}-free) graph G of order $n(G)$?

[^0]These problems attract many researchers interesting and there are many elegant results on these fields and they are still a very active research topics, for examples, please see $[2,4,7,19,21]$ and references there in.

Hypergraphs model more general types of relations than graphs do. It is natural to generalize the above problems to hypergraphs. Indeed the theory of hypergraphs attract more and more researchers interesting. Since Lim [17] and Qi [22] independently introduced the notions of eigenvalue and eigenvector for tensors, and Cooper and Dutle [3] gave the definition of adjacent tensor of hypergraphs, many results on spectral radius of hypergraphs and on hypergraph Turán problems, which are similar to P2 and P1 respectively, are obtained, for examples, $[1,3,6,11,12,14,15,18,23]$ and references therein. Recently, a handful of results on Spectral Turán-type problem relating to hypergraphs, which is similar to P3, are attained, such as $[8-10,13,20]$ and references therein. In this work, we will continue to study on problems for hypergraphs spectral Turán-type problem.

The rest of this work is organized as following. In the next section, some necessary notions and terminologies are given. In section 3, we will study the spectral Turán-type problem on linear r-uniform hypergraphs without Berge $-K_{2, t}$.

2. Preliminaries

An order r dimension n complex tensor $\mathbb{A}=\left(a_{i_{1} \ldots i_{r}}\right)$ is a multi-array of entries $a_{i_{1} \ldots i_{r}} \in \mathbb{C}$, where $i_{j} \in[n]=\{1,2, \ldots, n\}$ and $j \in[r]$. If elements $a_{i_{1} \ldots i_{r}}$ are invariant under any permutation of indices i_{1}, \ldots, i_{r}, \mathbb{A} is said symmetric. If there exists a subset \mathcal{I} with $\emptyset \subsetneq I \subsetneq[n]$, satisfying $a_{i_{1} i_{2} \ldots i_{r}}=0$ for all $i_{1} \in \mathcal{I}$ and some $i_{j} \notin I$ for $j \in\{2,3, \ldots, r\}, \mathbb{A}$ is called a weakly reducible, otherwise we say \mathbb{A} a weakly irreducible. If every element $a_{i_{1} \ldots i_{r}} \geq 0, \mathbb{A}$ is called an nonnegative tensor.

For a vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in \mathbb{C}^{n}, \mathbb{A} x^{r-1}$ is an n-dimensional vector with its i-th component being

$$
\left(\mathbb{A} x^{r-1}\right)_{i}=\sum_{i_{2}, \cdots, i_{r}=1}^{n} a_{i i_{2} \cdots i_{r}} x_{i_{2}} \cdots x_{i_{r}} .
$$

If there exists a $\lambda \in \mathbb{C}$ and $0 \neq x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{C}^{n}$ satisfying $\mathbb{A} x^{r-1}=\lambda x^{[r-1]}$, where $\left(x^{[r-1]}\right)_{i}=x_{i}^{r-1}$ for $i \in[n], \lambda$ is called an eigenvalue of \mathbb{A} and x the eigenvector of \mathbb{A} associated with $\lambda[17,22] . \rho(\mathbb{A})(=\max \{|\lambda|: \lambda$ is an eigenvalue of $\mathbb{A}\}$) is the spectral radius of \mathbb{A}.

A general hypergraph $H=(V(H), E(H))$ consists of a vertex set $V(H)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and a hyperedge (or edge for simplicity) set $E(H)=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$, where $E(H) \subseteq P(V) \backslash\{\emptyset\}$ and $P(V)$ stands for the power set of V. Denote $r(H)=\max _{e \in E(H)}|e|$ (resp. $\operatorname{cr}(H)=\min _{e \in E(H)}|e|$) be the rank (resp. co-rank) of H. If $r(H)=c r(H)=r, H$ is called an r-uniform hypergraph, and it is an ordinary graph for $r(H)=c r(H)=2$. A hypergraph H is called a linear hypergraph if there is at most one common vertex between any two edges. For a fixed vertex $u \in V(H)$, let

$$
\begin{aligned}
N_{u} & =\{v \in V(H) \backslash\{u\} \mid v, u \in e \in E(H)\}, \\
\overline{N_{u}} & =\left\{v \in V(H) \backslash\left(N_{u} \cup\{u\}\right) \mid v \in e \in E(H), e \cap N_{u} \neq \emptyset\right\} .
\end{aligned}
$$

Let $E_{u}=\{e \in E(H) \mid u \in e \in E(H)\}$, the degree of u denoted by $d(u)$ and $d(u)=\left|E_{u}\right|$. For two vertices u, v, let $N_{u v}$ be the set of common neighbors of u and v. The codegree of u and v, denoted by $d(u, v)$, is the number of edges containing both u and v in H. Denote Δ, Δ_{2} be the maximum degree, the maximum codegree of H, respectively.

For a graph $F=(V(F), E(F))$, a hypergraph H is called a Berge- F if it can be obtained by replacing each edge in F by a hyperedge containing it. Given a class of graphs \mathcal{F}, we say that a hypergraph H is Berge- \mathcal{F} free if for every $F \in \mathcal{F}$, the hypergraph H does not contain a Berge- F as a subhypergraph. We call the maximum possible number $\operatorname{ex}(n, \mathcal{F})$ of hyperedges in a Berge- \mathcal{F} free hypergraph on n vertices as Turán number of Berge- \mathcal{F}.

In [16], F. Lazebnik and J. Verstraëte obtained an upper bound of Turán number on r-uniform hypergraphs H without cycles of length less than five. This result was improved by Ergemlidze, Győri and

Methuku in [5]. In [8], Gerbner, Methuku and Vizer attained an asymptotics for the Turán number of Berge- $K_{2, t}$. In [13], Hou, Chang and Cooper generalized these problems to spectral version of Turán-type problem and given an upper bound for spectral radius of linear hypergraphs without Berge- C_{4}, at the same time, they put forward a problem to study spectral version of Turán-type problem of linear hypergraphs without Berge- $K_{2, t}$. In this paper, we will deal with this problem.

The following lemma is a useful tool in our main result.
Lemma 2.1. [13] Let H be a connected r-uniform linear hypergraph and ρ be the spectral radius of the adjacency tensor of H. Let u be the vertex with maximum eigenvector entry. Then $\rho^{2} \leq \frac{1}{r-1} \sum_{v \in N_{u}} d(v)$.

3. Spectral Turán-type problem on linear uniform hypergraphs without Berge $K_{2, t}$

Let $H=(V(H), E(H))$ be an r-uniform linear hypergraph and $X \subseteq V(H)$, let

$$
\begin{aligned}
& E_{s}(X)=\{e \mid e \in E(H) \text { and }|e \cap X|=s\}, \quad e_{s}(X)=\left|E_{s}(X)\right| \\
& E_{s}^{v}(X)=\{e \mid v \in e \in E(H) \text { and }|e \cap X|=s\}, e_{s}^{v}(X)=\left|E_{s}^{v}(X)\right| .
\end{aligned}
$$

Lemma 3.1. For $r \geq 3$, let H be a r-uniform linear hypergraph without Berge- $K_{2, t}$. Then for any $v \in N_{u}$,

$$
\sum_{s=2}^{r} e_{s}^{v}\left(N_{u}\right) \leq(r-1)(t-1)+1
$$

Proof. In order to obtain a contradiction, we assume that there exists a vertex $v \in N_{u}$ such that the number of hyperedges in $\cup_{s=2}^{r} E_{s}^{v}\left(N_{u}\right)$ is at least $(r-1)(t-1)+2$. Since H is linear, it is easy to see that only one hyperedge, say $h_{1}, \stackrel{s=2}{ } \cup_{s=2}^{r} E_{s}^{v}\left(N_{u}\right)$ contains u, and let h_{2}, \ldots, h_{l} be the remaining hyperedges in $\cup_{s=2}^{r} E_{s}^{v}\left(N_{u}\right)$, where $l=\sum_{s=2}^{r} e_{s}^{v}\left(N_{u}\right)$. Then $l \geq(r-1)(t-1)+2 \geq t+1$.

For each hyperedge $h_{i}(2 \leq i \leq l)$, we can choose out a vertex $x_{i} \in\left(h_{i} \cap N_{u}\right) \backslash\{v\}$ since $\left|h_{i} \cap N_{u}\right| \geq 2$. Obviously, for any distinct $i, j \in[l] \backslash\{1\}, x_{i} \neq x_{j}$ and both are adjacent to u. It is easy to see that we can select a vertex set W consisting of $(r-1)(t-1)+1$ distinct vertices from $\left\{x_{i} \mid i \in[l] \backslash\{1\}\right\}$, without loss of generality, say $W=\left\{x_{2}, x_{3}, \ldots, x_{(r-1)(t-1)+2}\right\}$. Furthermore we know that there exist at least t distinct hyperedges obtained from $W \cup\{u\}$, which are incident to u, without loss of generality, say $l_{1}^{u}, l_{2}^{u}, \cdots, l_{t}^{u}$. Let $y_{i} \in l_{i}^{u} \cap W$, it is obvious that y_{i} is adjacent to v for $i \in[t]$. Denote l_{i}^{v} be the hyperedge containing v and y_{i}. By the linearity of H, we know that $l_{1}^{v}, l_{2}^{v}, \cdots, l_{t}^{v}$ are distinct each other. Then the $2 t$ hyperedges $l_{1}^{u}, l_{2}^{u}, \cdots, l_{t}^{u}$ and $l_{1}^{v}, l_{2}^{v}, \cdots, l_{t}^{v}$ form a Berge- $K_{2, t}$ in H, a contradiction.

For $i \in[d(u)]$ and $j \in[r-1]$, let $h_{i}^{u}=\{u\} \cup\left\{u_{j, i} \mid j \in[r-1]\right\}$ be a hyperedge of H in the following

$$
\begin{align*}
U_{u_{j, i}} & =\left\{x \in \overline{N_{u}} \mid x \in e \in E_{1}^{u_{j, i}}\left(N_{u}\right)\right\}, \tag{1}\\
U_{i} & =\cup_{j=1}^{r-1} U_{u_{j, i}} . \tag{2}
\end{align*}
$$

Then $\left|U_{u_{j, i}}\right|=(r-1)\left|E_{1}^{u_{j, i}}\left(N_{u}\right)\right|=(r-1) e_{1}^{u_{j, i}}\left(N_{u}\right),\left|N_{u}\right|=(r-1) d(u)$. Further by Lemma 3.1, we have

$$
d\left(u_{j, i}\right)=e_{1}^{u_{j, i}}\left(N_{u}\right)+\sum_{s=2}^{r} e_{s}^{u_{j, i}}\left(N_{u}\right) \leq e_{1}^{u_{j, i}}\left(N_{u}\right)+(r-1)(t-1)+1
$$

Therefore,

$$
\begin{align*}
e_{1}^{u_{j, i}}\left(N_{u}\right) & \geq d\left(u_{j, i}\right)-(r-1)(t-1)-1, \\
\left|U_{u_{j, i}}\right| & =(r-1) e_{1}^{u_{j, i}}\left(N_{u}\right) \geq(r-1) d\left(u_{j, i}\right)-(r-1)^{2}(t-1)-(r-1) \tag{3}\\
\sum_{u_{j, i} \in N_{u}}\left|U_{u_{j, i}}\right| & \geq \sum_{u_{j, i} \in N_{u}}\left((r-1) d\left(u_{j, i}\right)-(r-1)^{2}(t-1)-(r-1)\right) \\
& =\sum_{u_{j, i} \in N_{u}}(r-1) d\left(u_{j, i}\right)-(r-1)^{2}(t-1)\left|N_{u}\right|-(r-1)\left|N_{u}\right| \\
& =\sum_{u_{j, i} \in N_{u}}(r-1) d\left(u_{j, i}\right)-(r-1)^{3}(t-1) d(u)-(r-1)^{2} d(u) \tag{4}
\end{align*}
$$

Lemma 3.2. For $r \geq 3$, let H be a r-uniform linear hypergraph without Berge- $K_{2, t}$ and $h_{i}^{u}=\{u\} \cup\left\{u_{j, i} \mid j \in[r-1]\right\}$ be its a hyperedge. For $i \in[d(u)], j, k \in[r-1]$, let $u_{j, i}, u_{k, i} \in h_{i}^{u}$ be any two distinct vertices. Then $\left|N_{u_{j, i} u_{k, i}}\right| \leq t(r-1)-1$.

Proof. For simplicity, let $u_{j, i}=u_{j}, u_{k, i}=u_{k}$, then $N_{u_{j, i} u_{k, i}}=N_{u_{j} u_{k}}$. If $d\left(u_{k}\right) \leq t$ or $d\left(u_{j}\right) \leq t$, it is easy to that

$$
\left|N_{u_{j} u_{k}}\right| \leq(t-1)(r-1)+(r-2)=t(r-1)-1
$$

The equality holds only for the case that all vertices which are adjacent to u_{k} (resp. u_{j}) also belong to $N_{u_{j}}$ $\left(\operatorname{resp} . N_{u_{k}}\right)$.

Now we only need to consider the case that $d\left(u_{k}\right) \geq t+1$ and $d\left(u_{j}\right) \geq t+1$. Suppose for the sake of a contradiction that $\left|N_{u_{j} u_{k}} \backslash\left\{h_{i}^{u}\right\}\right| \geq t(r-1)$. Then there are at least $(t-1)(r-1)+1$ vertices in $N_{u_{j} u_{k}} \backslash\left\{h_{i}^{u}\right\}$. Since H is r-uniform, there must exist t vertices $v_{1}, v_{2}, \cdots, v_{t} \in N_{u_{j} u_{k}} \backslash\left\{h_{i}^{u}\right\}$ such that the pairs $u_{k} v_{1}, \cdots, u_{k} v_{t}$ are contained in t distinct edges which are not the edge h_{i}^{u}.
(1.1). If there are two pairs $u_{j} v_{p}, u_{j} v_{q}$ contained in one edge incident to u_{j}, there must exist a vertex $v_{q}^{\prime} \in N_{u_{j} u_{k}} \backslash\left\{h_{i}^{u}\right\}$ such that $u_{j} v_{1}, \cdots, u_{j} v_{q}^{\prime}, u_{j} v_{p}\left(v_{q}\right), \cdots, u_{j} v_{t}$ in t distinct edges incident to u_{j}. Then the edges containing $u_{j} v_{1}, \cdots, u_{j} v_{q}^{\prime}, u_{j} v_{p}\left(v_{q}\right), \cdots, u_{j} v_{t}$ and $u_{k} v_{1}, \cdots, u_{k} v_{q}^{\prime}, u_{j} v_{p}\left(v_{q}\right), \cdots, u_{k} v_{t}$ form a Berge- $K_{2, t}$ in H, a contradiction.
(1.2). If there are three pairs $u_{j} v_{p}, u_{j} v_{q}, u_{j} v_{m}$ contained in one edge incident to u_{j}, there must exist two vertices $v_{q}^{\prime}, v_{m}^{\prime} \in N_{u_{j} u_{k}} \backslash\left\{h_{i}^{u}\right\}$ such that $u_{j} v_{1}, \cdots, u_{j} v_{p}\left(v_{q}, v_{m}\right), u_{j} v_{q}^{\prime}, u_{j} v_{m}^{\prime}, \cdots, u_{j} v_{t}$ in t distinct edges incident to u_{j}. Then the edges containing $u_{j} v_{1}, \cdots, u_{j} v_{p}\left(v_{q}, v_{m}\right), u_{j} v_{q}^{\prime}, u_{j} v_{m}^{\prime} \cdots, u_{j} v_{t}$ and $u_{k} v_{1}, \cdots, u_{j} v_{p}\left(v_{q}, v_{m}\right), u_{k} v_{q}^{\prime}, u_{j} v_{M^{\prime}}^{\prime} \cdots, u_{k} v_{t}$ form a Berge- $K_{2, t}$ in H, a contradiction.
(1.t). If there are t pairs $u_{j} v_{1}, \cdots, u_{j} v_{t}$ contained in one edge incident to u_{j}, there must exist $t-1$ vertices $v_{2}^{\prime}, \cdots, v_{t}^{\prime} \in N_{u_{j} u_{k}} \backslash\left\{h_{i}^{u}\right\}$ such that $u_{j} v_{1}, u_{j} v_{2}^{\prime}, \cdots, \cdots, u_{j} v_{t}$ in t distinct edges incident to u_{j}. Then the edges containing $u_{j} v_{1}\left(v_{2}, \cdots, v_{t}\right), u_{j} v_{2}^{\prime}, \cdots, \cdots, u_{j} v_{t}^{\prime}$ and $u_{k} v_{1}\left(v_{2}, \cdots, v_{t}\right), u_{k} v_{2}^{\prime}, \cdots, \cdots, u_{k} v_{t}^{\prime}$ form a Berge- $K_{2, t}$ in H, a contradiction.

Otherwise the pairs $u_{j} v_{1}, \cdots, u_{j} v_{t}$ are contained in t different edges incident to u_{j}, then the $2 t$ edges containing the pairs $u_{k} v_{1}, \cdots, u_{k} v_{t}, u_{j} v_{1}, \cdots, u_{j} v_{t}$ form a Berge- $K_{2, t}$ in H, a contradiction. So, for the case that $d\left(u_{k}\right) \geq t+1$ and $d\left(u_{j}\right) \geq t+1$, we have $\left|N_{u_{j} u_{k}}\right| \leq t(r-1)-1$.

From the above discussion, we know that $\left|N_{u_{j, i}, u_{k, i}}\right| \leq t(r-1)-1$.
Lemma 3.3. For $r \geq 3$, let H be a r-uniform linear hypergraph without Berge- $K_{2, t}$ and $U_{u_{j, i}}$ be defined as (1). For $i \in[d(u)]$, we have

$$
\sum_{i=1}^{d(u)} \sum_{j=1}^{r-1}\left|U_{u_{j i}}\right| \leq(t-1)\left(n-1-\left|N_{u}\right|\right)+\frac{(r-1)^{2}(r-2)(t-1)}{2} d(u)
$$

Proof. Let $h_{i}^{u}=\{u\} \cup\left\{u_{j, i} \mid j \in[r-1]\right\}$ be a hyperdege in H, and $u_{j, i}, u_{k, i} \in h_{i}^{u}$ be any two distinct vertices. By (1) and (2), it is easy to see that

$$
\begin{equation*}
\left|U_{i}\right|=\left|\bigcup_{j=1}^{r-1} U_{u_{j, i}}\right| \geq \sum_{j=1}^{r-1}\left|U_{u_{j, i}}\right|-\sum_{1 \leq j<k \leq r-1}\left|U_{u_{j, i}} \bigcap U_{u_{k, i}}\right| . \tag{5}
\end{equation*}
$$

Further by Lemma 3.2, we get

$$
\begin{aligned}
\left|U_{u_{j, i}} \bigcap U_{u_{k, i}}\right| & \leq\left|N u_{j} u_{k} \backslash\left(N_{u} \cup\{u\}\right)\right| \\
& \leq\left|N_{u_{j} u_{k}} \backslash\left(h_{i}^{u} \backslash\left\{u_{j, i}, u_{k, i}\right\}\right)\right| \\
& \leq t(r-1)-1-(r-2)=(t-1)(r-1)
\end{aligned}
$$

By (5), we have

$$
\left|U_{i}\right| \geq \sum_{j=1}^{r-1}\left|U_{u_{j, i}}\right|-\binom{r-1}{2}(t-1)(r-1)=\sum_{j=1}^{r-1}\left|U_{u_{j, i}}\right|-\frac{(r-1)^{2}(r-2)(t-1)}{2}
$$

Then

$$
\begin{align*}
\sum_{j=1}^{r-1}\left|U_{u_{j, i}}\right| & \leq\left|U_{i}\right|+\frac{(r-1)^{2}(r-2)(t-1)}{2} \\
\sum_{i=1}^{d(u)} \sum_{j=1}^{r-1}\left|U_{u_{j, i}}\right| & \leq \sum_{i=1}^{d(u)}\left|U_{i}\right|+\sum_{i=1}^{d(u)} \frac{(r-1)^{2}(r-2)(t-1)}{2} \\
& =\sum_{i=1}^{d(u)}\left|U_{i}\right|+\frac{(r-1)^{2}(r-2)(t-1)}{2} d(u) \tag{6}
\end{align*}
$$

In order to attain our desirable result, now we only want to prove the following inequality.

$$
\begin{equation*}
\sum_{i=1}^{d(u)}\left|U_{i}\right| \leq(t-1)\left(n-1-\left|N_{u}\right|\right) \tag{7}
\end{equation*}
$$

Note that $h_{i}^{u}=\{u\} \cup\left\{u_{j, i} \mid j \in[r-1]\right\}$ be the hyperedge associated to U_{i} for $i \in[d(u)]$.
If $t>d(u)$, we have $d(u) \leq t-1$, and for any $v \in \overline{N_{u}}$ it belongs to at most $d(u)$ sets $U_{i}(i \in[d(u)])$. Then

$$
\sum_{i=1}^{d(u)}\left|U_{i}\right| \leq d(u)\left(n-1-\left|N_{u}\right|\right) \leq(t-1)\left(n-1-\left|N_{u}\right|\right)
$$

If $t \leq d(u)$, we can claim that for any $v \in \overline{N_{u}}$ it belongs to at most $t-1$ sets $U_{i}(i \in[d(u)])$. Otherwise, there exists a vertex $v_{0} \in \overline{N_{u}}$, which is contained in t sets, without loss of generality, say $U_{1}, U_{2}, \ldots, U_{t}$. For each $U_{j}, j \in[t]$, we can select a hyperedge $l_{j}^{v_{0}}$ containing v_{0}. Then the $2 t$ hyperedges $l_{1}^{v}, l_{2}^{v}, \cdots, l_{t}^{v}$ and $h_{1}^{u}, h_{2}^{u}, \cdots, h_{t}^{u}$ form a Berge- $K_{2, t}$ in H, a contradiction. Further it is easy to see that (7) holds.

By (6) and (7), we have

$$
\sum_{i=1}^{d(u)} \sum_{j=1}^{r-1}\left|U_{u_{j i}}\right| \leq(t-1)\left(n-1-\left|N_{u}\right|\right)+\frac{(r-1)^{2}(r-2)(t-1)}{2} d(u)
$$

Lemma 3.4. For $r \geq 3$, let H be a r-uniform linear hypergraph without Berge- $K_{2, t}$. Then for any vertex $u \in V(H)$,

$$
\sum_{u_{j, i} \in N_{u}}(r-1) d\left(u_{j, i}\right) \leq(t-1)(n-1)+\frac{(n-1)\left[3(t-1) r^{2}-(7 t-9) r+2(t-2)\right]}{2}
$$

Proof. From the linearity of H, it has $d(u) \leq \frac{n-1}{r-1}$. Note that $\left|N_{u}\right|=(r-1) d(u)$, by (4) and Lemma 3.3, we have

$$
\begin{aligned}
& \sum_{u_{j, i} \in N_{u}}(r-1) d\left(u_{j, i}\right) \\
\leq & \sum_{u_{j, i} \in N_{u}}\left|U_{u_{j, i}}\right|+(r-1)^{3}(t-1) d(u)+(r-1)^{2} d(u) \\
= & \sum_{i=1}^{d(u)} \sum_{j=1}^{r-1}\left|U_{u_{j, i}}\right|+(r-1)^{3}(t-1) d(u)+(r-1)^{2} d(u) \\
\leq & (t-1)\left(n-1-\left|N_{u}\right|\right)+\frac{(r-1)^{2}(r-2)(t-1)}{2} d(u)+(r-1)^{3}(t-1) d(u)+(r-1)^{2} d(u) \\
= & (t-1)(n-1)+\frac{(r-1)^{2}(r-2)(t-1)}{2} d(u)+(r-t)(r-1) d(u)+(r-1)^{3}(t-1) d(u) \\
= & (t-1)(n-1)+\frac{(r-1)\left[3(t-1) r^{2}-(7 t-9) r+2(t-2)\right]}{2} d(u) \\
\leq & (t-1)(n-1)+\frac{(n-1)\left[3(t-1) r^{2}-(7 t-9) r+2(t-2)\right]}{2} .
\end{aligned}
$$

Theorem 3.5. Let \mathcal{H} be the set of r-uniform linear hypergraphs without Berge- $K_{2, t}$, and ρ be the maximum spectral radius in \mathcal{H}. Then $\rho^{2} \leq(n-1)\left[\frac{3(t-1)}{2}-\frac{t-3}{2(r-1)}\right]$.

Proof. By Lemma 2.1 and Lemma 3.4, for any vertex $v \in N_{u}$, we have

$$
\begin{aligned}
\rho^{2} & \leq \frac{1}{r-1} \sum_{v \in N_{u}} d(v) \\
& =\frac{\sum_{v \in N_{u}}(r-1) d(v)}{(r-1)^{2}} \\
& \leq \frac{(t-1)(n-1)}{(r-1)^{2}}+\frac{(n-1)\left[3(t-1) r^{2}-(7 t-9) r+2(t-2)\right]}{2(r-1)^{2}} \\
& =(n-1) \frac{\left[3(t-1) r^{2}-(7 t-9) r+2(2 t-3)\right]}{2(r-1)^{2}} \\
& =(n-1) \frac{(r-1)[3(t-1) r-2(2 t-3)]}{2(r-1)^{2}} \\
& =(n-1) \frac{3(t-1) r-2(2 t-3)}{2(r-1)} \\
& =(n-1)\left[\frac{3(t-1)}{2}-\frac{t-3}{2(r-1)}\right] .
\end{aligned}
$$

Note that $K_{2, t}=C_{4}$ for $t=2$, then we have the following corollary. Obviously, this corollary improve the result of Theorem 6 in [13].

Corollary 3.6. Let \mathcal{H} be the set of linear r-uniform hypergraphs of order n without Berge- C_{4}, and ρ be the maximum spectral radius in \mathcal{H}. Then $\rho^{2} \leq(n-1)\left(\frac{3}{2}+\frac{1}{2(r-1)}\right)$.

Acknowledgement: The authors would like to express their sincere gratitude to the editor and the referees for a very careful reading of the paper and for all their insightful comments and valuable suggestions, which led to a number of improvements in this paper.

4. Statements and Declarations

Author Contributions: The authors made equal contributions to this paper. Conflicts of Interest: The authors declare no conflict of interest.

References

[1] M. Balko, D. Gerbner, D. Kang, Y. Kim, C. Palmer, Hypergraph Based Berge Hypergraphs, Graphs Comb., 38 (2022) 11.
[2] R.A. Brualdi, E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Algebraic Discrete Methods, 7(1986) 265-272.
[3] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl., 436(2012) 3268-3292.
[4] M. Z. Chen, X.D. Zhang, Some new results and problems in spectral extremal graph theory, (Chinese) J. Anhui Univ., Nat. Sci., 42(2018) 12-25.
[5] B. Ergemlidze, E. Győri, A. Methuku, Asymptotics for Turán numbers of cycles in 3-uniform linear hypergraphs, J. Comb. Theory, Ser. A, 163(2019) 163-181.
[6] Y. Fan, M. Khan, Y. Tan, The largest H-eigenvalue and spectral radius of Laplacian tensor of non-odd-bipartite generalized power hypergraphs, Linear Algebra Appl., 504(2016) 487-502.
[7] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, Bolyai Soc. Math. Stud.(The Erdös Centennial), 25(2013) 167-262.
[8] D. Gerbner, A. Methuku, M. Vizer, Asymptotics for the Turán number of Berge-K ${ }_{2, t}$, J. Comb. Theory, Ser. B, 137(2019) 264-290.
[9] D. Gerbner, C. Palmer, Extremal results for Berge-hypergraphs, SIAM J. Discrete Math., 31(2017) 2314-2327.
[10] G. Gao, A. Chang, Y. Hou, Spectral radius on linear r-graphs without expanded K_{r+1}, SIAM J. Discrete Math., 36(2)(2022) 1000-1011.
[11] R. Gu, H. Lei, Y. Shi, On k-uniform random hypergraphs without generalized fans, Discrete Appl. Math., 306(2022) 98-107.
[12] R. Gu, X. Li, Y. Shi, Hypergraph Turán Numbers of Vertex Disjoint Cycles, Acta Math. Appl. Sin., Engl. Ser., 38(1)(2022) 229-234.
[13] Y. Hou, A. Chang, J. Cooper, Spectral extremal results for hypergraphs, Electron. J. Comb., 28(3)(2021) P3.46.
[14] L. Kang, L. Liu, L. Qi, X. Yuan, Spectral radii of two kinds of uniform hypergraphs, Appl. Math. Comput., 338(2018) 661-668.
[15] P. Keevash, Hypergraph Turán problems, Surveys Comb., 392(2011) 83-140.
[16] F. Lazebnik, J. Verstraëte, On hypergraphs of girth five, Electron. J. Comb., 10(2003) \#R25.
[17] L. Lim, Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), (2005) 129-132.
[18] L. Lu, S. Man, Connected hypergraphs with small spectral radius, Linear Algebra Appl., 509(2016) 206-227.
[19] Y. Li, W. Liu, L.Feng, A survey on spectral conditions for some extremal graph problems, Adv. Math., Beijing, 51(2022) 193-258.
[20] D. Mubayi, J. Verstraëte, A survey of Turán problems for expansions, IMA Vol. Math. Appl., 159(2016) 117-143.
[21] V. Nikiforov, Some new results in extremal graph theory: In surveys in Combinatorics 2011, Lond. Math. Soc. Lect. Note Ser., 392(2011) 141-181.
[22] L. Qi, Eigenvalues of a real supersymmetric tensor. J. Symb. Comput., 40 (2005) 1302-1324.
[23] P. Xiao, L. Wang, The effect on the adjacency and signless Laplacian spectral radii of uniform hypergraphs by grafting edges, Linear Algebra Appl., 610(2021) 591-607.

[^0]: 2020 Mathematics Subject Classification. 05C65
 Keywords. Berge hypergraph, Turán-problem, spectral radius
 Received: 05 June 2023; Revised: 28 September 2023; Accepted: 30 October 2023
 Communicated by Paola Bonacini
 Supported by National Natural Science Foundation of China (No. 62173157);the Special Fund for Basic Scientific Research of Central Colleges, South-Central Minzu University (No. CZY23009)

 * Corresponding author: Yuan Wang

 Email addresses: zzxun73@mail.scuec. edu.cn (Zhongxun Zhu), zly5@scuec.edu.cn (Liyi Zheng), 991167421@qq.com (Yuan
 Wang), zhyp99@scuec.edu.cn (Yaping Zhao)

