Resistance distance and Kirchhoff index of the splitting-joins of two graphs

Yanan Li^{a}, Xiaoling $\mathrm{Ma}^{\mathrm{a},{ }^{*},}$, Shian Deng ${ }^{\mathrm{a}}$, Dandan Chen ${ }^{\mathrm{a}}$
${ }^{a}$ College of Mathematics and System Sciences, Xinjiang University, Xinjiang 830017, P.R.China

Abstract

Let G be a graph. The splitting graph $S P(G)$ of G is the graph received from G by putting a new vertex w^{\prime} for each $w \in V_{G}$ and joining w^{\prime} to all vertices of G adjacent to w. Let S_{G} be the set of such new vertices of the splitting graph $S P(G)$. Let G_{1} and G_{2} be two simple connected graphs, the splitting V-vertex join graph is obtained by taking one copy of $S P\left(G_{1}\right)$ and joining each vertex in $V_{\mathrm{G}_{1}}$ to each vertex in $V_{\mathrm{G}_{2}}$, denoted by $G_{1} \underline{\vee} G_{2}$. The splitting S-vertex join of G_{1} and G_{2}, denoted by $G_{1} \bar{\wedge} G_{2}$, is a graph obtained from $S P\left(G_{1}\right)$ and G_{2} by joining each vertex in $S_{G_{1}}$ to each vertex in $V_{G_{2}}$. In this paper, we calculate the resistance distance and Kirchhoff index of $G_{1} \underline{\vee} G_{2}$ and $G_{1} \bar{\wedge} G_{2}$ for regular graphs G_{1} and G_{2}, respectively.

1. Introduction

We deal with finite, simple and undirected graphs, and follow [3] for undefined terms and notations. Let $G=\left(V_{G}, E_{G}\right)$ be a graph with vertex set $V_{G}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E_{G}, where $n=\left|V_{G}\right|$ is the order of G. The adjacency matrix of G, denoted by A_{G}, is the $n \times n$ matrix whose (i, j)-entry is 1 if v_{i} and v_{j} are adjacent in G and 0 otherwise. The degree of v_{i} in G is denoted by $d_{i}=d_{G}\left(v_{i}\right)$. The Laplacian matrix of G is the matrix $L_{G}=D_{G}-A_{G}$, where D_{G} is the diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$.

For a square matrix M of order n, the characteristic polynomial $\operatorname{det}\left(t I_{n}-M\right)$ of M is denoted by $f_{M}(t)$, where I_{n} is the identity matrix with order n. Particularly, for a graph $G, f_{A_{G}}(t)$ and $f_{L_{G}}(t)$ are the adjacency and Laplacian characteristic polynomial of G, respectively. And their roots are the adjacency and Laplacian eigenvalues of G, separately. The collection of eigenvalues of A_{G} and L_{G} together with their multiplicities referred to the A-spectrum and L-spectrum of G, respectively. Denote the A-spectrum (respectively, L $\operatorname{spectrum}^{\prime}$ as $\operatorname{Spec}_{A}(G)=\left\{\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right\}$ (respectively, $\left.\operatorname{Spec}_{L}(G)=\left\{\mu_{1}(G), \mu_{2}(G), \ldots, \mu_{n}(G)\right\}\right)$. Note that if G is r-regular graph, then each eigenvalue μ_{i} of L_{G} corresponds to an eigenvalue λ_{i} of A_{G} via the relation $\mu_{i}(G)=r-\lambda_{i}(G)$.

In 1993, Klein and Randić [8] presented the resistance distance between vertices v_{i} and v_{j} in graph G, denoted by $r_{i j}(G)$, defined as the effective resistance between v_{i} and v_{j} calculated according to Ohm's law when the unit resistance is distributed on each edge of G. The resistance distance of graph is equal to the

[^0]equivalent resistance of electrical network, which is a new metric of graph and has a broad development prospect in chemistry, network analysis, physics and other fields. The Kirchhoff index $K f(G)$ of G is the sum of the resistance distances between all pairs of vertices of G, i.e., $K f(G)=\sum_{i<j} r_{i j}$.

The splitting graph $S P(G)$ of a graph G is the graph obtained from G by taking a new vertex w^{\prime} for each $w \in V_{G}$ and joining w^{\prime} to all vertices of G adjacent to w. Let S_{G} be the set of such new vertices of the splitting graph $S P(G)$, i.e., $S_{G}=V_{S P(G)} \backslash V_{G}$. Lu et al. [12] introduced two types of graph operations based on the splitting graph as follows.

Definition 1.1. [12] Let G_{i} be an n_{i}-vertex connected graph for $i=1,2$. The splitting V-vertex join of G_{1} and G_{2} is obtained by taking one copy of $S P\left(G_{1}\right)$ and joining each vertex in $V_{G_{1}}$ to each vertex in $V_{G_{2}}$, denoted by $G_{1} \underline{\vee} G_{2}$. The splitting S-vertex join of G_{1} and G_{2} is a graph obtained from $S P\left(G_{1}\right)$ and G_{2} by joining each vertex in $S_{G_{1}}$ to each vertex in $V_{G_{2}}$, denoted by $G_{1} \bar{\wedge} G_{2}$.

Let P_{n} be a path of order n and K_{n} be complete graph of order n. Figure 1 depicts the splitting V-vertex join and the splitting S-vertex join of P_{5} and K_{3}.

Figure 1: The splitting V-vertex join of $P_{5} \vee K_{3}$ and the splitting S-vertex join of $P_{5} \bar{\wedge} K_{3}$.

It is well known that the eigenvalues and eigenvectors of the Laplacian matrix are used to represent the resistance distance of the graph [11]. But this method only works for certain graph classes. According to the components of the generalized inverse of the Laplacian matrix, Babapt [1] introduced the formula for expressing resistance distance and Kirchhoff index. Subsequently, reseachers [6, 7, 9, 16] considered the problems of resistance distance and Kirchhoff index of many graph classes and graph operations, such as the Q-vertex and Q-edge join graphs[13], R-vertex and R-edge join graphs[10], the subdivision-vertex and subdivision-edge join graphs [5], the Q-double join graphs[15] and so on.

Motivated by the above works, in this paper, we utilize the group inverse of matrix to calculate the resistance distances and Kirchhoff indices of the splitting V-vertex join $G_{1} \underline{\vee} G_{2}$ and the splitting S-vertex join $G_{1} \bar{\wedge} G_{2}$ for regular graphs G_{1} and G_{2}, respectively.

2. Preliminaries

Firstly, we give some definitions and lemmas which are very useful in the proof of the main results.
Let Q be a square matrix. The $\{1\}$-inverse of Q is a matrix, denoted by $Q^{(1)}$, such that $Q Q^{(1)} Q=Q$. Particularly, if Q is singular, then Q has infinitely many 1-inverses [2]. The group inverse of Q is the unique matrix, denoted by $Q^{\#}$, satisfying $Q Q^{\#} Q=Q, Q^{\#} Q Q^{\#}=Q^{\#}$, and $Q Q^{\#}=Q^{\#} Q$. Ben-Israel et al. [2] and Bu et al. [4], independently, proved that $Q^{\#}$ exists if and only if $\operatorname{rank}(Q)=\operatorname{rank}\left(Q^{2}\right)$. Specifically, if Q is real symmetric matrix, then $Q^{\#}$ exists and $Q^{\#}$ is a symmetric $\{1\}$-inverse of Q.

Let $Q_{i j}$ denote the entry of Q in the i-th row and j-th column and \mathbf{e} be a column vector whose entries are all ones. Let I_{n} be the identity matrix of size n, and $J_{n \times m}$ denote the $n \times m$ matrix whose all entries are 1 .

Let G be a graph. Here we state some lemmas, which indicated that the $\{1\}$-inverse and group inverse of L_{G} can expresses the resistance distance and Kirchhoff index of a graph G. These results play a vital role in demonstrating the main conclusions of this paper.

Lemma 2.1. [1, 4] Suppose G is a connected graph. If vertices v_{i} and v_{j} in V_{G}, then the resistance distance $r_{i j}(G)$ between them is given as follows:

$$
\begin{aligned}
r_{i j}(G) & =\left(L_{G}^{(1)}\right)_{i i}+\left(L_{G}^{(1)}\right)_{j j}-\left(L_{G}^{(1)}\right)_{i j}-\left(L_{G}^{(1)}\right)_{j i} \\
& =\left(L_{G}^{\#}\right)_{i i}+\left(L_{G}^{\#}\right)_{j j}-2\left(L_{G}^{\#}\right)_{i j} .
\end{aligned}
$$

Lemma 2.2. [14] Let G be a connected graph on n vertices. Then

$$
K f(G)=\operatorname{ntr}\left(L_{G}^{(1)}\right)-\boldsymbol{e}^{T} L_{G}^{(1)} \boldsymbol{e},
$$

where $\operatorname{tr}\left(L_{G}^{(1)}\right)$ is the trace of $L_{G}^{(1)}$.
Definition 2.3. [17] For a $n \times n$ matrix A, which can be partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} and A_{22} are square matrices. If A_{11} and A_{22} are nonsingular, then the matrix $A_{22}-A_{21} A_{11}^{-1} A_{12}$ and $A_{11}-A_{12} A_{22}^{-1} A_{21}$ are called the Schur complements of A_{11} and A_{22}, respectively.
Lemma 2.4. [17] Suppose $W=\left(\begin{array}{cc}S & T \\ P & Q\end{array}\right)$ is a nonsingular matrix. Let S be nonsingular matrix. Then

$$
W^{-1}=\left(\begin{array}{cc}
S^{-1}+S^{-1} T F^{-1} P S^{-1} & -S^{-1} T F^{-1} \\
-F^{-1} P S^{-1} & F^{-1}
\end{array}\right)
$$

where $F=Q-P S^{-1} T$ is the Schur complement of S.
Lemma 2.5. [5] Let $L_{G}=\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{T} & L_{3}\end{array}\right)$ be the Laplacian matrix of a connected graph G. If each column vector of L_{2}^{T} is $-e$ or a zero vector, then $H=\left(\begin{array}{cc}L_{1}^{-1} & 0 \\ 0 & F^{\#}\end{array}\right)$ is a symmetric $\{1\}$-inverse of L_{G}, where $F=L_{3}-L_{2}^{T} L_{1}^{-1} L_{2}$ is a Schur complement of L_{1}.
Lemma 2.6. [5] Suppose G is a graph of order n. Then

$$
\left(L_{G}+a I_{n}-\frac{a}{n} J_{n \times n}\right)^{\#}=\left(L_{G}+a I_{n}\right)^{-1}-\frac{1}{a n} J_{n \times n}
$$

where a is any positive real number.
Lemma 2.7. [5] Let Q be a real symmetric matrix. If $Q \boldsymbol{e}=0$, then we have $Q^{\#} \boldsymbol{e}=0$ and $\boldsymbol{e}^{T} Q^{\#}=0$.

3. Resistance distance and Kirchhoff index of splitting V-vertex join graphs

Now, we calculate the resistance distance and Kirchhoff index of the splitting V-vertex join graph $G_{1} \underline{\vee} G_{2}$.
Theorem 3.1. For $i=1,2$, let G_{i} be an r_{i}-regular graph of n_{i} vertices. Assume that $w_{k}\left(v_{i}, v_{j}\right)=\left[\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{2}\right)^{k}\right]_{i j}$ and $N_{G_{1}}\left(v_{i}\right)=\left\{v_{j} \in V_{G_{1}} \mid v_{i} v_{j} \in E_{G_{1} \vee G_{2}}\right\}$. Then we have the following conclusions:
(1) For any $v_{i}, v_{j} \in V_{G_{1}}$, we get

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}}\left(w_{k}\left(v_{i}, v_{i}\right)+w_{k}\left(v_{j}, v_{j}\right)-2 w_{k}\left(v_{i}, v_{j}\right)\right) ;
$$

(2) For any $v_{i}, v_{j} \in V_{G_{2}}$, we have

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i i}+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-2\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i j} ;
$$

(3) For any $v_{i}^{\prime}, v_{j}^{\prime} \in S_{G_{1}}$, we know

$$
\begin{aligned}
r_{i j}\left(G_{1} \vee G_{2}\right)= & \frac{2}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)}\left(\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{\substack{ }}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right. \\
& \left.+\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)-2 \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{\substack{ }}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right) ;
\end{aligned}
$$

(4) For $v_{i} \in V_{\mathcal{G}_{1}}, v_{j} \in V_{G_{2}}$, we see

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{i}, v_{i}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}
$$

(5) For $v_{i}^{\prime} \in S_{G_{1}}, v_{j} \in V_{G_{2}}$, we obtain

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{\in} \in N_{G_{1}}\left(v_{1}^{\prime}\right) \\ v_{t} \in N=0}} \sum_{G_{1}\left(v_{i}^{\prime}\right)}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\left[\left(L_{\mathrm{G}_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}} ;
$$

(C) For $v_{i}^{\prime} \in S_{G_{1}}, v_{j} \in V_{G_{1}}$, we get

$$
\begin{aligned}
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)= & \frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{\left.v_{s} \in \mathcal{N G}_{G^{\prime}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N N_{1}, v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\frac{1}{r_{1}}+\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{j}, v_{j}\right)\right) \\
& -\frac{2}{r_{1}\left(n_{2}+2 r_{1}\right)} \sum_{v_{s} \in N G_{1}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right) .
\end{aligned}
$$

Proof. We mark the vertices of $G_{1} \underline{\vee} G_{2}$ as shown in Figure 1, then the Laplacian matrix of $G_{1} \underline{\vee} G_{2}$ can be expressed as

$$
\begin{aligned}
& L\left(G_{1} \underline{\vee} G_{2}\right)=\begin{array}{c}
S_{G_{1}} \\
V_{G_{1}} \\
V_{G_{2}}
\end{array}\left(\begin{array}{ccc}
S_{G_{1}} & V_{G_{1}} & V_{G_{2}} \\
r_{1} I_{n_{1}} & -A_{G_{1}} & O_{n_{1} \times n_{2}} \\
\hdashline A_{G_{1}}^{T} & \left(r_{1}+n_{2}\right) I_{n_{1}}+L_{G_{1}} & -J_{n_{1} \times n_{2}} \\
\hdashline O_{n_{2} \times n_{1}}^{-} & -\bar{J}_{n_{2} \times n_{1}} & n_{1} \bar{n}_{n_{2}}+\bar{L}_{G_{2}}-
\end{array}\right) \\
& =\left(\begin{array}{c:c}
\mathrm{M} & \vdots\binom{O_{n_{1} \times n_{2}}}{-J_{n_{1} \times n_{2}}} \\
\hdashline\left(O_{n_{2} \times n_{1}}\right. & \left.-J_{n_{2} \times n_{1}}\right) \\
n_{1} I_{n_{2}}+\tilde{L}_{G_{2}}
\end{array}\right),
\end{aligned}
$$

where $O_{a \times b}$ is the $a \times b$ matrix of all entries equal to zero and $M=\left(\begin{array}{cc}r_{1} I_{n_{1}} & -A_{G_{1}} \\ -A_{G_{1}}^{T} & \left(r_{1}+n_{2}\right) I_{n_{1}}+L_{G_{1}}\end{array}\right)$.

By Definition 2.3, we know that the Schur complement of $r_{1} I_{n_{1}}$ in M is

$$
\begin{align*}
S_{M} & =\left(r_{1}+n_{2}\right) I_{n_{1}}+L_{G_{1}}-A_{G_{1}}^{T}\left(r_{1} I_{n_{1}}\right)^{-1} A_{G_{1}} \\
& =\left(r_{1}+n_{2}\right) I_{n_{1}}+L_{G_{1}}-\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}} \\
& =\left(2 r_{1}+n_{2}\right) I_{n_{1}}-A_{G_{1}}-\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}} . \tag{1}
\end{align*}
$$

By Lemma 2.4, we have $M^{-1}=\left(\begin{array}{cc}N_{1} & N_{2} \\ N_{3} & S_{M}^{-1}\end{array}\right)$, where

$$
\begin{align*}
& N_{1}=\frac{1}{r_{1}} I_{n_{1}}+\frac{1}{r_{1}^{2}} A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T} \tag{2}\\
& N_{2}=\frac{1}{r_{1}} A_{G_{1}} S_{M}^{-1} \tag{3}\\
& N_{3}=\frac{1}{r_{1}} S_{M}^{-1} A_{G_{1}}^{T} \tag{4}
\end{align*}
$$

Let F be the Schur complement of M in $L\left(G_{1} \underline{\vee} G_{2}\right)$. Then by Definition 2.3, we have

$$
\begin{align*}
F & =n_{1} I_{n_{2}}+L_{G_{2}}-\left(\begin{array}{ll}
O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}}
\end{array}\right) M^{-1}\binom{O_{n_{1} \times n_{2}}}{-J_{n_{1} \times n_{2}}} \tag{5}\\
& =n_{1} I_{n_{2}}+L_{G_{2}}-J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}} .
\end{align*}
$$

Since

$$
\begin{aligned}
n_{1} J_{n_{2} \times n_{2}} & =J_{n_{2} \times n_{1}} S_{M} S_{M}^{-1} J_{n_{1} \times n_{2}} \\
& =J_{n_{2} \times n_{1}}\left[\left(r_{1}+n_{2}\right) I_{n_{1}}+L_{G_{1}}-\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}}\right] S_{M}^{-1} J_{n_{1} \times n_{2}} \\
& =\left(r_{1}+n_{2}\right) J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}}-\frac{1}{r_{1}} J_{n_{2} \times n_{1}} A_{G_{1}}^{T} A_{G_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}} \\
& =\left(r_{1}+n_{2}\right) J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}}-r_{1} J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}} \\
& =n_{2} J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}},
\end{aligned}
$$

we get

$$
J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}}=\frac{n_{1}}{n_{2}} J_{n_{2} \times n_{2}}
$$

Hence, from (5), we know

$$
F=L_{G_{2}}+n_{1} I_{n_{2}}-\frac{n_{1}}{n_{2}} J_{n_{2} \times n_{2}}
$$

From Lemma 2.6, we derive that

$$
\begin{equation*}
F^{\#}=\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}-\frac{1}{n_{1} n_{2}} J_{n_{2} \times n_{2}} . \tag{6}
\end{equation*}
$$

Therefore, according to Lemma 2.5, we get the expression of $L_{G_{1} \vee G_{2}}^{(1)}$ as follows

$$
L_{G_{1} \vee G_{2}}^{(1)}\left(\begin{array}{cc:c}
N_{1} & N_{2} & 0 \tag{7}\\
\hdashline N_{3} & S_{M}^{-1} & 0 \\
\hdashline 0 & F^{\#}
\end{array}\right) .
$$

(1) For $v_{i}, v_{j} \in V_{G_{1}}$, combining Lemma 2.1 with (7), we have

$$
\begin{equation*}
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left(S_{M}^{-1}\right)_{i i}+\left(S_{M}^{-1}\right)_{j j}-2\left(S_{M}^{-1}\right)_{i j} \tag{8}
\end{equation*}
$$

In view of (1), we get

$$
S_{M}=\left(n_{2}+2 r_{1}\right)\left[I_{n_{1}}-\frac{1}{n_{2}+2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{\mathrm{G}_{1}}^{T} A_{\mathrm{G}_{1}}\right)\right] .
$$

The spectral radius of $\frac{1}{n_{2}+2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}}\right)$ is

$$
\rho\left(\frac{1}{n_{2}+2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}}\right)\right)=\frac{r_{1}+\frac{r_{1}^{2}}{r_{1}}}{n_{2}+2 r_{1}}=\frac{2 r_{1}}{n_{2}+2 r_{1}}<1
$$

which implies that the power series of $\left[I_{n_{1}}-\frac{1}{n_{2}+2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}}\right)\right]^{-1}$ is convergent. Thus, we obtain

$$
\begin{equation*}
S_{M}^{-1}=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{2}\right)^{k}\right] \tag{9}
\end{equation*}
$$

Suppose that $w_{k}\left(v_{i}, v_{j}\right)=\left[\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{2}\right)^{k}\right]_{i j}$. Then due to (8) and (9), we have

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}}\left(w_{k}\left(v_{i}, v_{i}\right)+w_{k}\left(v_{j}, v_{j}\right)-2 w_{k}\left(v_{i}, v_{j}\right)\right)
$$

(2) For $v_{i}, v_{j} \in V_{\mathrm{G}_{2}}$, by Lemma 2.1 and (7), we have

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left(F^{\#}\right)_{i i}+\left(F^{\#}\right)_{j j}-2\left(F^{\#}\right)_{i j}
$$

Based on (6), we obtain

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i i}+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-2\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i j}
$$

(3) For $v_{i}{ }^{\prime}, v_{j}^{\prime} \in S_{G_{1}}$, according to Lemma 2.1 and (7), we have

$$
\begin{equation*}
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left(N_{1}\right)_{i i}+\left(N_{1}\right)_{j j}-2\left(N_{1}\right)_{i j} \tag{10}
\end{equation*}
$$

Recall that $N_{\mathrm{G}_{1}}\left(v_{i}\right)=\left\{v_{j} \in V_{\mathrm{G}_{1}} \mid v_{i} v_{j} \in E_{\mathrm{G}_{1} \underline{\mathrm{G}}}\right\}$. According to (2) and (9), we can get

$$
\begin{align*}
\left(N_{1}\right)_{i i} & =\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}}\left(A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}\right)_{i i} \\
& \left.=\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}}\left(\sum_{v_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}}\left(S_{M}^{-1}\right)_{s 1}, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s 2}, \ldots, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s n_{1}}\right) A_{G_{1}}^{T}\right)_{i} \\
& =\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{v}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}}\left(S_{M}^{-1}\right)_{s t} \\
& =\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{2}\right)^{k}\right]_{s t} . \tag{11}
\end{align*}
$$

By using a similar analysis as above, we can deduce that

$$
\begin{equation*}
\left(N_{1}\right)_{i j}=\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{s} \in N_{G^{\prime}}\left(v_{i}^{\prime}\right) \\ v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}}\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{2}\right)^{k}\right]_{s t} . \tag{12}
\end{equation*}
$$

Let $w_{k}\left(v_{s}, v_{t}\right)=\left[\left(A_{G_{1}}+\frac{1}{r_{1}} A_{G_{1}}^{2}\right)^{k}\right]_{s t}$. Then substituting (11) and (12) into (10), we obtain

$$
\begin{aligned}
r_{i j}\left(G_{1} \vee G_{2}\right)= & \frac{2}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)}\left(\sum_{\substack{\left.v_{s} \in \mathcal{G}_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}} v_{i}^{\prime}\right)}} \sum_{\substack{ }}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right. \\
& \left.+\sum_{\substack{v_{s} \in N_{G_{1}(}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)-2 \sum_{\substack{\left.v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}} v_{j}^{\prime}\right)}} \sum_{\substack{ }}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right) .
\end{aligned}
$$

(4) For $v_{i} \in V_{G_{1}}, v_{j} \in V_{G_{2}}$, by Lemma 2.1 and (7), we have

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left(S_{M}^{-1}\right)_{i i}+\left(F^{\#}\right)_{j j}
$$

Combining (9) with (6), we receive

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{i}, v_{i}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}} .
$$

(5) For $v_{i}^{\prime} \in S_{G_{1}}, v_{j} \in V_{G_{2}}$, together Lemma 2.1 with (7), we have

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left(N_{1}\right)_{i i}+\left(F^{\#}\right)_{j j}
$$

Due to (11) and (6), we have

$$
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{\epsilon} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}
$$

(6) For $v_{i}^{\prime} \in S_{\mathrm{G}_{1}}, v_{j} \in V_{\mathrm{G}_{1}}$, by using Lemma 2.1 and

$$
\begin{equation*}
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)=\left(N_{1}\right)_{i i}+\left(S_{M}^{-1}\right)_{j j}-2\left(N_{2}\right)_{i j} \tag{13}
\end{equation*}
$$

From (3), we know $N_{2}=\frac{1}{r_{1}} A_{G_{1}} S_{M}^{-1}$. Furthermore, using (9), $\left(N_{2}\right)_{i j}$ can be expressed as

$$
\begin{align*}
\left(N_{2}\right)_{i j} & =\frac{1}{r_{1}}\left(A_{G_{1}} S_{M}^{-1}\right)_{i j} \\
& \left.=\frac{1}{r_{1}} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s 1}, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s 2}, \ldots, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s n_{1}}\right)_{j} \\
& =\frac{1}{r_{1}} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s j} \\
& =\frac{1}{r_{1}\left(n_{2}+2 r_{1}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right) . \tag{14}
\end{align*}
$$

Hence, plugging (9), (11) and (14) into (13), we get

$$
\begin{aligned}
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)= & \frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\frac{1}{r_{1}}+\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{j}, v_{j}\right)\right) \\
& -\frac{2}{r_{1}\left(n_{2}+2 r_{1}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right) .
\end{aligned}
$$

Theorem 3.2. Suppose G_{i} is an r_{i}-regular graph of n_{i} vertices. If $\lambda_{1}\left(G_{i}\right), \lambda_{2}\left(G_{i}\right), \ldots, \lambda_{n}\left(G_{i}\right)$ are the eigenvalues of $A_{G_{i}}$ for $i=1,2$, then

$$
\begin{aligned}
K f\left(G_{1} \underline{\vee} G_{2}\right)= & \left(2 n_{1}+n_{2}\right)\left[\frac{1}{r_{1}} \sum_{i=1}^{n_{1}} \frac{\lambda_{i}^{2}\left(G_{1}\right)+r_{1}^{2}}{r_{1}\left(n_{2}+2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{\left(r_{2}+n_{1}\right)-\lambda_{i}\left(G_{2}\right)}\right] \\
& +\frac{2 n_{1}^{2}+n_{1} n_{2}-n_{1}}{r_{1}}-\frac{4 n_{1}^{2}+2 n_{1} n_{2}+n_{2}^{2}}{n_{1} n_{2}} .
\end{aligned}
$$

Proof. By Lemma 2.2, we have

$$
K f\left(G_{1} \underline{\vee} G_{2}\right)=\left(2 n_{1}+n_{2}\right) \operatorname{tr}\left(L_{G_{1} \vee G_{2}}^{(1)}\right)-\mathbf{e}^{T} L_{G_{1} \underline{1}}^{(1)} \mathbf{e} .
$$

Since $L_{G_{1} \vee G_{2}}^{(1)}$ can be shown from the proof of Theorem 3.1 as in (7), we have

$$
\operatorname{tr}\left(L_{G_{1} \underline{G_{2}}}^{(1)}\right)=\operatorname{tr}\left(N_{1}\right)+\operatorname{tr}\left(S_{M}^{-1}\right)+\operatorname{tr}\left(F^{\#}\right) .
$$

From (1), we obtain

$$
\operatorname{tr}\left(S_{M}\right)=\sum_{i=1}^{n_{1}}\left[\left(2 r_{1}+n_{2}\right)-\lambda_{i}\left(G_{1}\right)-\frac{1}{r_{1}} \lambda_{i}^{2}\left(G_{1}\right)\right]
$$

and so

$$
\operatorname{tr}\left(S_{M}^{-1}\right)=\sum_{i=1}^{n_{1}} \frac{1}{\left(2 r_{1}+n_{2}\right)-\lambda_{i}\left(G_{1}\right)-\frac{1}{r_{1}} \lambda_{i}^{2}\left(G_{1}\right)}
$$

Recall that $N_{1}=\frac{1}{r_{1}} I_{n_{1}}+\frac{1}{r_{1}^{2}} A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}$ from (2). Then we get

$$
\begin{aligned}
\operatorname{tr}\left(N_{1}\right) & =\frac{1}{r_{1}} \operatorname{tr}\left(I_{n_{1}}\right)+\frac{1}{r_{1}^{2}} \operatorname{tr}\left(A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}\right) \\
& =\frac{n_{1}}{r_{1}}+\frac{1}{r_{1}^{2}} \sum_{i=1}^{n_{1}} \frac{\lambda_{i}^{2}\left(G_{1}\right)}{\left(2 r_{1}+n_{2}\right)-\lambda_{i}\left(G_{1}\right)-\frac{1}{r_{1}} \lambda_{i}^{2}\left(G_{1}\right)} .
\end{aligned}
$$

On the other hand, by (6), we gain

$$
\begin{aligned}
\operatorname{tr}\left(F^{\#}\right) & =\operatorname{tr}\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]-\operatorname{tr}\left(\frac{1}{n_{1} n_{2}} J_{n_{2} \times n_{2}}\right) \\
& =\sum_{i=1}^{n_{2}} \frac{1}{\left(r_{2}+n_{1}\right)-\lambda_{i}\left(G_{2}\right)}-\frac{1}{n_{1}} .
\end{aligned}
$$

Therefore, taking the above results together, we have

$$
\begin{equation*}
\operatorname{tr}\left(L_{G_{1} \underline{\vee} G_{2}}^{(1)}\right)=\frac{n_{1}}{r_{1}}+\frac{1}{r_{1}^{2}} \sum_{i=1}^{n_{1}} \frac{\lambda_{i}^{2}\left(G_{1}\right)+r_{1}^{2}}{\left(n_{2}+2 r_{1}\right)-\lambda_{i}\left(G_{1}\right)-\frac{1}{r_{1}} \lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{\left(r_{2}+n_{1}\right)-\lambda_{i}\left(G_{2}\right)}-\frac{1}{n_{1}} . \tag{15}
\end{equation*}
$$

Moreover, from (7), it is easy to see that

$$
\mathbf{e}^{T} L_{G_{1} \vee G_{2}}^{(1)} \mathbf{e}=\mathbf{e}_{1}^{T} N_{1} \mathbf{e}_{1}+\mathbf{e}_{1}^{T} N_{2} \mathbf{e}_{2}+\mathbf{e}_{2}^{T} N_{3} \mathbf{e}_{1}+\mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}+\mathbf{e}_{3}{ }^{T} F^{\#} \mathbf{e}_{3},
$$

where $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3} are the column vectors of size n_{1}, n_{1} and n_{2}, respectively, whose all entries are 1 .
Notice that

$$
\begin{aligned}
n_{1} & =\mathbf{e}_{2}^{T} S_{M} S_{M}^{-1} \mathbf{e}_{2} \\
& =\mathbf{e}_{2}^{T}\left(\left(r_{1}+n_{2}\right) I_{n_{1}}+L_{G_{1}}-\frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}}\right) S_{M}^{-1} \mathbf{e}_{2} \\
& =\left(r_{1}+n_{2}\right) \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}-\frac{1}{r_{1}} \mathbf{e}_{2}^{T} A_{G_{1}}^{T} A_{G_{1}} S_{M}^{-1} \mathbf{e}_{2} \\
& =\left(r_{1}+n_{2}\right) \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}-r_{1} \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2} \\
& =n_{2} \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2},
\end{aligned}
$$

which implies that $\mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}=\frac{n_{1}}{n_{2}}$. Since $N_{1}=\frac{1}{r_{1}} I_{n_{1}}+\frac{1}{r_{1}^{2}} A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}, N_{2}=\frac{1}{r_{1}} A_{G_{1}} S_{M}^{-1}$ and $N_{3}=\frac{1}{r_{1}} S_{M}^{-1} A_{G_{1}}^{T}$ from (2), (3) and (4), we get

$$
\mathbf{e}_{\mathbf{1}}{ }^{T} N_{1} \mathbf{e}_{\mathbf{1}}=\frac{n_{1}}{r_{1}}+\frac{1}{r_{1}^{2}} \mathbf{e}^{T} A_{\mathrm{G}_{1}} S_{M}^{-1} A_{G_{1}}^{T} \mathbf{e}_{\mathbf{1}}=\frac{n_{1}}{r_{1}}+\mathbf{e}_{\mathbf{1}}^{T} S_{M}^{-1} \mathbf{e}_{\mathbf{1}}=\frac{n_{1}}{r_{1}}+\frac{n_{1}}{n_{2}} .
$$

By a similar analysis as above, we can obtain that

$$
\mathbf{e}_{1}^{T} N_{2} \mathbf{e}_{2}=\mathbf{e}_{2}^{T} N_{3} \mathbf{e}_{1}=\frac{1}{r_{1}} r_{1} \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}=\frac{n_{1}}{n_{2}} .
$$

In addition, since $F=L_{G_{2}}+n_{1} I_{n_{2}}-\frac{n_{1}}{n_{2}} J_{n_{2} \times n_{2}}$, by simple calculation, we have F is a real symmetric matrix and $F \mathbf{e}_{3}=0$. Hence, from Lemma 2.7, we can obtain $\mathbf{e}_{3}{ }^{T} F^{\#} \mathbf{e}_{3}=0$.

Finally, Putting the above results together, we get

$$
\begin{equation*}
\mathbf{e}^{T} L_{\mathrm{G}_{1} \vee \mathrm{G}_{2}}{ }^{(1)} \mathbf{e}=\frac{n_{1}}{r_{1}}+4 \frac{n_{1}}{n_{2}} . \tag{16}
\end{equation*}
$$

Therefore, combining (15) with (16), we have

$$
\begin{aligned}
K f\left(G_{1} \vee G_{2}\right)= & \left(2 n_{1}+n_{2}\right)\left[\frac{1}{r_{1}} \sum_{i=1}^{n_{1}} \frac{\lambda_{i}^{2}\left(G_{1}\right)+r_{1}^{2}}{r_{1}\left(n_{2}+2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{\left(r_{2}+n_{1}\right)-\lambda_{i}\left(G_{2}\right)}\right] \\
& +\frac{2 n_{1}^{2}+n_{1} n_{2}-n_{1}}{r_{1}}-\frac{4 n_{1}^{2}+2 n_{1} n_{2}+n_{2}^{2}}{n_{1} n_{2}}
\end{aligned}
$$

Now, we provide an example.
Example 3.3 Suppose P_{2} denotes a path on 2 vertices. It is easy to get that $\operatorname{Spec}_{A}\left(P_{2}\right)=\{-1,1\}$. The splitting V-vertex join graph $P_{2} \vee P_{2}$ of P_{2} and P_{2} is shown in Figure 2.

Now, applying Theorem 3.1, we have the following conclusions.

Figure 2: $P_{2} \underline{\vee} P_{2}$.
(1) For $v_{2}, v_{4} \in V_{G_{1}}$, we have

$$
r_{24}\left(P_{2} \vee P_{2}\right)=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}}\left(w_{k}\left(v_{i}, v_{i}\right)+w_{k}\left(v_{j}, v_{j}\right)-2 w_{k}\left(v_{i}, v_{j}\right)\right)=\frac{1}{2}
$$

(2) For $v_{5}, v_{6} \in V_{G_{2}}$, we see

$$
r_{56}\left(P_{2} \underline{\vee} P_{2}\right)=\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i i}+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-2\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i j}=\frac{1}{2}
$$

(3) For $v_{1}, v_{3} \in S_{G_{1}}$, we obtain

$$
\begin{aligned}
r_{13}\left(P_{2} \vee P_{2}\right)= & \frac{2}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)}\left(\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right. \\
& \left.+\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)-2 \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{\substack{ }}^{\infty} \frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)=\frac{5}{2} .
\end{aligned}
$$

(4) If $v_{i} \in V_{G_{1}}, v_{j} \in V_{G_{2}}$, taking v_{4} and v_{5} as an example, then

$$
r_{45}\left(P_{2} \vee P_{2}\right)=\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{i}, v_{i}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}=\frac{1}{2} .
$$

(5) Let $v_{i} \in S_{G_{1}}, v_{j} \in V_{\mathrm{G}_{2}}$, taking v_{1} and v_{5} as an example. Then

$$
r_{15}\left(P_{2} \underline{\vee} P_{2}\right)=\frac{1}{r_{1}}+\frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{\epsilon} \in N_{G_{1}}\left(v_{1}^{\prime}\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}=\frac{3}{2} .
$$

(6) Suppose $v_{i} \in S_{G_{1}}, v_{j} \in V_{\mathrm{G}_{1}}$, taking v_{1} and v_{2} as an example. Then

$$
\begin{aligned}
r_{i j}\left(G_{1} \underline{\vee} G_{2}\right)= & \frac{1}{r_{1}^{2}\left(n_{2}+2 r_{1}\right)} \sum_{\substack{v_{s} \in \mathcal{G}_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\frac{1}{r_{1}}+\frac{1}{n_{2}+2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{j}, v_{j}\right)\right) \\
& -\frac{2}{r_{1}\left(n_{2}+2 r_{1}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left(\frac{1}{\left(n_{2}+2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right)=1 .
\end{aligned}
$$

In addition, by Theorem 3.2, we obtain Kirchhoff index of $P_{2} \bigvee P_{2}$ as follows:

$$
\begin{aligned}
K f\left(P_{2} \underline{\vee} P_{2}\right)= & \left(2 n_{1}+n_{2}\right)\left[\frac{1}{r_{1}} \sum_{i=1}^{n_{1}} \frac{\lambda_{i}^{2}\left(G_{1}\right)+r_{1}^{2}}{r_{1}\left(n_{2}+2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{\left(r_{2}+n_{1}\right)-\lambda_{i}\left(G_{2}\right)}\right] \\
& +\frac{2 n_{1}^{2}+n_{1} n_{2}-n_{1}}{r_{1}}-\frac{4 n_{1}^{2}+2 n_{1} n_{2}+n_{2}^{2}}{n_{1} n_{2}}=\frac{33}{2}
\end{aligned}
$$

On the other hand, by using Mathematica, we find the resistance distance matrix of $P_{2} \underline{\vee} P_{2}$ as shown below:

$$
R\left(P_{2} \underline{\vee} P_{2}\right)=\left(\begin{array}{cccccc}
0 & 1 & \frac{5}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
1 & 0 & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{2} & \frac{3}{2} & 0 & 1 & \frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{1}{2} & 1 & 0 & \frac{1}{2} & \frac{1}{2} \\
\frac{3}{2} & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{3}{2} & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) .
$$

This implies that the Theorem 3.1 and Theorem 3.2 are effective ways to compute the resistance distance and the Kirchhoff index.

4. Resistance distance and Kirchhoff index of splitting S-vertex join graphs

In this section, we calculate the resistance distance and Kirchhoff index of the splitting S-vertex join graph $G_{1} \bar{\wedge} G_{2}$.

Theorem 4.1. Suppose G_{i} is an r_{i}-regular graph on n_{i} vertices for $i=1,2$. Let $w_{k}\left(v_{i}, v_{j}\right)=\left[\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)^{k}\right]_{i j}$ and $N_{G_{1}}\left(v_{i}\right)=\left\{v_{j} \in V_{G_{1}} \mid v_{i} v_{j} \in E_{G_{1} \AA G_{2}}\right\}$. Then we can conclude the following results.
(1) For any $v_{i}, v_{j} \in V_{G_{1}}$, we have

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}}\left(w_{k}\left(v_{i}, v_{i}\right)+w_{k}\left(v_{j}, v_{j}\right)-2 w_{k}\left(v_{i}, v_{j}\right)\right) ;
$$

(2) For any $v_{i}, v_{j} \in V_{G_{2}}$, we get

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i i}+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-2\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i j} ;
$$

(3) For any $v_{i}^{\prime}, v_{j}^{\prime} \in S_{G_{1}}$, we obtain

$$
\begin{aligned}
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)= & \frac{2}{r_{1}+n_{2}}+\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}}\left[\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)+\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right. \\
& \left.-2 \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right] ;
\end{aligned}
$$

(4) For $v_{i} \in V_{G_{1}}, v_{j} \in V_{G_{2}}$, we see

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{i}, v_{i}\right)\right]+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}} ;
$$

(5) For $v_{i}^{\prime} \in S_{G_{1}}, v_{j} \in V_{G_{2}}$, we know

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\frac{1}{r_{1}+n_{2}}+\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in \mathrm{~N}_{G_{1}}\left(v_{i}^{\prime}\right) \\ v_{t} \in \mathrm{~N}_{G_{1}}\left(v_{v}^{\prime}\right)}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right]+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}} ;
$$

(C) For $v_{i}^{\prime} \in S_{G_{1}}, v_{j} \in V_{G_{1}}$, we have

$$
\begin{aligned}
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)= & \frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{\in} \in N_{1}\left(v_{1}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right]+\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{j}, v_{j}\right)\right] \\
& -\frac{2}{2 r_{1}\left(r_{1}+n_{2}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{v}\right)} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right]+\frac{1}{r_{1}+n_{2}} .
\end{aligned}
$$

Proof. Marking the vertices of $G_{1} \pi G_{2}$ as shown in Figure 1, we have the Laplacian matrix of $G_{1} \pi G_{2}$ below

$$
\begin{aligned}
& L_{G_{1} \overline{ } \pi G_{2}}=\begin{array}{ccc}
S_{G_{1}} \\
V_{G_{1}} \\
V_{G_{2}}
\end{array}\left(\begin{array}{ccc}
S_{G_{1}} & V_{G_{1}} & V_{G_{2}} \\
\left(r_{1}+n_{2}\right) I_{n_{1}} & -A_{G_{1}} & -J_{n_{1} \times n_{2}} \\
\hdashline-A_{G_{1}}^{T} & r_{1} I_{n_{1}}+L_{G_{1}} & O_{n_{1} \times n_{2}} \\
\hdashline \bar{J}_{n_{2} \times n_{1}} & \bar{O}_{n_{2} \times n_{1}} & n_{1} I_{n_{2}}+\bar{L}_{G_{2}}
\end{array}\right) \\
& =\left(\begin{array}{c:c}
\mathrm{M} & \binom{-J_{n_{1} \times n_{2}}}{O_{n_{1} \times n_{2}}} \\
\hdashline\left(-J_{n_{2} \times n_{1}}\right. & \left.O_{n_{2} \times n_{1}}\right) \\
n_{1} I_{n_{2}}+\bar{L}_{G_{2}}
\end{array}\right),
\end{aligned}
$$

where $M=\left(\begin{array}{cc}\left(r_{1}+n_{2}\right) I_{n_{1}} & -A_{G_{1}} \\ -A_{G_{1}}^{T} & r_{1} I_{n_{1}}+L_{G_{1}}\end{array}\right)$ and $O_{a \times b}$ is the $a \times b$ matrix with all entries equal to zero.
By Definition 2.3, we have the Schur complement of $\left(r_{1}+n_{2}\right) I_{n_{1}}$ in M is

$$
\begin{equation*}
S_{M}=r_{1} I_{n_{1}}+L_{G_{1}}-\frac{1}{r_{1}+n_{2}}\left(A_{G_{1}}^{T} A_{G_{1}}\right) . \tag{17}
\end{equation*}
$$

By Lemma 2.4, we have

$$
M^{-1}=\left(\begin{array}{ll}
M_{1} & M_{2} \tag{18}\\
M_{3} & S_{M}^{-1}
\end{array}\right),
$$

where

$$
\begin{align*}
& M_{1}=\frac{1}{r_{1}+n_{2}} I_{n_{1}}+\frac{1}{\left(r_{1}+n_{2}\right)^{2}} A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T} \tag{19}\\
& M_{2}=\frac{1}{r_{1}+n_{2}} A_{G_{1}} S_{M}^{-1}, \tag{20}\\
& M_{3}=\frac{1}{r_{1}+n_{2}} S_{M}^{-1} A_{G_{1}}^{T} . \tag{21}
\end{align*}
$$

Suppose F is the Schur complement of M in $L\left(G_{1} \wedge G_{2}\right)$. Then from Definition 2.3 and (18), we get

$$
\begin{align*}
F & =n_{1} I_{n_{2}}+L_{G_{2}}-\left(\begin{array}{ll}
-J_{n_{2} \times n_{1}} & O_{n_{2} \times n_{1}}
\end{array}\right) M^{-1}\binom{-J_{n_{1} \times n_{2}}}{O_{n_{1} \times n_{2}}} \tag{22}\\
& =n_{1} I_{n_{2}}+L_{G_{2}}-\frac{n_{1}}{r_{1}+n_{2}} J_{n_{2} \times n_{2}}-\frac{r_{1}^{2}}{\left(r_{1}+n_{2}\right)^{2}} J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}} .
\end{align*}
$$

Since

$$
\begin{aligned}
n_{1} J_{n_{2} \times n_{2}} & =J_{n_{2} \times n_{1}} S_{M} S_{M}^{-1} J_{n_{1} \times n_{2}} \\
& =J_{n_{2} \times n_{1}}\left[r_{1} I_{n_{1}}+L_{G_{1}}-\frac{1}{r_{1}+n_{2}}\left(A_{G_{1}}^{T} A_{G_{1}}\right)\right] S_{M}^{-1} J_{n_{1} \times n_{2}} \\
& =\left(r_{1}-\frac{r_{1}^{2}}{r_{1}+n_{2}}\right) J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}},
\end{aligned}
$$

we get

$$
\begin{equation*}
J_{n_{2} \times n_{1}} S_{M}^{-1} J_{n_{1} \times n_{2}}=\frac{n_{1}\left(r_{1}+n_{2}\right)}{r_{1} n_{2}} J_{n_{2} \times n_{2}} \tag{23}
\end{equation*}
$$

Substituting (23) into (22), we obtain

$$
F=n_{1} I_{n_{2}}+L_{G_{2}}-\frac{n_{1}}{n_{2}} J_{n_{2} \times n_{2}}
$$

Furthermore, according to Lemma 2.6, we get the expression

$$
\begin{equation*}
F^{\#}=\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}-\frac{1}{n_{1} n_{2}} J_{n_{2} \times n_{2}} \tag{24}
\end{equation*}
$$

Therefore, we get the expression of $L_{G_{1} \bar{\wedge} G_{2}}^{(1)}$ from Lemma 2.5 as follows

$$
L_{G_{1} \wedge G_{2}}^{(1)}=\left(\begin{array}{cc:c}
M_{1} & M_{2} & 0 \tag{25}\\
M_{3} & S_{M}^{-1} & 0 \\
\hdashline 0 & 0 & F^{\#}
\end{array}\right) .
$$

(1) For $v_{i}, v_{j} \in V_{G_{1}}$, combining Lemma 2.1 with (25), we have

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left(S_{M}^{-1}\right)_{i i}+\left(S_{M}\right)_{j j}^{-1}-2\left(S_{M}^{-1}\right)_{i j}
$$

In view of (17), we get

$$
S_{M}=2 r_{1}\left[I_{n_{1}}-\frac{1}{2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)\right] .
$$

The spectral radius of $\frac{1}{2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)$ is

$$
\rho\left(\frac{1}{2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)\right)=\frac{2 r_{1}+n_{2}}{2 r_{1}+2 n_{2}}<1,
$$

which implies that the power series of $\left[I_{n_{1}}-\frac{1}{2 r_{1}}\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)\right]^{-1}$ is convergent. Thus, we gain

$$
\begin{equation*}
S_{M}^{-1}=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}}\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)^{k}\right] \tag{26}
\end{equation*}
$$

Let $w_{k}\left(v_{i}, v_{j}\right)=\left[\left(A_{G_{1}}+\frac{1}{r_{1}+n_{2}} A_{G_{1}}^{2}\right)^{k}\right]_{i j}$. Then we have

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}}\left(w_{k}\left(v_{i}, v_{i}\right)+w_{k}\left(v_{j}, v_{j}\right)-2 w_{k}\left(v_{i}, v_{j}\right)\right)\right]
$$

(2) For $v_{i}, v_{j} \in V_{G_{2}}$, according to Lemma 2.1 and (25), we have

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left(F^{\#}\right)_{i i}+\left(F^{\#}\right)_{j j}-2\left(F^{\#}\right)_{i j}
$$

Based on (24), we obtain

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i i}+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-2\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i j}
$$

(3) For $v_{i}^{\prime}, v_{j}^{\prime} \in S_{G_{1}}$, according to Lemma 2.1 and (25), we have

$$
\begin{equation*}
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left(M_{1}\right)_{i i}+\left(M_{1}\right)_{j j}-2\left(M_{1}\right)_{i j} \tag{27}
\end{equation*}
$$

Note that $N_{G_{1}}\left(v_{i}\right)=\left\{v_{j} \in V_{G_{1}} \mid v_{i} v_{j} \in E_{G_{1} \bar{\wedge} G_{2}}\right\}$. According to (19), we can get

$$
\begin{align*}
\left(M_{1}\right)_{i i} & =\frac{1}{r_{1}+n_{2}}+\frac{1}{\left(r_{1}+n_{2}\right)^{2}}\left(A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}\right)_{i i} \\
& \left.=\frac{1}{r_{1}+n_{2}}+\frac{1}{\left(r_{1}+n_{2}\right)^{2}}\left(\sum_{v_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}}\left(S_{M}^{-1}\right)_{s 1}, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s 2}, \ldots, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s n_{1}}\right) A_{G_{1}}^{T}\right)_{i} \\
& =\frac{1}{r_{1}+n_{2}}+\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{v^{\prime}}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right) . \tag{28}
\end{align*}
$$

By using a similar method as above, we obtain

$$
\begin{equation*}
\left(M_{1}\right)_{i j}=\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\ v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right) \tag{29}
\end{equation*}
$$

Therefore, substituting (28) and (29) into (27), we have

$$
\begin{aligned}
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)= & \frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}}\left[\sum_{\substack{v_{s} \in N_{G_{G}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)+\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right. \\
& \left.-2 \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right]+\frac{2}{r_{1}+n_{2}} .
\end{aligned}
$$

(4) For $v_{i} \in V_{G_{1}}, v_{j} \in V_{G_{2}}$, combining Lemma 2.1 with (25), we have

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left(S_{M}^{-1}\right)_{i i}+\left(F^{\#}\right)_{j j}
$$

Further, according to (26) and (24), we know

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left(\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{i}, v_{i}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}
$$

(5) For $v_{i}^{\prime} \in S_{G_{1}}, v_{j} \in V_{G_{2}}$, combining Lemma 2.1 with (25), we get

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left(M_{1}\right)_{i i}+\left(F^{\#}\right)_{j j}
$$

Similarly, due to (24) and (28), we have

$$
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\frac{1}{r_{1}+n_{2}}+\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{\in} \in N_{G_{1}}\left(v_{v}^{\prime}\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{\substack{ }}^{\infty}\left(\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right)+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}
$$

(6) For $v_{i}^{\prime} \in S_{\mathrm{G}_{1}}, v_{j} \in V_{\mathrm{G}_{1}}$, based on Lemma 2.1 and (25), we have

$$
\begin{equation*}
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)=\left(M_{1}\right)_{i i}+\left(S_{M}\right)_{j j}^{-1}-2\left(M_{2}\right)_{i j} \tag{30}
\end{equation*}
$$

Since $M_{2}=\frac{1}{r_{1}+n_{2}} A_{G_{1}} S_{M}^{-1}$ from (20), according to (26), we see

$$
\begin{align*}
\left(M_{2}\right)_{i j} & =\frac{1}{r_{1}+n_{2}}\left(A_{G_{1}} S_{M}^{-1}\right)_{i j} \\
& =\frac{1}{r_{1}+n_{2}}\left(\sum_{v_{s} \in N_{G_{1}}\left(v_{i^{\prime}}\right)}\left(S_{M}^{-1}\right)_{s 1}, \sum_{v_{s} \in N_{G_{1}}\left(v_{i_{i}^{\prime}}\right)}\left(S_{M}^{-1}\right)_{s 2}, \ldots, \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}\left(S_{M}^{-1}\right)_{s n_{1}}\right)_{j} \\
& =\frac{1}{r_{1}+n_{2}} \sum_{v_{s} \in N_{G_{1}}\left(v_{i^{\prime}}\right)}\left(S_{M}^{-1}\right)_{s j} \tag{31}\\
& =\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right] .
\end{align*}
$$

Hence, plugging (26), (28) and (31) into (30), we get

$$
\begin{aligned}
r_{i j}\left(G_{1} \bar{\wedge} G_{2}\right)= & \frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right]+\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{j}, v_{j}\right)\right] \\
& -\frac{2}{2 r_{1}\left(r_{1}+n_{2}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right]+\frac{1}{r_{1}+n_{2}} .
\end{aligned}
$$

Theorem 4.2. Assume G_{i} is an r_{i}-regular graph with n_{i} vertices. If $\lambda_{1}\left(G_{i}\right), \lambda_{2}\left(G_{i}\right), \ldots, \lambda_{n}\left(G_{i}\right)$ are the eigenvalues of $A_{G_{i}}$ for $i=1,2$, then

$$
\begin{aligned}
K f\left(G_{1} \bar{\wedge} G_{2}\right)= & \left(2 n_{1}+n_{2}\right)\left[\frac{1}{r_{1}+n_{2}} \sum_{i=1}^{n_{1}} \frac{\left(r_{1}+n_{2}\right)^{2}+\lambda_{i}^{2}\left(G_{1}\right)}{\left(2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)\left(r_{1}+n_{2}\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{n_{1}+r_{2}-\lambda_{i}\left(G_{2}\right)}\right] \\
& +\frac{2 n_{1}^{2}+n_{1} n_{2}}{n_{2}+r_{1}}-\frac{\left(4 r_{1}+n_{2}\right) n_{1}^{2}+2 r_{1} n_{1} n_{2}+r_{1} n_{2}^{2}}{r_{1} n_{1} n_{2}}
\end{aligned}
$$

Proof. By Lemma 2.2, we have

$$
K f\left(G_{1} \bar{\wedge} G_{2}\right)=\left(2 n_{1}+n_{2}\right) \operatorname{tr}\left(L_{G_{1} \overline{ } G_{2}}^{(1)}\right)-\mathbf{e}^{T} L_{G_{1} \bar{\wedge} G_{2}}^{(1)} \mathbf{e} .
$$

Since the expression of $L_{G_{1} \wedge G_{2}}^{(1)}$ from (25) is shown as follows

$$
L_{G_{1} \bar{\wedge} G_{2}}^{(1)}=\left(\begin{array}{cc:c}
M_{1} & M_{2} & 0 \\
M_{3} & S_{M}^{-1} & 0 \\
\hdashline 0 & 0 & F^{\#-}
\end{array}\right),
$$

we have

$$
\operatorname{tr}\left(L_{G_{1} \pi G_{2}}^{(1)}\right)=\operatorname{tr}\left(M_{1}\right)+\operatorname{tr}\left(S_{M}^{-1}\right)+\operatorname{tr}\left(F^{\#}\right) .
$$

According to (17) , we obtain

$$
\operatorname{tr}\left(S_{M}\right)=\sum_{i=1}^{n_{1}}\left(2 r_{1}-\lambda_{i}\left(G_{1}\right)-\frac{1}{r_{1}+n_{2}} \lambda_{i}^{2}\left(G_{1}\right)\right),
$$

which implies that

$$
\operatorname{tr}\left(S_{M}^{-1}\right)=\sum_{i=1}^{n_{1}} \frac{1}{2 r_{1}-\lambda_{i}\left(G_{1}\right)-\frac{1}{r_{1}+n_{2}} \lambda_{i}^{2}\left(G_{1}\right)} .
$$

Meanwhile, from (19), we get

$$
\begin{aligned}
\operatorname{tr}\left(M_{1}\right) & =\operatorname{tr}\left(\frac{1}{r_{1}+n_{2}} I_{n_{1}}\right)+\operatorname{tr}\left(\frac{1}{\left(r_{1}+n_{2}\right)^{2}} A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}\right) \\
& =\frac{n_{1}}{r_{1}+n_{2}}+\frac{1}{r_{1}+n_{2}} \sum_{i=1}^{n_{1}} \frac{\lambda_{i}^{2}\left(G_{1}\right)}{\left(2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)\left(r_{1}+n_{2}\right)-\lambda_{i}^{2}\left(G_{1}\right)} .
\end{aligned}
$$

On the other hand, by (24), we obtain

$$
\begin{aligned}
\operatorname{tr}\left(F^{\#}\right) & =\operatorname{tr}\left(\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right)-\frac{1}{n_{1} n_{2}} \operatorname{tr}\left(J_{n_{2} \times n_{2}}\right) \\
& =\sum_{i=1}^{n_{2}} \frac{1}{n_{1}+r_{2}-\lambda_{i}\left(G_{2}\right)}-\frac{1}{n_{1}} .
\end{aligned}
$$

Therefore, taking the above results together, we have

$$
\begin{align*}
\operatorname{tr}\left(L_{G_{1} \pi G_{2}}^{(1)}\right)= & \frac{1}{r_{1}+n_{2}} \sum_{i=1}^{n_{1}} \frac{\left(r_{1}+n_{2}\right)^{2}+\lambda_{i}^{2}\left(G_{1}\right)}{\left(2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)\left(r_{1}+n_{2}\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\frac{n_{1}}{r_{1}+n_{2}} \tag{32}\\
& +\sum_{i=1}^{n_{2}} \frac{1}{n_{1}+r_{2}-\lambda_{i}\left(G_{2}\right)}-\frac{1}{n_{1}} .
\end{align*}
$$

Moreover, from (25), it is easy to verify that

$$
\mathbf{e}^{T} L_{G_{1} \overline{1} G_{2}}^{(1)} \mathbf{e}^{=} \mathbf{e}_{1}{ }^{T} M_{1} \mathbf{e}_{1}+\mathbf{e}_{1}{ }^{T} M_{2} \mathbf{e}_{2}+\mathbf{e}_{2}{ }^{T} M_{3} \mathbf{e}_{\mathbf{1}}+\mathbf{e}_{2}{ }^{T} S_{M}^{-1} \mathbf{e}_{2}+\mathbf{e}_{3}{ }^{T} F^{\#} \mathbf{e}_{3},
$$

where $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3} are the column vectors of size n_{1}, n_{1} and n_{2}, respectively, whose all entries are 1 .
With a proof similar to Theorem 3.2, we have

$$
\begin{aligned}
n_{1} & =\mathbf{e}_{2}{ }^{T} S_{M} S_{M}^{-1} \mathbf{e}_{2} \\
& =\mathbf{e}_{2}^{T}\left(r_{1} I_{n_{1}}+L_{G_{1}}-\frac{1}{r_{1}+n_{2}}\left(A_{G_{1}}^{T} A_{G_{1}}\right)\right) S_{M}^{-1} \mathbf{e}_{2} \\
& =\left(r_{1}-\frac{r_{1}^{2}}{r_{1}+n_{2}}\right) \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2} .
\end{aligned}
$$

Thus, we can obtain $\mathbf{e}_{2}{ }^{T} S_{M}^{-1} \mathbf{e}_{2}=\frac{n_{1}\left(r_{1}+n_{2}\right)}{r_{1} n_{2}}$. Further, according to (19), we get

$$
\begin{aligned}
\mathbf{e}_{1}{ }^{T} M_{1} \mathbf{e}_{\mathbf{1}} & =\mathbf{e}_{\mathbf{1}}{ }^{T}\left(\frac{1}{r_{1}+n_{2}} I_{n_{1}}+\frac{1}{\left(r_{1}+n_{2}\right)^{2}} A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T}\right) \mathbf{e}_{\mathbf{1}} \\
& =\frac{n_{1}}{r_{1}+n_{2}}+\frac{r_{1}^{2}}{\left(r_{1}+n_{2}\right)^{2}} \mathbf{e}^{T} S_{M}^{-1} \mathbf{e}_{\mathbf{1}} \\
& =\frac{n_{1}}{n_{2}} .
\end{aligned}
$$

By using a similar method as above, we get

$$
\mathbf{e}_{1}{ }^{T} M_{2} \mathbf{e}_{2}=\mathbf{e}_{2}{ }^{T} M_{3} \mathbf{e}_{1}=\frac{r_{1}}{r_{1}+n_{2}} \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}=\frac{n_{1}}{n_{2}} .
$$

Moreover, since $F=n_{1} I_{n_{2}}+L_{G_{2}}-\frac{n_{1}}{n_{2}} J_{n_{2} \times n_{2}}$, we have F is a real symmetric matrix and $F \mathbf{e}_{3}=0$. So, according to Lemma 2.7, we have $\mathbf{e}^{T} F^{\#}=0$ and $\mathbf{e}^{T} F^{\#} \mathbf{e}=0$. Hence, we obtain

$$
\begin{equation*}
\mathbf{e}^{T} L_{G_{1} \bar{\wedge} G_{2}}^{(1)} \mathbf{e}=3 \frac{n_{1}}{n_{2}}+\frac{n_{1}\left(r_{1}+n_{2}\right)}{r_{1} n_{2}} . \tag{33}
\end{equation*}
$$

Finally, combining (32) with (33), we have

$$
\begin{aligned}
K f\left(G_{1} \bar{\wedge} G_{2}\right)= & \left(2 n_{1}+n_{2}\right)\left[\frac{1}{r_{1}+n_{2}} \sum_{i=1}^{n_{1}} \frac{\left(r_{1}+n_{2}\right)^{2}+\lambda_{i}^{2}\left(G_{1}\right)}{\left(2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)\left(r_{1}+n_{2}\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{n_{1}+r_{2}-\lambda_{i}\left(G_{2}\right)}\right] \\
& +\frac{2 n_{1}^{2}+n_{1} n_{2}}{n_{2}+r_{1}}-\frac{\left(4 r_{1}+n_{2}\right) n_{1}^{2}+2 r_{1} n_{1} n_{2}+r_{1} n_{2}^{2}}{r_{1} n_{1} n_{2}}
\end{aligned}
$$

At last, we get an example as follows.

Example 4.3

Figure 3: $P_{2} \pi C_{4}$.
Note that $\operatorname{Spec}_{A}\left(P_{2}\right)=\{1,-1\}$ and $\operatorname{Spec}_{A}\left(C_{4}\right)=\left\{2,0^{2},-2\right\}$. The splitting S-vertex join $P_{2} \bar{\wedge} C_{4}$ of P_{2} and C_{4} is shown in Figure 3. According to Theorem 4.1, for any two vertices in $P_{2} \bar{\wedge} C_{4}$, we first calculate the resistance distance.
(1) For any $v_{1}, v_{2} \in V_{G_{1}}$, we have

$$
r_{12}\left(P_{2} \bar{\wedge} C_{4}\right)=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}}\left(w_{k}\left(v_{i}, v_{i}\right)+w_{k}\left(v_{j}, v_{j}\right)-2 w_{k}\left(v_{i}, v_{j}\right)\right)=\frac{5}{7} .
$$

(2) Let $v_{i}, v_{j} \in V_{G_{2}}$, taking v_{5} and v_{8} as an example. Then

$$
r_{58}\left(P_{2} \bar{\wedge} C_{4}\right)=\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i i}+\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-2\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{i j}=\frac{5}{12}
$$

(3) For $v_{3}, v_{4} \in S_{G_{1}}$, we obtain

$$
\begin{aligned}
r_{34}\left(P_{2} \pi C_{4}\right)= & \frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}}\left[\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)+\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right. \\
& \left.-2 \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{j}^{\prime}\right)}} \sum_{k=0}^{\infty} \frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right]+\frac{2}{r_{1}+n_{2}}=\frac{3}{7} .
\end{aligned}
$$

(4) Suppose $v_{i} \in V_{G_{1}}, v_{j} \in V_{G_{2}}$, taking v_{1} and v_{5} as an example. Then

$$
r_{15}\left(P_{2} \bar{\wedge} C_{4}\right)=\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{i}, v_{i}\right)\right]+\left[\left(L_{\mathrm{G}_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}=\frac{163}{168}
$$

(5) Let $v_{i} \in S_{G_{1}}, v_{j} \in V_{G_{2}}$, taking v_{3} and v_{5} as an example. Then

$$
\begin{aligned}
r_{35}\left(P_{2} \bar{\wedge} C_{4}\right)= & \frac{1}{r_{1}+n_{2}}+\frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime} \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)\right.}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right] \\
& +\left[\left(L_{G_{2}}+n_{1} I_{n_{2}}\right)^{-1}\right]_{j j}-\frac{1}{n_{1} n_{2}}=\frac{67}{168} .
\end{aligned}
$$

(6) Assume $v_{i} \in S_{G_{1}}, v_{j} \in V_{G_{2}}$, taking v_{1} and v_{3} as an example. Then

$$
\begin{aligned}
r_{13}\left(P_{2} \bar{\wedge} C_{4}\right)= & \frac{1}{2 r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right) \\
v_{t} \in N_{G_{1}}\left(v_{i}^{\prime}\right)}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{t}\right)\right]+\frac{1}{2 r_{1}} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{j}, v_{j}\right)\right] \\
& -\frac{2}{2 r_{1}\left(r_{1}+n_{2}\right)} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}^{\prime}\right)} \sum_{k=0}^{\infty}\left[\frac{1}{\left(2 r_{1}\right)^{k}} w_{k}\left(v_{s}, v_{j}\right)\right]+\frac{1}{r_{1}+n_{2}}=\frac{5}{7} .
\end{aligned}
$$

Meanwhile, using Theorem 4.2, we can compute Kirchhoff index of $P_{2} \bar{\wedge} C_{4}$ as follows:

$$
\begin{aligned}
K f\left(P_{2} \bar{\wedge} C_{4}\right)= & \left(2 n_{1}+n_{2}\right)\left[\frac{1}{r_{1}+n_{2}} \sum_{i=1}^{n_{1}} \frac{\left(r_{1}+n_{2}\right)^{2}+\lambda_{i}^{2}\left(G_{1}\right)}{\left(2 r_{1}-\lambda_{i}\left(G_{1}\right)\right)\left(r_{1}+n_{2}\right)-\lambda_{i}^{2}\left(G_{1}\right)}+\sum_{i=1}^{n_{2}} \frac{1}{n_{1}+r_{2}-\lambda_{i}\left(G_{2}\right)}\right] \\
& +\frac{2 n_{1}^{2}+n_{1} n_{2}}{n_{2}+r_{1}}-\frac{\left(4 r_{1}+n_{2}\right) n_{1}^{2}+2 r_{1} n_{1} n_{2}+r_{1} n_{2}^{2}}{r_{1} n_{1} n_{2}}=\frac{376}{21} .
\end{aligned}
$$

Similarly, by using Mathematica, we obtain the resistance distance matrix of $P_{2} \pi C_{4}$ as shown below:

$$
R\left(P_{2} \pi C_{4}\right)=\left(\begin{array}{cccccccc}
0 & \frac{5}{7} & \frac{5}{7} & \frac{6}{7} & \frac{163}{168} & \frac{163}{168} & \frac{163}{168} & \frac{163}{168} \\
\frac{5}{7} & 0 & \frac{6}{7} & \frac{5}{7} & \frac{163}{168} & \frac{163}{168} & \frac{163}{168} & \frac{163}{168} \\
\frac{5}{7} & \frac{6}{7} & 0 & \frac{3}{7} & \frac{67}{178} & \frac{67}{168} & \frac{67}{168} & \frac{67}{1168} \\
\frac{6}{7} & \frac{5}{7} & \frac{3}{7} & 0 & \frac{67}{168} & \frac{67}{168} & \frac{67}{168} & \frac{67}{118} \\
\frac{163}{168} & \frac{163}{168} & \frac{67}{168} & \frac{67}{1188} & 0 & \frac{5}{12} & \frac{1}{2} & \frac{5}{12} \\
\frac{163}{168} & \frac{163}{168} & \frac{67}{168} & \frac{67}{168} & \frac{5}{12} & 0 & \frac{5}{12} & \frac{1}{2} \\
\frac{163}{168} & \frac{163}{168} & \frac{67}{168} & \frac{67}{168} & \frac{1}{2} & \frac{5}{12} & 0 & \frac{5}{12} \\
\frac{163}{168} & \frac{163}{168} & \frac{67}{168} & \frac{67}{168} & \frac{5}{12} & \frac{1}{2} & \frac{5}{12} & 0
\end{array}\right) .
$$

Since our results coincides with the true value of the resistance distance and the Kirchhoff index which could be measured, the Theorem 4.1 and Theorem 4.2 are very useful.

Acknowledgments

The authors would like to thank editor and the anonymous referees for their valuable comments and suggestions. These comments help them to improve the contents and presentation of the paper dramatically.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] R. B. Bapat, Graphs and Matrices(Universitext), Springer/Hindustan Book Agency, London/New Delhi, 2010.
[2] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, (2nd edition), Springer-Verlag, New York, 2003.
[3] J. A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[4] C. J. Bu, L. Z. Sun, J. Zhou, Y. M. Wei, A note on block representations of the group inverse of Laplacian matrices, Electron. J. Linear Al. 23 (2012), 866-876.
[5] C. J. Bu, B. Yan, X. Q. Zhou, J. Zhou, Resistance distance in subdivision-vertex join and subdivision-edge join of graphs, Linear Algebra Appl. 458 (2014), 454-462.
[6] H. Y. Chen, Resistance Distances and Kirchhoff Index in Generalised Join Graphs, Z. Naturforsch. A. 72 (2017), 207-215.
[7] S. M. Huang, S. C. Li, On the resistance distance and Kirchhoff index of a linear hexagonal (cylinder) chain, Physica A. 558 2020, 124999.
[8] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 1993, 81-95.
[9] Q. Liu, Resistance Distance and Kirchhoff Index of Generalized Subdivision-Vertex and Subdivision-Edge Corona for Graphs, IEEE Access. 72019, 92240-92247.
[10] X. Liu, J. Zhou, C. Bu, Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs, Discrete Appl. Math. 187 2015, 130-139.
[11] L. Lovász, Random walks on graphs, Combinatorics, Paul Erdös is Eighty, Lect. Notes Math. 2 1993, 1-46.
[12] Z. Q. Lu, X. 1. Ma, M. S. Zhang, Spectra of graph operations based on splitting graph, J. Appl. Anal. Comput. 13 2023, 133-155.
[13] L. Z. Sun, Z. Y. Shang, C. J. Bu, Resistance distance and Kirchhoff index of the Q-vertex (or edge) join graphs, Discrete Math. 344 2021, 112433.
[14] L. Z. Sun, W. Z. Wang, J. Zhou, C. J. Bu, Some results on resistance distances and resistance matrices, Linear Multilinear Algebra. 63 2015, 523-533.
[15] W. Wang, T. Ma, J. Liu, Resistance distance and Kirchhoff index of Q-double join graphs, IEEE Access. 7 2019, 102313-102320.
[16] W. J. Yin, Z. F. Ming, Q. Liu, Resistance Distance and Kirchhoff Index for a Class of Graphs, Math. Probl. Eng. 2018 2018, 1028614.11028614.8.
[17] F. Z. Zhang, The Schur Complement and Its Applications, Springer, US, 2005.

[^0]: 2020 Mathematics Subject Classification. 05C12, 05C35
 Keywords. resistance distance, Kirchhoff index, the splitting V-vertex join graph, the splitting V-vertex join graph
 Received: 23 June 2023; Revised: 18 September 2023; Accepted: 03 October 2023
 Communicated by Paola Bonacini
 Research supported by the Natural Science Foundation of Xinjiang Province (No. 2021D01C069), the National Natural Science Foundation of China (No. 12161085) and the Undergraduate Innovation Training Program of Xinjiang University (No. S202210755093).

 * Corresponding author: Xiaoling Ma

 Email addresses: 956149016@qq. com (Yanan Li), mxling2018@163.com (Xiaoling Ma), 2607175266@qq. com (Shian Deng), 1398649520@qq.com (Dandan Chen)

