Filomat 38:9 (2024), 3215–3233 https://doi.org/10.2298/FIL2409215L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Resistance distance and Kirchhoff index of the splitting-joins of two graphs

Yanan Li^a, Xiaoling Ma^{a,*}, Shian Deng^a, Dandan Chen^a

^aCollege of Mathematics and System Sciences, Xinjiang University, Xinjiang 830017, P.R.China

Abstract. Let *G* be a graph. The splitting graph SP(G) of *G* is the graph received from *G* by putting a new vertex w' for each $w \in V_G$ and joining w' to all vertices of *G* adjacent to w. Let S_G be the set of such new vertices of the splitting graph SP(G). Let G_1 and G_2 be two simple connected graphs, the splitting *V*-vertex join graph is obtained by taking one copy of $SP(G_1)$ and joining each vertex in V_{G_1} to each vertex in V_{G_2} , denoted by $G_1 \succeq G_2$. The splitting *S*-vertex join of G_1 and G_2 , denoted by $G_1 \overline{\land} G_2$, is a graph obtained from $SP(G_1)$ and G_2 by joining each vertex in S_{G_1} to each vertex in V_{G_2} . In this paper, we calculate the resistance distance and Kirchhoff index of $G_1 \succeq G_2$ and $G_1 \overline{\land} G_2$ for regular graphs G_1 and G_2 , respectively.

1. Introduction

We deal with finite, simple and undirected graphs, and follow [3] for undefined terms and notations. Let $G = (V_G, E_G)$ be a graph with vertex set $V_G = \{v_1, v_2, ..., v_n\}$ and edge set E_G , where $n = |V_G|$ is the *order* of *G*. The *adjacency matrix* of *G*, denoted by A_G , is the $n \times n$ matrix whose (i, j)-entry is 1 if v_i and v_j are adjacent in *G* and 0 otherwise. The degree of v_i in *G* is denoted by $d_i = d_G(v_i)$. The *Laplacian matrix* of *G* is the matrix $L_G = D_G - A_G$, where D_G is the diagonal matrix with diagonal entries $d_1, d_2, ..., d_n$.

For a square matrix *M* of order *n*, the characteristic polynomial det($tI_n - M$) of *M* is denoted by $f_M(t)$, where I_n is the identity matrix with order *n*. Particularly, for a graph *G*, $f_{A_G}(t)$ and $f_{L_G}(t)$ are the adjacency and Laplacian *characteristic polynomial* of *G*, respectively. And their roots are the adjacency and Laplacian eigenvalues of *G*, separately. The collection of eigenvalues of A_G and L_G together with their multiplicities referred to the *A*-spectrum and *L*-spectrum of *G*, respectively. Denote the *A*-spectrum (respectively, *L*spectrum) as $Spec_A(G) = \{\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)\}$ (respectively, $Spec_L(G) = \{\mu_1(G), \mu_2(G), \ldots, \mu_n(G)\}$). Note that if *G* is *r*-regular graph, then each eigenvalue μ_i of L_G corresponds to an eigenvalue λ_i of A_G via the relation $\mu_i(G) = r - \lambda_i(G)$.

In 1993, Klein and Randić [8] presented the resistance distance between vertices v_i and v_j in graph G, denoted by $r_{ij}(G)$, defined as the effective resistance between v_i and v_j calculated according to Ohm's law when the unit resistance is distributed on each edge of G. The resistance distance of graph is equal to the

Keywords. resistance distance, Kirchhoff index, the splitting *V*-vertex join graph, the splitting *V*-vertex join graph Received: 23 June 2023; Revised: 18 September 2023; Accepted: 03 October 2023

Communicated by Paola Bonacini

²⁰²⁰ Mathematics Subject Classification. 05C12, 05C35

Research supported by the Natural Science Foundation of Xinjiang Province (No. 2021D01C069), the Natural Science Foundation of China (No. 12161085) and the Undergraduate Innovation Training Program of Xinjiang University (No. S202210755093). * Corresponding author: Xiaoling Ma

Email addresses: 956149016@qq.com (Yanan Li), mxling2018@163.com (Xiaoling Ma), 2607175266@qq.com (Shian Deng), 1398649520@qq.com (Dandan Chen)

equivalent resistance of electrical network, which is a new metric of graph and has a broad development prospect in chemistry, network analysis, physics and other fields. The Kirchhoff index Kf(G) of G is the sum of the resistance distances between all pairs of vertices of G, i.e., $Kf(G) = \sum_{i < i} r_{ii}$.

The splitting graph SP(G) of a graph G is the graph obtained from G by taking a new vertex w' for each $w \in V_G$ and joining w' to all vertices of G adjacent to w. Let S_G be the set of such new vertices of the splitting graph SP(G), i.e., $S_G = V_{SP(G)} \setminus V_G$. Lu et al. [12] introduced two types of graph operations based on the splitting graph as follows.

Definition 1.1. [12] Let G_i be an n_i -vertex connected graph for i = 1, 2. The splitting V-vertex join of G_1 and G_2 is obtained by taking one copy of $SP(G_1)$ and joining each vertex in V_{G_1} to each vertex in V_{G_2} , denoted by $G_1 \vee G_2$. The splitting S-vertex join of G_1 and G_2 is a graph obtained from $SP(G_1)$ and G_2 by joining each vertex in S_{G_1} to each vertex in V_{G_2} , denoted by $G_1 \vee G_2$.

Let P_n be a path of order n and K_n be complete graph of order n. Figure 1 depicts the splitting V-vertex join and the splitting S-vertex join of P_5 and K_3 .

Figure 1: The splitting *V*-vertex join of $P_5 \ \leq \ K_3$ and the splitting *S*-vertex join of $P_5 \ \overline{\land} \ K_3$.

It is well known that the eigenvalues and eigenvectors of the Laplacian matrix are used to represent the resistance distance of the graph [11]. But this method only works for certain graph classes. According to the components of the generalized inverse of the Laplacian matrix, Babapt [1] introduced the formula for expressing resistance distance and Kirchhoff index. Subsequently, reseachers [6, 7, 9, 16] considered the problems of resistance distance and Kirchhoff index of many graph classes and graph operations, such as the *Q*-vertex and *Q*-edge join graphs[13], *R*-vertex and *R*-edge join graphs[10], the subdivision-vertex and subdivision-edge join graphs [5], the *Q*-double join graphs[15] and so on.

Motivated by the above works, in this paper, we utilize the group inverse of matrix to calculate the resistance distances and Kirchhoff indices of the splitting *V*-vertex join $G_1 \vee G_2$ and the splitting *S*-vertex join $G_1 \wedge G_2$ for regular graphs G_1 and G_2 , respectively.

2. Preliminaries

Firstly, we give some definitions and lemmas which are very useful in the proof of the main results.

Let *Q* be a square matrix. The {1}-*inverse* of *Q* is a matrix, denoted by $Q^{(1)}$, such that $QQ^{(1)}Q = Q$. Particularly, if *Q* is singular, then *Q* has infinitely many 1-inverses [2]. The *group inverse* of *Q* is the unique matrix, denoted by $Q^{\#}$, satisfying $QQ^{\#}Q = Q$, $Q^{\#}QQ^{\#} = Q^{\#}$, and $QQ^{\#} = Q^{\#}Q$. Ben-Israel et al. [2] and Bu et al. [4], independently, proved that $Q^{\#}$ exists if and only if *rank*(*Q*) = *rank*(*Q*²). Specifically, if *Q* is real symmetric matrix, then $Q^{\#}$ exists and $Q^{\#}$ is a symmetric {1}-inverse of *Q*.

Let Q_{ij} denote the entry of Q in the *i*-th row and *j*-th column and **e** be a column vector whose entries are all ones. Let I_n be the identity matrix of size n, and $J_{n\times m}$ denote the $n \times m$ matrix whose all entries are 1.

Let *G* be a graph. Here we state some lemmas, which indicated that the $\{1\}$ -inverse and group inverse of L_G can expresses the resistance distance and Kirchhoff index of a graph *G*. These results play a vital role in demonstrating the main conclusions of this paper.

Lemma 2.1. [1, 4] Suppose G is a connected graph. If vertices v_i and v_j in V_G , then the resistance distance $r_{ij}(G)$ between them is given as follows:

$$r_{ij}(G) = (L_G^{(1)})_{ii} + (L_G^{(1)})_{jj} - (L_G^{(1)})_{ij} - (L_G^{(1)})_{ji}$$
$$= (L_G^{\#})_{ii} + (L_G^{\#})_{jj} - 2(L_G^{\#})_{ij}.$$

Lemma 2.2. [14] Let G be a connected graph on n vertices. Then

$$Kf(G) = ntr(L_G^{(1)}) - e^T L_G^{(1)} e,$$

where $tr(L_C^{(1)})$ is the trace of $L_C^{(1)}$.

Definition 2.3. [17] For a $n \times n$ matrix A, which can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are square matrices. If A_{11} and A_{22} are nonsingular, then the matrix $A_{22} - A_{21}A_{11}^{-1}A_{12}$ and $A_{11} - A_{12}A_{22}^{-1}A_{21}$ are called the Schur complements of A_{11} and A_{22} , respectively.

Lemma 2.4. [17] Suppose $W = \begin{pmatrix} S & T \\ P & Q \end{pmatrix}$ is a nonsingular matrix. Let S be nonsingular matrix. Then $W^{-1} = \begin{pmatrix} S^{-1} + S^{-1}TF^{-1}PS^{-1} & -S^{-1}TF^{-1} \\ -F^{-1}PS^{-1} & F^{-1} \end{pmatrix}.$

where $F = Q - PS^{-1}T$ is the Schur complement of S.

Lemma 2.5. [5] Let $L_G = \begin{pmatrix} L_1 & L_2 \\ L_2^T & L_3 \end{pmatrix}$ be the Laplacian matrix of a connected graph G. If each column vector of L_2^T is -e or a zero vector, then $H = \begin{pmatrix} L_1^{-1} & 0 \\ 0 & F^{\#} \end{pmatrix}$ is a symmetric {1}-inverse of L_G , where $F = L_3 - L_2^T L_1^{-1} L_2$ is a Schur complement of L_1 .

Lemma 2.6. [5] Suppose G is a graph of order n. Then

$$(L_G + aI_n - \frac{a}{n}J_{n \times n})^{\#} = (L_G + aI_n)^{-1} - \frac{1}{an}J_{n \times n}$$

where a is any positive real number.

Lemma 2.7. [5] Let Q be a real symmetric matrix. If Qe = 0, then we have $Q^{\#}e = 0$ and $e^{T}Q^{\#} = 0$.

3. Resistance distance and Kirchhoff index of splitting V-vertex join graphs

Now, we calculate the resistance distance and Kirchhoff index of the splitting V-vertex join graph $G_1 \supseteq G_2$.

Theorem 3.1. For i = 1, 2, let G_i be an r_i -regular graph of n_i vertices. Assume that $w_k(v_i, v_j) = \left[(A_{G_1} + \frac{1}{r_1}A_{G_1}^2)^k \right]_{ij}$ and $N_{G_1}(v_i) = \{v_j \in V_{G_1} \mid v_iv_j \in E_{G_1 \neq G_2}\}$. Then we have the following conclusions:

(1) For any $v_i, v_j \in V_{G_1}$, we get

$$r_{ij}(G_1 \leq G_2) = \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} (w_k(v_i, v_i) + w_k(v_j, v_j) - 2w_k(v_i, v_j));$$

(2) For any $v_i, v_j \in V_{G_2}$, we have

$$r_{ij}(G_1 \leq G_2) = \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{ii} + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - 2 \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{ij};$$

(3) For any $v'_i, v'_j \in S_{G_1}$, we know

$$\begin{split} r_{ij}(G_1 & \leq G_2) = & \frac{2}{r_1} + \frac{1}{r_1^2(n_2 + 2r_1)} \Big(\sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \\ & + \sum_{\substack{v_s \in N_{G_1}(v'_j) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{v_s \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \Big); \end{split}$$

(4) For $v_i \in V_{G_1}, v_j \in V_{G_2}$, we see

$$r_{ij}(G_1 \leq G_2) = \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_i, v_i) \right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - \frac{1}{n_1 n_2};$$

(5) For $v'_i \in S_{G_1}, v_j \in V_{G_2}$, we obtain

$$r_{ij}(G_1 \leq G_2) = \frac{1}{r_1} + \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t)\right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1}\right]_{jj} - \frac{1}{n_1 n_2};$$

(6) For $v'_i \in S_{G_1}, v_j \in V_{G_1}$, we get

$$\begin{split} r_{ij}(G_1 &\leq G_2) = & \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v_i') \\ v_i \in N_{G_1}(v_i')}} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \right) + \frac{1}{r_1} + \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_j, v_j) \right) \\ & - \frac{2}{r_1(n_2 + 2r_1)} \sum_{v_s \in N_{G_1}(v_i')} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_j) \right). \end{split}$$

Proof. We mark the vertices of $G_1 \subset G_2$ as shown in Figure 1, then the Laplacian matrix of $G_1 \subset G_2$ can be expressed as

$$L(G_{1} \leq G_{2}) = \begin{pmatrix} S_{G_{1}} & V_{G_{1}} & V_{G_{2}} \\ V_{G_{1}} & -A_{G_{1}} & O_{n_{1} \times n_{2}} \\ V_{G_{2}} & O_{n_{2} \times n_{1}} & -A_{G_{1}} & O_{n_{1} \times n_{2}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{1} \times n_{2}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{1} \times n_{2}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1} & -J_{n_{2} \times n_{1}} \\ \hline O_{n_{2} \times n_{1}} & -J_{n_{2} \times$$

where $O_{a \times b}$ is the $a \times b$ matrix of all entries equal to zero and $M = \begin{pmatrix} r_1 I_{n_1} & -A_{G_1} \\ -A_{G_1}^T & (r_1 + n_2)I_{n_1} + L_{G_1} \end{pmatrix}$.

By Definition 2.3, we know that the Schur complement of $r_1I_{n_1}$ in *M* is

$$S_{M} = (r_{1} + n_{2})I_{n_{1}} + L_{G_{1}} - A_{G_{1}}^{T}(r_{1}I_{n_{1}})^{-1}A_{G_{1}}$$

= $(r_{1} + n_{2})I_{n_{1}} + L_{G_{1}} - \frac{1}{r_{1}}A_{G_{1}}^{T}A_{G_{1}}$
= $(2r_{1} + n_{2})I_{n_{1}} - A_{G_{1}} - \frac{1}{r_{1}}A_{G_{1}}^{T}A_{G_{1}}.$ (1)

By Lemma 2.4, we have $M^{-1} = \begin{pmatrix} N_1 & N_2 \\ N_3 & S_M^{-1} \end{pmatrix}$, where

$$N_1 = \frac{1}{r_1} I_{n_1} + \frac{1}{r_1^2} A_{G_1} S_M^{-1} A_{G_1}^T,$$
(2)

$$N_2 = \frac{1}{r_1} A_{G_1} S_M^{-1},$$
(3)

$$N_3 = \frac{-1}{r_1} S_M^{-1} A_{G_1}^{I}.$$
(4)

Let *F* be the Schur complement of *M* in $L(G_1 \subset \subseteq G_2)$. Then by Definition 2.3, we have

$$F = n_1 I_{n_2} + L_{G_2} - \begin{pmatrix} O_{n_2 \times n_1} & -J_{n_2 \times n_1} \end{pmatrix} M^{-1} \begin{pmatrix} O_{n_1 \times n_2} \\ -J_{n_1 \times n_2} \end{pmatrix}$$

$$= n_1 I_{n_2} + L_{G_2} - J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2}.$$
(5)

Since

$$\begin{split} n_1 J_{n_2 \times n_2} &= J_{n_2 \times n_1} S_M S_M^{-1} J_{n_1 \times n_2} \\ &= J_{n_2 \times n_1} \Big[(r_1 + n_2) I_{n_1} + L_{G_1} - \frac{1}{r_1} A_{G_1}^T A_{G_1} \Big] S_M^{-1} J_{n_1 \times n_2} \\ &= (r_1 + n_2) J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2} - \frac{1}{r_1} J_{n_2 \times n_1} A_{G_1}^T A_{G_1} S_M^{-1} J_{n_1 \times n_2} \\ &= (r_1 + n_2) J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2} - r_1 J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2} \\ &= n_2 J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2}, \end{split}$$

we get

$$J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2} = \frac{n_1}{n_2} J_{n_2 \times n_2}.$$

Hence, from (5), we know

$$F = L_{G_2} + n_1 I_{n_2} - \frac{n_1}{n_2} J_{n_2 \times n_2}.$$

From Lemma 2.6, we derive that

$$F^{\#} = (L_{G_2} + n_1 I_{n_2})^{-1} - \frac{1}{n_1 n_2} J_{n_2 \times n_2}.$$
(6)

Therefore, according to Lemma 2.5, we get the expression of $L_{G_1 \supseteq G_2}^{(1)}$ as follows

$$L_{G_{1}}^{(1)} \underbrace{\begin{pmatrix} N_{1} & N_{2} & 0\\ N_{3} & S_{M}^{-1} & 0\\ 0 & 0 & F^{\#} \end{pmatrix}}_{(7)}.$$

① For $v_i, v_j \in V_{G_1}$, combining Lemma 2.1 with (7), we have

$$r_{ij}(G_1 \leq G_2) = (S_M^{-1})_{ii} + (S_M^{-1})_{jj} - 2(S_M^{-1})_{ij}.$$
(8)

In view of (1), we get

$$S_M = (n_2 + 2r_1) \Big[I_{n_1} - \frac{1}{n_2 + 2r_1} (A_{G_1} + \frac{1}{r_1} A_{G_1}^T A_{G_1}) \Big]$$

The spectral radius of $\frac{1}{n_2+2r_1}(A_{G_1}+\frac{1}{r_1}A_{G_1}^TA_{G_1})$ is

$$\rho(\frac{1}{n_2+2r_1}(A_{G_1}+\frac{1}{r_1}A_{G_1}^TA_{G_1}))=\frac{r_1+\frac{r_1}{r_1}}{n_2+2r_1}=\frac{2r_1}{n_2+2r_1}<1,$$

which implies that the power series of $\left[I_{n_1} - \frac{1}{n_2 + 2r_1}(A_{G_1} + \frac{1}{r_1}A_{G_1}^T A_{G_1})\right]^{-1}$ is convergent. Thus, we obtain

$$S_M^{-1} = \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left[\frac{1}{(n_2 + 2r_1)^k} (A_{G_1} + \frac{1}{r_1} A_{G_1}^2)^k \right].$$
(9)

Suppose that $w_k(v_i, v_j) = \left[(A_{G_1} + \frac{1}{r_1} A_{G_1}^2)^k \right]_{ij}$. Then due to (8) and (9), we have

$$r_{ij}(G_1 \leq G_2) = \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} (w_k(v_i, v_i) + w_k(v_j, v_j) - 2w_k(v_i, v_j)).$$

② For $v_i, v_j \in V_{G_2}$, by Lemma 2.1 and (7), we have

$$r_{ij}(G_1 \ensuremath{\,\stackrel{!}{=}} G_2) = (F^{\#})_{ii} + (F^{\#})_{jj} - 2(F^{\#})_{ij}.$$

Based on (6), we obtain

$$r_{ij}(G_1 \leq G_2) = \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{ii} + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - 2 \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{ij}.$$

③ For $v_i', v_j' \in S_{G_1}$, according to Lemma 2.1 and (7), we have

$$r_{ij}(G_1 \vee G_2) = (N_1)_{ii} + (N_1)_{jj} - 2(N_1)_{ij}.$$
(10)

Recall that $N_{G_1}(v_i) = \{v_j \in V_{G_1} \mid v_i v_j \in E_{G_1 \leq G_2}\}$. According to (2) and (9), we can get

$$(N_{1})_{ii} = \frac{1}{r_{1}} + \frac{1}{r_{1}^{2}} (A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T})_{ii}$$

$$= \frac{1}{r_{1}} + \frac{1}{r_{1}^{2}} \left(\left(\sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{s1}, \sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{s2}, \dots, \sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{sn_{1}} \right) A_{G_{1}}^{T} \right)_{i}$$

$$= \frac{1}{r_{1}} + \frac{1}{r_{1}^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}(v'_{i}) \\ v_{t} \in N_{G_{1}}(v'_{i})}} (S_{M}^{-1})_{st}$$

$$= \frac{1}{r_{1}} + \frac{1}{r_{1}^{2}(n_{2} + 2r_{1})} \sum_{\substack{v_{s} \in N_{G_{1}}(v'_{i}) \\ v_{t} \in N_{G_{1}}(v'_{i})}} \sum_{k=0}^{\infty} \left[\frac{1}{(n_{2} + 2r_{1})^{k}} (A_{G_{1}} + \frac{1}{r_{1}} A_{G_{1}}^{2})^{k} \right]_{st}.$$
(11)

By using a similar analysis as above, we can deduce that

$$(N_1)_{ij} = \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \left[\frac{1}{(n_2 + 2r_1)^k} (A_{G_1} + \frac{1}{r_1} A_{G_1}^2)^k \right]_{st}.$$
(12)

Let $w_k(v_s, v_t) = \left[(A_{G_1} + \frac{1}{r_1} A_{G_1}^2)^k \right]_{st}$. Then substituting (11) and (12) into (10), we obtain

$$\begin{split} r_{ij}(G_1 &\leq G_2) = & \frac{2}{r_1} + \frac{1}{r_1^2(n_2 + 2r_1)} \Big(\sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \\ &+ \sum_{\substack{v_s \in N_{G_1}(v'_j) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_j)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) - 2 \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \Big). \end{split}$$

4 For $v_i \in V_{G_1}, v_j \in V_{G_2}$, by Lemma 2.1 and (7), we have

$$r_{ij}(G_1 \ \ G_2) = (S_M^{-1})_{ii} + (F^{\#})_{jj}.$$

Combining (9) with (6), we receive

$$r_{ij}(G_1 \leq G_2) = \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_i, v_i) \right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - \frac{1}{n_1 n_2}$$

(5) For $v'_i \in S_{G_1}, v_j \in V_{G_2}$, together Lemma 2.1 with (7), we have

$$r_{ij}(G_1 \subset \subseteq G_2) = (N_1)_{ii} + (F^{\#})_{jj}.$$

Due to (11) and (6), we have

$$r_{ij}(G_1 \leq G_2) = \frac{1}{r_1} + \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v_i') \\ v_t \in N_{G_1}(v_i')}} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t)\right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1}\right]_{jj} - \frac{1}{n_1 n_2}.$$

ⓑ For v'_i ∈ S_{G_1} , v_j ∈ V_{G_1} , by using Lemma 2.1 and

$$r_{ij}(G_1 \lor G_2) = (N_1)_{ii} + (S_M^{-1})_{jj} - 2(N_2)_{ij}.$$
(13)

From (3), we know $N_2 = \frac{1}{r_1} A_{G_1} S_M^{-1}$. Furthermore, using (9), $(N_2)_{ij}$ can be expressed as

$$(N_{2})_{ij} = \frac{1}{r_{1}} (A_{G_{1}} S_{M}^{-1})_{ij}$$

$$= \frac{1}{r_{1}} \left(\sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{s1}, \sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{s2}, \dots, \sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{sn_{1}} \right)_{j}$$

$$= \frac{1}{r_{1}} \sum_{v_{s} \in N_{G_{1}}(v'_{i})} (S_{M}^{-1})_{sj}$$

$$= \frac{1}{r_{1}(n_{2} + 2r_{1})} \sum_{v_{s} \in N_{G_{1}}(v'_{i})} \sum_{k=0}^{\infty} \left(\frac{1}{(n_{2} + 2r_{1})^{k}} w_{k}(v_{s}, v_{j}) \right).$$
(14)

Hence, plugging (9), (11) and (14) into (13), we get

$$\begin{split} r_{ij}(G_1 & \leq G_2) = \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v_i') \\ v_t \in N_{G_1}(v_i')}} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \right) + \frac{1}{r_1} + \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_j, v_j) \right) \\ &- \frac{2}{r_1(n_2 + 2r_1)} \sum_{v_s \in N_{G_1}(v_i')} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_j) \right). \end{split}$$

Theorem 3.2. Suppose G_i is an r_i -regular graph of n_i vertices. If $\lambda_1(G_i), \lambda_2(G_i), \ldots, \lambda_n(G_i)$ are the eigenvalues of A_{G_i} for i = 1, 2, then

$$Kf(G_1 \leq G_2) = (2n_1 + n_2) \left[\frac{1}{r_1} \sum_{i=1}^{n_1} \frac{\lambda_i^2(G_1) + r_1^2}{r_1(n_2 + 2r_1 - \lambda_i(G_1)) - \lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{(r_2 + n_1) - \lambda_i(G_2)} \right] \\ + \frac{2n_1^2 + n_1n_2 - n_1}{r_1} - \frac{4n_1^2 + 2n_1n_2 + n_2^2}{n_1n_2}.$$

Proof. By Lemma 2.2, we have

$$Kf(G_1 \leq G_2) = (2n_1 + n_2)tr(L_{G_1 \leq G_2}^{(1)}) - \mathbf{e}^T L_{G_1 \leq G_2}^{(1)} \mathbf{e}.$$

Since $L_{G_1 \subseteq G_2}^{(1)}$ can be shown from the proof of Theorem 3.1 as in (7), we have

$$tr(L^{(1)}_{G_1 \trianglelefteq G_2}) = tr(N_1) + tr(S^{-1}_M) + tr(F^{\#}).$$

From (1), we obtain

$$tr(S_M) = \sum_{i=1}^{n_1} \left[(2r_1 + n_2) - \lambda_i(G_1) - \frac{1}{r_1} \lambda_i^2(G_1) \right],$$

and so

$$tr(S_M^{-1}) = \sum_{i=1}^{n_1} \frac{1}{(2r_1 + n_2) - \lambda_i(G_1) - \frac{1}{r_1}\lambda_i^2(G_1)}.$$

Recall that $N_1 = \frac{1}{r_1}I_{n_1} + \frac{1}{r_1^2}A_{G_1}S_M^{-1}A_{G_1}^T$ from (2). Then we get

$$\begin{split} tr(N_1) &= \frac{1}{r_1} tr(I_{n_1}) + \frac{1}{r_1^2} tr(A_{G_1} S_M^{-1} A_{G_1}^T) \\ &= \frac{n_1}{r_1} + \frac{1}{r_1^2} \sum_{i=1}^{n_1} \frac{\lambda_i^2(G_1)}{(2r_1 + n_2) - \lambda_i(G_1) - \frac{1}{r_1} \lambda_i^2(G_1)}. \end{split}$$

On the other hand, by (6), we gain

$$tr(F^{\#}) = tr\left[(L_{G_{2}} + n_{1}I_{n_{2}})^{-1}\right] - tr\left(\frac{1}{n_{1}n_{2}}J_{n_{2}\times n_{2}}\right)$$
$$= \sum_{i=1}^{n_{2}} \frac{1}{(r_{2} + n_{1}) - \lambda_{i}(G_{2})} - \frac{1}{n_{1}}.$$

Therefore, taking the above results together, we have

$$tr(L_{G_1 \leq G_2}^{(1)}) = \frac{n_1}{r_1} + \frac{1}{r_1^2} \sum_{i=1}^{n_1} \frac{\lambda_i^2(G_1) + r_1^2}{(n_2 + 2r_1) - \lambda_i(G_1) - \frac{1}{r_1}\lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{(r_2 + n_1) - \lambda_i(G_2)} - \frac{1}{n_1}.$$
(15)

Moreover, from (7), it is easy to see that

$$\mathbf{e}^{T} L_{G_{1} \leq G_{2}}^{(1)} \mathbf{e} = \mathbf{e_{1}}^{T} N_{1} \mathbf{e_{1}} + \mathbf{e_{1}}^{T} N_{2} \mathbf{e_{2}} + \mathbf{e_{2}}^{T} N_{3} \mathbf{e_{1}} + \mathbf{e_{2}}^{T} S_{M}^{-1} \mathbf{e_{2}} + \mathbf{e_{3}}^{T} F^{\#} \mathbf{e_{3}},$$

where $\mathbf{e_1}$, $\mathbf{e_2}$ and $\mathbf{e_3}$ are the column vectors of size n_1 , n_1 and n_2 , respectively, whose all entries are 1. Notice that

$$n_{1} = \mathbf{e}_{2}^{T} S_{M} S_{M}^{-1} \mathbf{e}_{2}$$

= $\mathbf{e}_{2}^{T} ((r_{1} + n_{2}) I_{n_{1}} + L_{G_{1}} - \frac{1}{r_{1}} A_{G_{1}}^{T} A_{G_{1}}) S_{M}^{-1} \mathbf{e}_{2}$
= $(r_{1} + n_{2}) \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2} - \frac{1}{r_{1}} \mathbf{e}_{2}^{T} A_{G_{1}}^{T} A_{G_{1}} S_{M}^{-1} \mathbf{e}_{2}$
= $(r_{1} + n_{2}) \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2} - r_{1} \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}$
= $n_{2} \mathbf{e}_{2}^{T} S_{M}^{-1} \mathbf{e}_{2}$,

which implies that $\mathbf{e_2}^T S_M^{-1} \mathbf{e_2} = \frac{n_1}{n_2}$. Since $N_1 = \frac{1}{r_1} I_{n_1} + \frac{1}{r_1^2} A_{G_1} S_M^{-1} A_{G_1}^T$, $N_2 = \frac{1}{r_1} A_{G_1} S_M^{-1}$ and $N_3 = \frac{1}{r_1} S_M^{-1} A_{G_1}^T$ from (2), (3) and (4), we get

$$\mathbf{e_1}^T N_1 \mathbf{e_1} = \frac{n_1}{r_1} + \frac{1}{r_1^2} \mathbf{e_1}^T A_{G_1} S_M^{-1} A_{G_1}^T \mathbf{e_1} = \frac{n_1}{r_1} + \mathbf{e_1}^T S_M^{-1} \mathbf{e_1} = \frac{n_1}{r_1} + \frac{n_1}{n_2}.$$

By a similar analysis as above, we can obtain that

$$\mathbf{e_1}^T N_2 \mathbf{e_2} = \mathbf{e_2}^T N_3 \mathbf{e_1} = \frac{1}{r_1} r_1 \mathbf{e_2}^T S_M^{-1} \mathbf{e_2} = \frac{n_1}{n_2}.$$

In addition, since $F = L_{G_2} + n_1 I_{n_2} - \frac{n_1}{n_2} J_{n_2 \times n_2}$, by simple calculation, we have *F* is a real symmetric matrix and $F\mathbf{e_3} = 0$. Hence, from Lemma 2.7, we can obtain $\mathbf{e_3}^T F^{\#}\mathbf{e_3} = 0$.

Finally, Putting the above results together, we get

$$\mathbf{e}^{T} L_{G_{1} \leq G_{2}}^{(1)} \mathbf{e} = \frac{n_{1}}{r_{1}} + 4 \frac{n_{1}}{n_{2}}.$$
(16)

Therefore, combining (15) with (16), we have

$$Kf(G_1 \leq G_2) = (2n_1 + n_2) \left[\frac{1}{r_1} \sum_{i=1}^{n_1} \frac{\lambda_i^2(G_1) + r_1^2}{r_1(n_2 + 2r_1 - \lambda_i(G_1)) - \lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{(r_2 + n_1) - \lambda_i(G_2)} \right] \\ + \frac{2n_1^2 + n_1n_2 - n_1}{r_1} - \frac{4n_1^2 + 2n_1n_2 + n_2^2}{n_1n_2}.$$

Now, we provide an example.

Example 3.3 Suppose P_2 denotes a path on 2 vertices. It is easy to get that $Spec_A(P_2) = \{-1, 1\}$. The splitting *V*-vertex join graph $P_2 \ equal P_2$ of P_2 and P_2 is shown in Figure 2.

Now, applying Theorem 3.1, we have the following conclusions.

Figure 2: $P_2 \lor P_2$.

① For $v_2, v_4 \in V_{G_1}$, we have

$$r_{24}\left(P_{2} \vee P_{2}\right) = \frac{1}{n_{2} + 2r_{1}} \sum_{k=0}^{\infty} \frac{1}{(n_{2} + 2r_{1})^{k}} \left(w_{k}(v_{i}, v_{i}) + w_{k}(v_{j}, v_{j}) - 2w_{k}(v_{i}, v_{j})\right) = \frac{1}{2}.$$

② For $v_5, v_6 \in V_{G_2}$, we see

$$r_{56} (P_2 \leq P_2) = \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{ii} + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - 2 \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{ij} = \frac{1}{2}.$$

③ For $v_1, v_3 \in S_{G_1}$, we obtain

$$\begin{aligned} r_{13}(P_{2} &\leq P_{2}) = \frac{2}{r_{1}} + \frac{1}{r_{1}^{2}(n_{2} + 2r_{1})} \Big(\sum_{\substack{v_{s} \in N_{G_{1}}(v'_{i}) \\ v_{t} \in N_{G_{1}}(v'_{i})}} \sum_{k=0}^{\infty} \frac{1}{(n_{2} + 2r_{1})^{k}} w_{k}(v_{s}, v_{t}) \\ + \sum_{\substack{v_{s} \in N_{G_{1}}(v'_{j}) \\ v_{t} \in N_{G_{1}}(v'_{j})}} \sum_{k=0}^{\infty} \frac{1}{(n_{2} + 2r_{1})^{k}} w_{k}(v_{s}, v_{t}) - 2 \sum_{\substack{v_{s} \in N_{G_{1}}(v'_{i}) \\ v_{t} \in N_{G_{1}}(v'_{j})}} \sum_{k=0}^{\infty} \frac{1}{(n_{2} + 2r_{1})^{k}} w_{k}(v_{s}, v_{t}) - 2 \sum_{\substack{v_{s} \in N_{G_{1}}(v'_{i}) \\ v_{t} \in N_{G_{1}}(v'_{j})}} \sum_{k=0}^{\infty} \frac{1}{(n_{2} + 2r_{1})^{k}} w_{k}(v_{s}, v_{t}) \Big) = \frac{5}{2}. \end{aligned}$$

④ If $v_i \in V_{G_1}$, $v_j \in V_{G_2}$, taking v_4 and v_5 as an example, then

$$r_{45}(P_2 \leq P_2) = \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_i, v_i) \right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - \frac{1}{n_1 n_2} = \frac{1}{2}.$$

⑤ Let $v_i \in S_{G_1}$, $v_j \in V_{G_2}$, taking v_1 and v_5 as an example. Then

$$r_{15}(P_2 \leq P_2) = \frac{1}{r_1} + \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v_i') \\ v_t \in N_{G_1}(v_i')}} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - \frac{1}{n_1 n_2} = \frac{3}{2}.$$

⑥ Suppose $v_i \in S_{G_1}$, $v_j \in V_{G_1}$, taking v_1 and v_2 as an example. Then

$$\begin{aligned} r_{ij}(G_1 &\leq G_2) &= \frac{1}{r_1^2(n_2 + 2r_1)} \sum_{\substack{v_s \in N_{G_1}(v_i') \\ v_t \in N_{G_1}(v_i')}} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_t) \right) + \frac{1}{r_1} + \frac{1}{n_2 + 2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_j, v_j) \right) \\ &- \frac{2}{r_1(n_2 + 2r_1)} \sum_{v_s \in N_{G_1}(v_i')} \sum_{k=0}^{\infty} \left(\frac{1}{(n_2 + 2r_1)^k} w_k(v_s, v_j) \right) = 1. \end{aligned}$$

In addition, by Theorem 3.2, we obtain Kirchhoff index of $P_2 \vee P_2$ as follows:

$$Kf(P_2 \leq P_2) = (2n_1 + n_2) \left[\frac{1}{r_1} \sum_{i=1}^{n_1} \frac{\lambda_i^2(G_1) + r_1^2}{r_1(n_2 + 2r_1 - \lambda_i(G_1)) - \lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{(r_2 + n_1) - \lambda_i(G_2)} \right] \\ + \frac{2n_1^2 + n_1n_2 - n_1}{r_1} - \frac{4n_1^2 + 2n_1n_2 + n_2^2}{n_1n_2} = \frac{33}{2}.$$

On the other hand, by using Mathematica, we find the resistance distance matrix of $P_2 \subset P_2$ as shown below:

$$R(P_2 \leq P_2) = \begin{pmatrix} 0 & 1 & \frac{5}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ 1 & 0 & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{2} & \frac{3}{2} & 0 & 1 & \frac{3}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{1}{2} & 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix},$$

This implies that the Theorem 3.1 and Theorem 3.2 are effective ways to compute the resistance distance and the Kirchhoff index.

4. Resistance distance and Kirchhoff index of splitting S-vertex join graphs

In this section, we calculate the resistance distance and Kirchhoff index of the splitting S-vertex join graph $G_1 \overline{\wedge} G_2$.

Theorem 4.1. Suppose G_i is an r_i -regular graph on n_i vertices for i = 1, 2. Let $w_k(v_i, v_j) = \left[(A_{G_1} + \frac{1}{r_1 + n_2} A_{G_1}^2)^k \right]_{ij}$ and $N_{G_1}(v_i) = \{v_j \in V_{G_1} \mid v_i v_j \in E_{G_1 \overline{\land} G_2}\}$. Then we can conclude the following results.

(1) For any $v_i, v_j \in V_{G_1}$, we have

$$r_{ij}(G_1 \overline{\wedge} G_2) = \frac{1}{2r_1} \sum_{k=0}^{\infty} \frac{1}{(2r_1)^k} (w_k(v_i, v_i) + w_k(v_j, v_j) - 2w_k(v_i, v_j));$$

(2) For any $v_i, v_j \in V_{G_2}$, we get

$$r_{ij}(G_1 \overline{\wedge} G_2) = \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{ii} + \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{jj} - 2 \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{ij};$$

(3) For any $v_i', v_j' \in S_{G_1}$, we obtain

$$\begin{split} r_{ij}\left(G_{1} \bar{\wedge} G_{2}\right) &= \frac{2}{r_{1} + n_{2}} + \frac{1}{2r_{1}\left(r_{1} + n_{2}\right)^{2}} \Big[\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t}) + \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t})\Big]; \\ &- 2\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{j}'\right)}} \sum_{k=0}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t})\Big]; \end{split}$$

(4) For $v_i \in V_{G_1}$, $v_j \in V_{G_2}$, we see

$$r_{ij}(G_1 \overline{\wedge} G_2) = \frac{1}{2r_1} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_1)^k} w_k(v_i, v_i) \right] + \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{jj} - \frac{1}{n_1 n_2};$$

(5) For $v'_i \in S_{G_1}$, $v_j \in V_{G_2}$, we know

$$r_{ij}(G_1 \bar{\wedge} G_2) = \frac{1}{r_1 + n_2} + \frac{1}{2r_1(r_1 + n_2)^2} \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_1)^k} w_k(v_s, v_t) \right] + \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{jj} - \frac{1}{n_1 n_2};$$

(b) For $v'_i \in S_{G_1}$, $v_j \in V_{G_1}$, we have

$$\begin{aligned} r_{ij}\left(G_{1} \overline{\wedge} G_{2}\right) &= \frac{1}{2r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s},v_{t})\right] + \frac{1}{2r_{1}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{j},v_{j})\right] \\ &- \frac{2}{2r_{1}(r_{1}+n_{2})} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}'\right)} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s},v_{j})\right] + \frac{1}{r_{1}+n_{2}}. \end{aligned}$$

Proof. Marking the vertices of $G_1 \overline{\land} G_2$ as shown in Figure 1, we have the Laplacian matrix of $G_1 \overline{\land} G_2$ below

$$L_{G_{1}\bar{\wedge}G_{2}} = \begin{pmatrix} S_{G_{1}} & V_{G_{1}} & V_{G_{2}} \\ V_{G_{1}} & \begin{pmatrix} (r_{1}+n_{2})I_{n_{1}} & -A_{G_{1}} & -J_{n_{1}\times n_{2}} \\ -A_{G_{1}}^{T} & r_{1}I_{n_{1}} + L_{G_{1}} & O_{n_{1}\times n_{2}} \\ -J_{n_{2}\times n_{1}} & -J_{n_{2}\times n_{1}} & O_{n_{2}\times n_{1}} \end{pmatrix} \\ = \begin{pmatrix} \mathbf{M} & \begin{pmatrix} (-J_{n_{1}\times n_{2}} \\ -J_{n_{2}\times n_{1}} & O_{n_{2}\times n_{1}} \end{pmatrix} \\ -J_{n_{2}\times n_{1}} & O_{n_{2}\times n_{1}} \end{pmatrix} ,$$

where $M = \begin{pmatrix} (r_1 + n_2)I_{n_1} & -A_{G_1} \\ -A_{G_1}^T & r_1I_{n_1} + L_{G_1} \end{pmatrix}$ and $O_{a \times b}$ is the $a \times b$ matrix with all entries equal to zero. By Definition 2.3, we have the Schur complement of $(r_1 + n_2)I_{n_1}$ in M is

$$S_M = r_1 I_{n_1} + L_{G_1} - \frac{1}{r_1 + n_2} \left(A_{G_1}^T A_{G_1} \right).$$
(17)

By Lemma 2.4, we have

$$M^{-1} = \begin{pmatrix} M_1 & M_2 \\ M_3 & S_M^{-1} \end{pmatrix}, \tag{18}$$

where

$$M_1 = \frac{1}{r_1 + n_2} I_{n_1} + \frac{1}{(r_1 + n_2)^2} A_{G_1} S_M^{-1} A_{G_1}^T,$$
(19)

$$M_2 = \frac{1}{r_1 + n_2} A_{G_1} S_M^{-1}, \tag{20}$$

$$M_3 = \frac{1}{r_1 + n_2} S_M^{-1} A_{G_1}^T.$$
(21)

Suppose *F* is the Schur complement of *M* in $L(G_1 \land G_2)$. Then from Definition 2.3 and (18), we get

$$F = n_1 I_{n_2} + L_{G_2} - \begin{pmatrix} -J_{n_2 \times n_1} & O_{n_2 \times n_1} \end{pmatrix} M^{-1} \begin{pmatrix} -J_{n_1 \times n_2} \\ O_{n_1 \times n_2} \end{pmatrix}$$

$$= n_1 I_{n_2} + L_{G_2} - \frac{n_1}{r_1 + n_2} J_{n_2 \times n_2} - \frac{r_1^2}{(r_1 + n_2)^2} J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2}.$$
 (22)

Since

$$\begin{split} n_1 J_{n_2 \times n_2} &= J_{n_2 \times n_1} S_M S_M^{-1} J_{n_1 \times n_2} \\ &= J_{n_2 \times n_1} \Big[r_1 I_{n_1} + L_{G_1} - \frac{1}{r_1 + n_2} (A_{G_1}^T A_{G_1}) \Big] S_M^{-1} J_{n_1 \times n_2} \\ &= (r_1 - \frac{r_1^2}{r_1 + n_2}) J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2}, \end{split}$$

we get

$$J_{n_2 \times n_1} S_M^{-1} J_{n_1 \times n_2} = \frac{n_1 (r_1 + n_2)}{r_1 n_2} J_{n_2 \times n_2}.$$
(23)

Substituting (23) into (22), we obtain

$$F = n_1 I_{n_2} + L_{G_2} - \frac{n_1}{n_2} J_{n_2 \times n_2}.$$

Furthermore, according to Lemma 2.6, we get the expression

$$F^{\#} = (L_{G_2} + n_1 I_{n_2})^{-1} - \frac{1}{n_1 n_2} J_{n_2 \times n_2}.$$
(24)

Therefore, we get the expression of $L^{(1)}_{G_1 \overline{\wedge} G_2}$ from Lemma 2.5 as follows

$$L_{G_1\bar{\wedge}G_2}^{(1)} = \begin{pmatrix} M_1 & M_2 & 0 \\ M_3 & S_{\mathcal{M}_1}^{-1} & 0 \\ 0 & 0 & F^{\#} \end{pmatrix}.$$
(25)

① For $v_i, v_j \in V_{G_1}$, combining Lemma 2.1 with (25), we have

$$r_{ij} \left(G_1 \overline{\wedge} G_2 \right) = (S_M^{-1})_{ii} + (S_M)_{jj}^{-1} - 2(S_M^{-1})_{ij}.$$

In view of (17), we get

$$S_M = 2r_1 \Big[I_{n_1} - \frac{1}{2r_1} (A_{G_1} + \frac{1}{r_1 + n_2} A_{G_1}^2) \Big].$$

The spectral radius of $\frac{1}{2r_1}(A_{G_1} + \frac{1}{r_1 + n_2}A_{G_1}^2)$ is

$$\rho(\frac{1}{2r_1}(A_{G_1} + \frac{1}{r_1 + n_2}A_{G_1}^2)) = \frac{2r_1 + n_2}{2r_1 + 2n_2} < 1$$

which implies that the power series of $\left[I_{n_1} - \frac{1}{2r_1}(A_{G_1} + \frac{1}{r_1 + n_2}A_{G_1}^2)\right]^{-1}$ is convergent. Thus, we gain

$$S_M^{-1} = \frac{1}{2r_1} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_1)^k} (A_{G_1} + \frac{1}{r_1 + n_2} A_{G_1}^2)^k \right].$$
(26)

Let $w_k(v_i, v_j) = \left[(A_{G_1} + \frac{1}{r_1 + n_2} A_{G_1}^2)^k \right]_{ij}$. Then we have

$$r_{ij}(G_1 \overline{\wedge} G_2) = \frac{1}{2r_1} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_1)^k} \left(w_k(v_i, v_i) + w_k(v_j, v_j) - 2w_k(v_i, v_j) \right) \right]$$

② For $v_i, v_j \in V_{G_2}$, according to Lemma 2.1 and (25), we have

$$r_{ij} (G_1 \overline{\wedge} G_2) = (F^{\#})_{ii} + (F^{\#})_{jj} - 2(F^{\#})_{ij}.$$

Based on (24), we obtain

$$r_{ij}(G_1 \overline{\wedge} G_2) = \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{ii} + \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{jj} - 2 \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{ij} \right]_{ij}$$

③ For $v_i', v_j' \in S_{G_1}$, according to Lemma 2.1 and (25), we have

$$r_{ij}(G_1 \overline{\wedge} G_2) = (M_1)_{ii} + (M_1)_{jj} - 2(M_1)_{ij}.$$
(27)

Note that $N_{G_1}(v_i) = \{v_j \in V_{G_1} \mid v_i v_j \in E_{G_1 \land G_2}\}$. According to (19), we can get

$$(M_{1})_{ii} = \frac{1}{r_{1} + n_{2}} + \frac{1}{(r_{1} + n_{2})^{2}} \left(A_{G_{1}} S_{M}^{-1} A_{G_{1}}^{T} \right)_{ii}$$

$$= \frac{1}{r_{1} + n_{2}} + \frac{1}{(r_{1} + n_{2})^{2}} \left(\left(\sum_{v_{s} \in N_{G_{1}}(v_{i}')} \left(S_{M}^{-1} \right)_{s1}, \sum_{v_{s} \in N_{G_{1}}(v_{i}')} \left(S_{M}^{-1} \right)_{s2}, \dots, \sum_{v_{s} \in N_{G_{1}}(v_{i}')} \left(S_{M}^{-1} \right)_{sn_{1}} \right) A_{G_{1}}^{T} \right)_{i}$$

$$= \frac{1}{r_{1} + n_{2}} + \frac{1}{2r_{1}(r_{1} + n_{2})^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}(v_{i}')\\v_{t} \in N_{G_{1}}(v_{i}')}} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t}) \right).$$
(28)

By using a similar method as above, we obtain

$$(M_1)_{ij} = \frac{1}{2r_1(r_1 + n_2)^2} \sum_{\substack{v_s \in N_{G_1}(v_i') \\ v_t \in N_{G_1}(v_j')}} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t) \right).$$
(29)

Therefore, substituting (28) and (29) into (27), we have

$$\begin{aligned} r_{ij}\left(G_{1} \overline{\wedge} G_{2}\right) &= \frac{1}{2r_{1}\left(r_{1}+n_{2}\right)^{2}} \Big[\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s},v_{t}) + \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{j}'\right)}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{j}'\right)}} \sum_{k=0}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s},v_{t})\Big] + \frac{2}{r_{1}+n_{2}}. \end{aligned}$$

(4) For $v_i \in V_{G_1}$, $v_j \in V_{G_2}$, combining Lemma 2.1 with (25), we have

$$r_{ij} (G_1 \overline{\wedge} G_2) = (S_M^{-1})_{ii} + (F^{\#})_{jj}.$$

Further, according to (26) and (24), we know

$$r_{ij}(G_1 \overline{\wedge} G_2) = \frac{1}{2r_1} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_i, v_i) \right) + \left[(L_{G_2} + n_1 I_{n_2})^{-1} \right]_{jj} - \frac{1}{n_1 n_2}.$$

(5) For $v'_i \in S_{G_1}$, $v_j \in V_{G_2}$, combining Lemma 2.1 with (25), we get

$$r_{ij}(G_1 \overline{\wedge} G_2) = (M_1)_{ii} + (F^{\#})_{ij}.$$

Similarly, due to (24) and (28), we have

$$r_{ij}(G_1 \overline{\wedge} G_2) = \frac{1}{r_1 + n_2} + \frac{1}{2r_1(r_1 + n_2)^2} \sum_{\substack{v_s \in N_{G_1}(v'_i) \\ v_t \in N_{G_1}(v'_i)}} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_i)} \sum_{k=0}^{\infty} \left(\frac{1}{(2r_1)^k} w_k(v_s, v_t)\right) + \left[\left(L_{G_2} + n_1 I_{n_2}\right)^{-1}\right]_{jj} - \frac{1}{n_1 n_2} \sum_{v_s \in N_{G_1}(v'_s)} \sum_{v_s \in N_{G_2}(v_s)} \sum_{v_s \in N_{G_2}($$

(b) For $v'_i \in S_{G_1}$, $v_j \in V_{G_1}$, based on Lemma 2.1 and (25), we have

$$r_{ij}(G_1 \overline{\wedge} G_2) = (M_1)_{ii} + (S_M)_{jj}^{-1} - 2(M_2)_{ij}.$$
(30)

Since $M_2 = \frac{1}{r_1 + n_2} A_{G_1} S_M^{-1}$ from (20), according to (26), we see

$$(M_{2})_{ij} = \frac{1}{r_{1} + n_{2}} (A_{G_{1}}S_{M}^{-1})_{ij}$$

$$= \frac{1}{r_{1} + n_{2}} (\sum_{v_{s} \in N_{G_{1}}(v_{i}')} (S_{M}^{-1})_{s1}, \sum_{v_{s} \in N_{G_{1}}(v_{i}')} (S_{M}^{-1})_{s2}, \dots, \sum_{v_{s} \in N_{G_{1}}(v_{i}')} (S_{M}^{-1})_{sn_{1}})_{j}$$

$$= \frac{1}{r_{1} + n_{2}} \sum_{v_{s} \in N_{G_{1}}(v_{i}')} (S_{M}^{-1})_{sj}$$

$$= \frac{1}{2r_{1}(r_{1} + n_{2})} \sum_{v_{s} \in N_{G_{1}}(v_{i}')} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{j}) \right].$$
(31)

Hence, plugging (26), (28) and (31) into (30), we get

$$\begin{aligned} r_{ij}\left(G_{1} \overline{\wedge} G_{2}\right) &= \frac{1}{2r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t})\right] + \frac{1}{2r_{1}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{j}, v_{j})\right] \\ &- \frac{2}{2r_{1}(r_{1}+n_{2})} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}'\right)} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{j})\right] + \frac{1}{r_{1}+n_{2}}. \end{aligned}$$

Theorem 4.2. Assume G_i is an r_i -regular graph with n_i vertices. If $\lambda_1(G_i), \lambda_2(G_i), \ldots, \lambda_n(G_i)$ are the eigenvalues of A_{G_i} for i = 1, 2, then

$$Kf(G_1 \overline{\wedge} G_2) = (2n_1 + n_2) \Big[\frac{1}{r_1 + n_2} \sum_{i=1}^{n_1} \frac{(r_1 + n_2)^2 + \lambda_i^2(G_1)}{(2r_1 - \lambda_i(G_1))(r_1 + n_2) - \lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{n_1 + r_2 - \lambda_i(G_2)} \Big] \\ + \frac{2n_1^2 + n_1n_2}{n_2 + r_1} - \frac{(4r_1 + n_2)n_1^2 + 2r_1n_1n_2 + r_1n_2^2}{r_1n_1n_2}.$$

Proof. By Lemma 2.2, we have

$$Kf(G_1 \overline{\wedge} G_2) = (2n_1 + n_2)tr(L_{G_1 \overline{\wedge} G_2}^{(1)}) - \mathbf{e}^T L_{G_1 \overline{\wedge} G_2}^{(1)} \mathbf{e}.$$

Since the expression of $L^{(1)}_{G_1 \overline{\wedge} G_2}$ from (25) is shown as follows

$$L_{G_1 \bar{\wedge} G_2}^{(1)} = \begin{pmatrix} M_1 & M_2 & 0 \\ M_3 & S_{-1}^{-1} & 0 \\ 0 & 0 & F^{\#} \end{pmatrix},$$

we have

$$tr(L_{G_1 \overline{\wedge} G_2}^{(1)}) = tr(M_1) + tr(S_M^{-1}) + tr(F^{\#}).$$

According to (17), we obtain

$$tr(S_M) = \sum_{i=1}^{n_1} \left(2r_1 - \lambda_i(G_1) - \frac{1}{r_1 + n_2} \lambda_i^2(G_1) \right),$$

which implies that

$$tr(S_M^{-1}) = \sum_{i=1}^{n_1} \frac{1}{2r_1 - \lambda_i(G_1) - \frac{1}{r_1 + n_2}\lambda_i^2(G_1)}.$$

Meanwhile, from (19), we get

$$tr(M_1) = tr(\frac{1}{r_1 + n_2}I_{n_1}) + tr\left(\frac{1}{(r_1 + n_2)^2}A_{G_1}S_M^{-1}A_{G_1}^T\right)$$
$$= \frac{n_1}{r_1 + n_2} + \frac{1}{r_1 + n_2}\sum_{i=1}^{n_1}\frac{\lambda_i^2(G_1)}{(2r_1 - \lambda_i(G_1))(r_1 + n_2) - \lambda_i^2(G_1)}.$$

On the other hand, by (24), we obtain

$$tr(F^{\#}) = tr((L_{G_2} + n_1 I_{n_2})^{-1}) - \frac{1}{n_1 n_2} tr(J_{n_2 \times n_2})$$
$$= \sum_{i=1}^{n_2} \frac{1}{n_1 + r_2 - \lambda_i(G_2)} - \frac{1}{n_1}.$$

Therefore, taking the above results together, we have

$$tr(L_{G_1 \bar{\wedge} G_2}^{(1)}) = \frac{1}{r_1 + n_2} \sum_{i=1}^{n_1} \frac{(r_1 + n_2)^2 + \lambda_i^2(G_1)}{(2r_1 - \lambda_i(G_1))(r_1 + n_2) - \lambda_i^2(G_1)} + \frac{n_1}{r_1 + n_2} + \sum_{i=1}^{n_2} \frac{1}{n_1 + r_2 - \lambda_i(G_2)} - \frac{1}{n_1}.$$
(32)

Moreover, from (25), it is easy to verify that

$$\mathbf{e}^{T} L_{G_{1}\overline{\Lambda}G_{2}}^{(1)} \mathbf{e} = \mathbf{e_{1}}^{T} M_{1} \mathbf{e_{1}} + \mathbf{e_{1}}^{T} M_{2} \mathbf{e_{2}} + \mathbf{e_{2}}^{T} M_{3} \mathbf{e_{1}} + \mathbf{e_{2}}^{T} S_{M}^{-1} \mathbf{e_{2}} + \mathbf{e_{3}}^{T} F^{\#} \mathbf{e_{3}},$$

where $\mathbf{e_1}$, $\mathbf{e_2}$ and $\mathbf{e_3}$ are the column vectors of size n_1 , n_1 and n_2 , respectively, whose all entries are 1. With a proof similar to Theorem 3.2, we have

$$n_{1} = \mathbf{e_{2}}^{T} S_{M} S_{M}^{-1} \mathbf{e_{2}}$$

= $\mathbf{e_{2}}^{T} (r_{1} I_{n_{1}} + L_{G_{1}} - \frac{1}{r_{1} + n_{2}} (A_{G_{1}}^{T} A_{G_{1}})) S_{M}^{-1} \mathbf{e_{2}}$
= $(r_{1} - \frac{r_{1}^{2}}{r_{1} + n_{2}}) \mathbf{e_{2}}^{T} S_{M}^{-1} \mathbf{e_{2}}.$

Thus, we can obtain $\mathbf{e_2}^T S_M^{-1} \mathbf{e_2} = \frac{n_1(r_1+n_2)}{r_1n_2}$. Further, according to (19), we get

$$\mathbf{e_1}^T M_1 \mathbf{e_1} = \mathbf{e_1}^T \Big(\frac{1}{r_1 + n_2} I_{n_1} + \frac{1}{(r_1 + n_2)^2} A_{G_1} S_M^{-1} A_{G_1}^T \Big) \mathbf{e_1}$$

= $\frac{n_1}{r_1 + n_2} + \frac{r_1^2}{(r_1 + n_2)^2} \mathbf{e_1}^T S_M^{-1} \mathbf{e_1}$
= $\frac{n_1}{n_2}$.

By using a similar method as above, we get

$$\mathbf{e_1}^T M_2 \mathbf{e_2} = \mathbf{e_2}^T M_3 \mathbf{e_1} = \frac{r_1}{r_1 + n_2} \mathbf{e_2}^T S_M^{-1} \mathbf{e_2} = \frac{n_1}{n_2}.$$

Moreover, since $F = n_1 I_{n_2} + L_{G_2} - \frac{n_1}{n_2} J_{n_2 \times n_2}$, we have *F* is a real symmetric matrix and $F\mathbf{e_3} = 0$. So, according to Lemma 2.7, we have $\mathbf{e}^T F^{\#} = 0$ and $\mathbf{e}^T F^{\#} \mathbf{e} = 0$. Hence, we obtain

$$\mathbf{e}^{T} L_{G_{1}\bar{\wedge}G_{2}}^{(1)} \mathbf{e} = 3\frac{n_{1}}{n_{2}} + \frac{n_{1}(r_{1}+n_{2})}{r_{1}n_{2}}.$$
(33)

Finally, combining (32) with (33), we have

$$Kf(G_1 \overline{\wedge} G_2) = (2n_1 + n_2) \left[\frac{1}{r_1 + n_2} \sum_{i=1}^{n_1} \frac{(r_1 + n_2)^2 + \lambda_i^2(G_1)}{(2r_1 - \lambda_i(G_1))(r_1 + n_2) - \lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{n_1 + r_2 - \lambda_i(G_2)} \right] \\ + \frac{2n_1^2 + n_1n_2}{n_2 + r_1} - \frac{(4r_1 + n_2)n_1^2 + 2r_1n_1n_2 + r_1n_2^2}{r_1n_1n_2}.$$

At last, we get an example as follows.

Example 4.3

Figure 3: $P_2 \overline{\wedge} C_4$.

Note that $Spec_A(P_2) = \{1, -1\}$ and $Spec_A(C_4) = \{2, 0^2, -2\}$. The splitting *S*-vertex join $P_2 \overline{\land} C_4$ of P_2 and C_4 is shown in Figure 3. According to Theorem 4.1, for any two vertices in $P_2 \overline{\land} C_4$, we first calculate the resistance distance.

① For any $v_1, v_2 \in V_{G_1}$, we have

$$r_{12}(P_2 \overline{\wedge} C_4) = \frac{1}{2r_1} \sum_{k=0}^{\infty} \frac{1}{(2r_1)^k} \Big(w_k(v_i, v_i) + w_k(v_j, v_j) - 2w_k(v_i, v_j) \Big) = \frac{5}{7}.$$

② Let $v_i, v_j \in V_{G_2}$, taking v_5 and v_8 as an example. Then

$$r_{58} \left(P_2 \overline{\wedge} C_4 \right) = \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{ii} + \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{jj} - 2 \left[\left(L_{G_2} + n_1 I_{n_2} \right)^{-1} \right]_{ij} = \frac{5}{12}$$

③ For $v_3, v_4 \in S_{G_1}$, we obtain

$$\begin{split} r_{34}\left(P_{2} \overline{\wedge} C_{4}\right) &= \frac{1}{2r_{1}\left(r_{1}+n_{2}\right)^{2}} \Big[\sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t}) + \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{j}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{j}'\right)}} \sum_{v_{t} \in N_{G_{1}}\left(v_{j}'\right)}^{\infty} \frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t})\Big] + \frac{2}{r_{1}+n_{2}} = \frac{3}{7}. \end{split}$$

④ Suppose $v_i \in V_{G_1}$, $v_j \in V_{G_2}$, taking v_1 and v_5 as an example. Then

$$r_{15}\left(P_{2} \overline{\wedge} C_{4}\right) = \frac{1}{2r_{1}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{i}, v_{i})\right] + \left[\left(L_{G_{2}} + n_{1}I_{n_{2}}\right)^{-1}\right]_{jj} - \frac{1}{n_{1}n_{2}} = \frac{163}{168}$$

(5) Let $v_i \in S_{G_1}$, $v_j \in V_{G_2}$, taking v_3 and v_5 as an example. Then

$$\begin{aligned} r_{35}\left(P_{2} \overline{\wedge} C_{4}\right) &= \frac{1}{r_{1} + n_{2}} + \frac{1}{2r_{1}(r_{1} + n_{2})^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s}, v_{t})\right] \\ &+ \left[\left(L_{G_{2}} + n_{1}I_{n_{2}}\right)^{-1}\right]_{jj} - \frac{1}{n_{1}n_{2}} = \frac{67}{168}. \end{aligned}$$

(6) Assume $v_i \in S_{G_1}$, $v_j \in V_{G_2}$, taking v_1 and v_3 as an example. Then

$$\begin{aligned} r_{13}\left(P_{2} \overline{\wedge} C_{4}\right) &= \frac{1}{2r_{1}\left(r_{1}+n_{2}\right)^{2}} \sum_{\substack{v_{s} \in N_{G_{1}}\left(v_{i}'\right) \\ v_{t} \in N_{G_{1}}\left(v_{i}'\right)}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s},v_{t})\right] + \frac{1}{2r_{1}} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{j},v_{j})\right] \\ &- \frac{2}{2r_{1}(r_{1}+n_{2})} \sum_{v_{s} \in N_{G_{1}}\left(v_{i}'\right)} \sum_{k=0}^{\infty} \left[\frac{1}{(2r_{1})^{k}} w_{k}(v_{s},v_{j})\right] + \frac{1}{r_{1}+n_{2}} = \frac{5}{7}. \end{aligned}$$

Meanwhile, using Theorem 4.2, we can compute Kirchhoff index of $P_2 \overline{\wedge} C_4$ as follows:

$$Kf(P_2 \wedge C_4) = (2n_1 + n_2) \left[\frac{1}{r_1 + n_2} \sum_{i=1}^{n_1} \frac{(r_1 + n_2)^2 + \lambda_i^2(G_1)}{(2r_1 - \lambda_i(G_1))(r_1 + n_2) - \lambda_i^2(G_1)} + \sum_{i=1}^{n_2} \frac{1}{n_1 + r_2 - \lambda_i(G_2)} \right] \\ + \frac{2n_1^2 + n_1n_2}{n_2 + r_1} - \frac{(4r_1 + n_2)n_1^2 + 2r_1n_1n_2 + r_1n_2^2}{r_1n_1n_2} = \frac{376}{21}.$$

Similarly, by using Mathematica, we obtain the resistance distance matrix of $P_2 \wedge C_4$ as shown below:

$$R(P_2 \overline{\wedge} C_4) = \begin{pmatrix} 0 & \frac{5}{7} & \frac{5}{7} & \frac{6}{7} & \frac{163}{168} & \frac{1}{168} & \frac{$$

Since our results coincides with the true value of the resistance distance and the Kirchhoff index which could be measured, the Theorem 4.1 and Theorem 4.2 are very useful.

Acknowledgments

The authors would like to thank editor and the anonymous referees for their valuable comments and suggestions. These comments help them to improve the contents and presentation of the paper dramatically.

Conflicts of Interest

The authors declare no conflict of interest.

References

- [1] R. B. Bapat, Graphs and Matrices(Universitext), Springer/Hindustan Book Agency, London/New Delhi, 2010.
- [2] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, (2nd edition), Springer-Verlag, New York, 2003.
- [3] J. A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [4] C. J. Bu, L. Z. Sun, J. Zhou, Y. M. Wei, A note on block representations of the group inverse of Laplacian matrices, Electron. J. Linear Al. 23 (2012), 866–876.
- [5] C. J. Bu, B. Yan, X. Q. Zhou, J. Zhou, Resistance distance in subdivision-vertex join and subdivision-edge join of graphs, Linear Algebra Appl. 458 (2014), 454–462.
- [6] H. Y. Chen, Resistance Distances and Kirchhoff Index in Generalised Join Graphs, Z. Naturforsch. A. 72 (2017), 207–215.
- [7] S. M. Huang, S. C. Li, On the resistance distance and Kirchhoff index of a linear hexagonal (cylinder) chain, Physica A. 558 2020, 124999.
- [8] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 1993, 81–95.
- Q. Liu, Resistance Distance and Kirchhoff Index of Generalized Subdivision-Vertex and Subdivision-Edge Corona for Graphs, IEEE Access. 7 2019, 92240–92247.
- [10] X. Liu, J. Zhou, C. Bu, Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs, Discrete Appl. Math. 187 2015, 130–139.
- [11] L. Lovász, Random walks on graphs, Combinatorics, Paul Erdös is Eighty, Lect. Notes Math. 2 1993, 1–46.
- [12] Z. Q. Lu, X. l. Ma, M. S. Zhang, Spectra of graph operations based on splitting graph, J. Appl. Anal. Comput. 13 2023, 133–155.
- [13] L. Z. Sun, Z. Y. Shang, C. J. Bu, Resistance distance and Kirchhoff index of the Q-vertex (or edge) join graphs, Discrete Math. 344 2021, 112433.
 [14] L. Z. Sun, W. Z. Wang, L. Zhan, C. L. Bu, Same results on resistance distance and ministerior triangle Math. Math. 4 (2021).
- [14] L. Z. Sun, W. Z. Wang, J. Zhou, C. J. Bu, Some results on resistance distances and resistance matrices, Linear Multilinear Algebra. 63 2015, 523–533.
- [15] W. Wang, T. Ma, J. Liu, Resistance distance and Kirchhoff index of Q-double join graphs, IEEE Access. 7 2019, 102313–102320.
- [16] W. J. Yin, Z. F. Ming, Q. Liu, Resistance Distance and Kirchhoff Index for a Class of Graphs, Math. Probl. Eng. 2018 2018, 1028614.1– 1028614.8.
- [17] F. Z. Zhang, The Schur Complement and Its Applications, Springer, US, 2005.