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Abstract. In asymmetric normed spaces, we study continuity of the metric projection operator and
structural connectedness-type properties of approximating sets. Connectedness of intersections with balls
(B̊- and B-connectedness) of approximatively compact sets is examined. The set of points of approximative
uniqueness for externally strongly complete subsets uniformly convex spaces that are complete with respect
to the symmetrization norm is shown to be dense (in the symmetrization norm). Classical properties of
stability of operators of best and near-best approximation and of the distance function in asymmetric
spaces are studied. For uniformly convex asymmetric spaces embedded in a complete semilinear space, we
also study whether for P0-connected sets (and, in particular, sets of uniqueness and Chebyshev sets) have
connected intersections with open balls.

1. Introduction

The present paper, which continues the studies begun in [8], [9], [30], [37], is concerned with relations
between connectedness classes of subsets of asymmetric normed spaces.

By definition, an asymmetric norm on a real linear space X is a nonnegative functional ∥ · | such that, for
all x, y ∈ X,

(1) ∥x | = 0⇔ x = 0;
(2) ∥αx | = α∥x | for all α ≥ 0;
(3) ∥x + y | ≤ ∥x | + ∥y |.

In general, ∥x | , ∥−x |. The functional ∥x∥sym = max{∥x |, ∥−x |}, x ∈ X, is known as the symmetrization norm.
By an asymmetric space we mean a real linear space equipped with an asymmetric norm. (Sometimes, where
no confusion can arise, an asymmetric norm is simply called a norm.) A space in which the asymmetric
norm ∥ · | is equivalent to the symmetrization norm ∥ · ∥sym (i.e., there exists a number K ≥ 1 such that
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K ∥x∥sym ≤ ∥x | ≤ ∥x∥sym for all x ∈ X), is called a symmetrizable asymmetric space. The topology τ of an
asymmetric space is generated by the open balls

B̊(x, r) = {y ∈ X | ∥y − x | < r}.

In general, this topology satisfies only the T1-separation axiom and may fail to be Hausdorff [18].
On a space with asymmetric norm (X, ∥ · |), we consider “closed” (right) balls

B(x, r) = B+(x, r) = {y | ∥y − x | ⩽ r},

and also the left (mirror) balls
B−(x, r) = {y | ∥x − y | ⩽ r},

i.e., the balls defined by the (mirror) asymmetric norm ∥ − · |. Similarly, we define the (right) open balls
B̊(x, r) = B̊+(x, r), the (left) open balls B̊−(x, r), and the spheres S+(x, r) and S−(x, r). For right (“+”) objects, the
superscript “+” will be as a rule omitted. Note that even in Hausdorff asymmetric spaces, the “closed ball”
B(x, r) = {y ∈ X | ∥y − x | ≤ r}may fail to be closed (see, for example, [18]). For brevity, we write B = B(0, 1).

A natural example of an asymmetric norm is the Minkowski functional of a convex (not necessarily
symmetric) set containing the origin in its kernel and bounded along any ray emanating from the origin.
The name “asymmetric norm” was given by M. I. Krein in 1938 (see [23]) in relation to the moment problem.

The theory of asymmetric spaces and their applications is in active development at present: for example,
problems related to functional analysis and topology are considered in [17], [14], [18], [25], [31], optimal
placement problems (location problems) with asymmetric norms are studied, for example, in [19], [26], [27]
(an important role in problems of this kind is played by Chebyshev centers and networks with respect to
asymmetric norms), problems pertaining to the statistical principal component method (one of the most
popular methods of compact data representation) are studied in [29] (this list is far from being complete). For
other applications, see also [17]. In geometric approximation theory, asymmetric norms appear naturally
in various problems (see, for example, [1], [5], [7], [20], [24], [31], [35], [38]). Asymmetric distances are
also natural in the theory of approximation of functions, where they play the role of a “bridge” between
best approximations and best one-sided approximations. Among recent studies on approximative and
geometric properties of sets in asymmetric spaces, we mention [3], [5], [7], [8], [9], [24], [22], [35], [38]. For
a survey of some results on general theory of asymmetric normed spaces and the problem of characterization
of best approximants by convex sets, see [14], [17] and [2].

The principal difficulty in dealing with T1-asymmetric spaces comes from the lack of metrizability of
such spaces (or of their natural topology τ), which leads to discontinuity of the distance function ρ( · ,M)
to a set M (see [32], [33]). In addition, the most familiar laws and results that hold in symmetric spaces
become unclear or even incorrect in the asymmetric case. Problems of existence, uniqueness, and stability
of best approximation play a central role in approximation theory (both in symmetric and in asymmetric
cases).

Given a nonempty set M ⊂ X, the right (left) distance function, or the right (left) distance from a point
x ∈ X to a set M ⊂ X is defined as follows:

ρ(x,M) := inf
y∈M
∥y − x |, ρ−(x,M) := inf

y∈M
∥x − y | (1.1)

(the distance to a set is defined also similarly in semilinear spaces (cones)). In the first case, the distance
is measured “from a point to a set”, and in the second case, “from a set to a point”. On symmetrizable
asymmetric spaces, the distance functionρ( · ,M) is continuous; however, for arbitrary asymmetric T1-spaces
it is only lower semicontinuous (see [32, p. 146]). The set of all right (left) nearest points from a point M to
a set x ∈ X is denoted by PMx (P−Mx), i.e.,

PMx :=
{
y ∈M | ρ(x,M) = ∥y − x |

}
, P−Mx :=

{
y ∈M | ρ−(x,M) = ∥x − y |

}
.

A point x with nonempty PMx , ∅ is called a point of existence. Below:
– E(M) is the set points of existence for M (with respect to the asymmetric norm ∥ · |);
– Esym(M) is the set points of existence for M with respect to the symmetrization norm ∥ · ∥sym.
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Definition 1.1. A set M is said to be B̊-complete1) (see [8], [9]) if, for all x ∈ X and r > 0,

the condition M0 := (B̊(x, r) ∩M) , ∅ implies that M0 ⊃ (M ∩ B(x, r)). (1.2)

Property (1.2) means that any point from the intersection of M with the sphere S(x, r) can be “approached”
from the intersection of the open ball B̊(x, r) with the set M under the condition that this intersection is
nonempty. It is known (see [9], [7]) that in terms of B̊-complete sets one can characterize the unimodal
sets (or LG-sets), and, in a number of spaces, the strict protosuns. B̊-completeness can be looked upon as
a new connectedness-type property — for example, it is known (see [8]) that if M is B̊-complete and if its
intersection with any open ball is connected, then M has connected intersections also with “closed” balls
B(x, r). For applications of B̊-completeness in the study of approximative properties of concrete and abstract
sets, see [7], [9], [11]. If Q denotes some property (for example, connectedness), then we say that a set M
has the property:

P-Q if, for each x ∈ X, the set PMx is nonempty and has the property Q;

P0-Q if PMx has the property Q for all x ∈ X;

B-Q if M ∩ B(x, r) has the property Q for all x ∈ X, r > 0;

B̊-Q if M ∩ B̊(x, r) has the property Q for all x ∈ X, r > 0.

For example, a closed nonempty subset of a finite-dimensional space is P-nonempty, i.e., is an existence set.

The paper is structured as follows. In § 2, we study ϱ-continuity of the metric projection and structural
connectedness-type properties of approximating sets (Theorem 2.5, Proposition 2.8). We also study B̊- and
B-connectedness of approximatively compact and regularly approximatively compact sets (Theorems 2.15,
2.17). The results obtained partially extend several known results for normed spaces and symmetrizable
asymmetric normed spaces to the case of arbitrary asymmetric spaces (satisfying the T1-separation axiom).
In § 3, we establish results on density (with respect to the symmetrization norm) of the set of points of
approximative uniqueness for externally strongly complete subsets of uniformly convex spaces that are
complete with respect to the symmetrization norm (Theorem 3.8). In § 4, we study classical stability
properties of operators of best and near-best approximation and of the distance function for arbitrary
asymmetric spaces (Theorems 4.1–4.6). In § 5, for uniformly convex asymmetric spaces lying in a complete
semilinear space, we study B̊-connectedness of P0-connected sets, sets of uniqueness, and Chebyshev sets
(Theorem 5.2, Corollary 5.4).

We will need the following classes of sets:
(F ) is the class of nonempty closed sets;
(B̊) is the class of B̊-connected sets; (B) is the class of B-connected sets;
(P) is the class of P-connected sets (PMx is nonempty and connected for each M ∈ (P)).

It is easily checked that, in any asymmetric space (cf. [39]),

(B) ⊂ (B̊). (1.3)

Note that in each infinite-dimensional Banach space there exists a P0-connected but not P-connected
closed set; each separable infinite-dimensional Banach space contains a B̊-connected but not B-connected
closed set (see [30]).

We mainly follow the definitions of [4], [6]. Below, X = (X, ∥ · |) is a real asymmetric normed space.

1)In this definition, “B̊” denotes the open unit ball.
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2. Connectedness and approximative properties of sets

In this section, we study structural properties of sets with good approximative properties. More
precisely, we will study various forms of connectedness for approximatively compact sets in asymmetric
spaces.

Definition 2.1. Consider the homogeneous symmetric nonnegative functional measuring the length of an
interval [x, y], where x, y ∈ X:

ϱ(x, y) := min{∥x − y |, ∥y − x |}.

In asymmetric case, such functional was studied in [21]. In general, the functional ϱ(x, y), which we call the
distance between x and y, is not a metric. Let us also define the following distance between sets:2)

ϱ(A,C) := inf
{
ϱ(a, c) | a ∈ A, c ∈ C

}
.

Definition 2.2. A sequence (xn) ⊂ X is called a Cauchy sequence [17] if, for each ε > 0, there exists an N ∈N
such that ∥xm − xn| < ε for all m ⩾ n ⩾ N.

An asymmetric space X = (X, ∥ · |) is called a right- (left-) complete [17] if, for each Cauchy sequence
(xn) ⊂ X, there exists a point x ∈ X such that ∥x − xn| → 0 (respectively, |xn − x| → 0) as n→ ∞. For brevity,
a right-complete space will be simply called a complete space.

It is known that left completeness of a space ensures its nice topological properties, while right complete-
ness is suitable for obtaining extensions of quasi-metric completeness to function spaces and hyperspaces
as well as for delivering theorems like the Ekeland variational principle and the Caristi fixed point theorem
(see, for example, [28], [15]).

An analogue of the following result for Banach spaces was in fact proved by Vlasov in the proof of his
Theorem 1 in [39].

Lemma 2.3. Let X be a left-complete asymmetric normed space. Assume that a set M ⊂ X is not B̊-connected, i.e.,
there exist x ∈ X and r > 0 such that B̊∩M = A⊔C, where A.C are nonempty open-closed sets in B̊ := B̊(x, r). Then
there exist a δ > 0 and a ball B1 := B(z, r1) ⊂ B̊, B1 ∩ A , ∅, B1 ∩ C , ∅, such that

ϱ(B1 ∩ A,B1 ∩ C) ≥ δ.

Proof. By the hypothesis, there exists a number 0 < r1 < r such that the ball B̊(x1, r1) intersects both A and C.
If the ball B̊(x1, r1) satisfies the hypotheses of the lemma, there is nothing to prove. Assuming the contrary,
we may choose 0 < δ < (r − r1)/4 such that

A1 := A ∩ B̊(x1, r1 − 2δ) , ∅, C1 := C ∩ B̊(x1, r1 − 2δ) , ∅ and ϱ(A1,C1) < δ.

Then there exist points a1 ∈ A1, c1 ∈ C1 such that ϱ(a1, c1) < δ. For definiteness, we assume that ϱ(a1, c1) =
∥a1 − c1 |. We take c1 for x2 and define r′2 := δ. Using the well-known equivalence

B(x, r) ⊂ B̊(x′, r′) ⇐⇒ ∥x − x′ | < r′ − r, (2.1)

B̊(x, r) ⊂ B̊(x′, r′) ⇐⇒ ∥x − x′ | ≤ r′ − r, (2.2)

we have B2 := B(x2, r′2) ⊂ B̊(x1, r1); in addition, it is clear that B̊(x1, r′2) ∩ A , ∅, B̊(x1, r′2) ∩ C , ∅. Arguing as
above, we may find a number 0 < r2 < r′2 such that the ball B̊(x2, r2) intersects both A and C.

The induction step. There exists a number 0 < rn < r′n such that the ball B̊(xn, rn) intersects both A and C.
If the ball B(xn, rn) satisfies the condition of the lemma, there is nothing to prove. Otherwise, we may choose
0 < δ < (r′n − rn)/4 so as to have

An := A ∩ B̊(xn, r′n − 2δ) , ∅, Cn := C ∩ B̊(xn, r′n − 2δ) , ∅ and ϱ(An,Cn) < δ.

2)This distance is sometimes referred to as the set-set distance.
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Hence there exist points an ∈ An, cn ∈ Cn such that ϱ(an, cn) < δ. For definiteness, we assume that
ϱ(an, cn) = ∥an− cn |. We take cn as xn+1. Let r′n+1 := δ. Now from (2.1) we have Bn+1 := B(xn+1, r′n+1) ⊂ B̊(xn, rn).
Continuing the induction process, we obtain a sequence (xn) such that

∥xn+1 − xn | ≤ rn − rn+1, (2.3)

and the ball B̊(xn, rn) intersects both A and C. Inequality (2.3) means that (xn) is a Cauchy sequence. By the
assumption, the space is left-complete, and hence there exists a point x ∈ X such that ∥xn−x | → 0 as n→∞.
Let an ∈ B̊(xn, rn) ∩ A, cn ∈ B̊(xn, rn) ∩ C. We have

∥an − x | ≤ ∥an − xn | + ∥xn − x | → 0, ∥cn − x | ≤ ∥cn − xn | + ∥xn − x | → 0.

The sets A and C are closed (with respect to the ball B̊), x ∈ A ∩ C, but this contradicts the assumption
A ∩ C = ∅. Lemma 2.3 is proved.

Definition 2.4. We say that the metric projection PM is ϱ-continuous at a point x if the condition ∥xn−x∥sym → 0
implies that

ϱ(PMx,PMxn)→ 0.

In the case of (symmetric) normed linear spaces, ϱ-continuity was referred to as the continuity in the
weak sense by Vlasov [39]; see also [12]. In the symmetric case, ϱ-continuity of the metric projection to
convex closed sets was also studied by E. V. Oshchman and N. V. Nevesenko (see, for example, [12]). In
particular, Nevesenko characterized the Banach spaces in which the metric projection onto any nonempty
convex closed set is ϱ-continuous.

In the classical normed setting, there are several results that guarantee B- (or B̊-) connectedness for P- (or
P0-) connected sets (see, for example, [30], [6]). The first results in this direction are due to D. Wulbert and
L. Vlasov (see, for example, [4]). For example, it is well known that in each Banach space any Chebyshev
set with continuous metric projection is B̊-connected (i.e., its intersection with any open ball is connected).
Among abundant extensions of the results of Wulbert, Vlasov, and many others in this direction, we mention
the following one (see [4, § 5]):

in any normed linear space, any P-connected set with upper semicontinuous metric projection
is B̊-connected.

(2.4)

A number of results in this direction are also known for symmetrizable asymmetric spaces (see [13], [8]).
In Theorems 2.5–2.17 that follow, we obtain results on B̊-connectedness of P-connected sets under various

conditions. These results partially extend the corresponding results for normed spaces and symmetrizable
asymmetric normed spaces to the case of arbitrary asymmetric spaces.

An analogue of the following result for Banach spaces was obtained by Vlasov [39].

Theorem 2.5. Let X be a left-complete asymmetric normed space, M ⊂ X be a P-connected set with ϱ-continuous
metric projection. Then M is B̊-connected.

Proof. Assume on the contrary that M is not B̊-connected. Then there exist x ∈ X and r > 0 such that
B̊ ∩M = A ⊔ C, where B̊ := B̊(x, r), A,C are nonempty open-closed (in B̊) disjoint sets. By Lemma 2.3, there
exist a δ > 0 and a ball B1 := B(z, r1) ⊂ B̊ such that if

B1 ∩ A , ∅, B1 ∩ C , ∅, then ϱ(B1 ∩ A,B1 ∩ C) ≥ δ.

Let a ∈ A, c ∈ C. By the hypothesis, PMz is nonempty and connected, and hence PMz lies in one of the
sets A or C. It can be assumed without loss of generality that PMz ⊂ C. Let w be the farthest point from z
on the interval [z, a] such that PMv ⊂ C for each point v ∈ [z,w) (such a farthest point w exists, because the
restriction of the distance function ρ( · ,M) to any interval is continuous). The set PMw is connected, and
hence PMw lies either in C or in A. Assume that PMw ⊂ C. There exists a sequence wn ⊂ (w, a] such that
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∥wn − w | → 0 and PMwn ⊂ A. By ϱ-continuity of the metric projection, ϱ(PMw,PMwn) → 0. As a result,
ϱ(C,A) = 0, a contradiction. Now we assume that PMw ⊂ A. A similar analysis produces a sequence
wn ⊂ (w, z] such that ∥wn − w | → 0 and PMwn ⊂ C. As before, by ϱ-continuity of the metric projection we
have ϱ(PMw,PMwn)→ 0, which implies again that ϱ(C,A) = 0. This contradiction proves Theorem 2.5.

Remark 2.6. In the actual fact, under the hypotheses of Theorem 2.5 it suffices to require that the restriction
of the metric projection onto a P-connected set to any (finite) interval should be ϱ-continuous (or continuous).

The following definition is new.

Definition 2.7. A set M will be said to be externally strongly complete if, for each Cauchy sequence (zn) ⊂ X
approaching the set M (i.e., ρ(zn,M)→ 0), there exists a point ẑ ∈M such that ∥zn − ẑ∥sym → 0.

The following result can be useful.

Proposition 2.8. Let one of the following two conditions be satisfied: (1) X is left-complete with closed unit ball and
let M ⊂ X be closed; (2) M is externally strongly complete. Assume that M is not B̊-connected, i.e., there exists a ball
B̊(x, r) such that B̊(x, r) ∩M = A ⊔ C, where A,C are nonempty open-closed subsets of B̊(x, r). Then there exists an
ε0 > 0 such that no ball B̊(u, ε0), u ∈ X, can intersect both A and C.

Proof. Assume the contrary. For any point x1 such that ∥x1 − x | < r/2 by (2.1) we have B(x1, r/2) ⊂ B̊(x, r).
Let r1 := r/2. By the assumption, the ball B̊(x1, r1) intersects both A and C. Proceeding by induction, we
will construct a sequence (xn) such that ∥xn+1 − xn | < r1 := r/2n and that the ball B̊(xn, rn) intersects both A
and C. In case (1), since B̊(xn, rn) ∩ (A ⊔ C) , ∅, A,C ⊂M and rn → 0, since X is left-complete, and since the
ball B(0, 1) is closed, there exists an x ∈ B(x1, r/2) ⊂ B̊(x, r) such that ∥xn − x | → 0. Let an ∈ (B̊(xn, rn) ∩ A),
cn ∈ (B̊(xn, rn) ∩ C). Then

∥an − x | ≤ ∥an − xn| + ∥xn − x | → 0 (2.5)

and, similarly, ∥cn−x | → 0. By the hypothesis, A is closed, and so from (2.5) we have x ∈ A. Similarly x ∈ C.
However, this contradicts the fact that A∩C = ∅. In case (2), there exists an x ∈M such that ∥xn−x∥sym → 0.
Now a similar argument shows that x ∈ A ∩ C. Proposition 2.8 is proved.

Definition 2.9. A set M is called right- (left-) approximatively compact if the conditions (yn) ⊂ M, ∥yn − x | →
ρ(x,M) (respectively, ∥x − yn | → ρ−(x,M)) imply that there exists a subsequence (ynk ), (left-) converging to
a point ŷ ∈M, i.e., ∥ynk − ŷ | → 0. The corresponding point x is a point of right (left) approximative compactness
for M.

Below AC(M) is the set of points of (right) approximative compactness for M.

Remark 2.10. If x is a point of right approximative compactness for M, then the point ŷ from Definition 2.9
may fail to be a nearest point from M for x (the case ŷ < PMx, of course, is impossible in the symmetrizable
case). See also Remark 2.12 below.

Correspondingly, to exclude the “improper” case ŷ < PMx, where x ∈ AC(M), we introduce the following
definition.

Definition 2.11. A set M is said to be regularly (right-) approximatively compact if the conditions (yn) ⊂ M,
∥yn − x | → ρ(x,M), imply that there exist a point ŷ ∈ PMx and a subsequence (ynk ) converging to the point ŷ,
i.e., ∥ynk− ŷ | → 0. The corresponding point x is called a point of regular (right-) approximative compactness.

A set M ⊂ X is regularly left-approximatively compact if the conditions (yn) ⊂M, ∥x− yn | → ρ−(x,M), imply
that there exist a point ŷ ∈ P−Mx and a subsequence (ynk ) (left-) converging to the point ŷ, i.e., ∥ynk − ŷ | → 0.

Remark 2.12. If x is a point of left approximative compactness for M, then the inclusion ŷ ∈ P−Mx always
holds. As a corollary, a left-approximatively compact set is necessarily regularly left-approximatively
compact.
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Remark 2.13. It is easily checked that if the ball B(0, 1) of a space X is closed3), then in X

right-approximative compactness of a set is equivalent to its regular right-approximative com-
pactness.

In [8, Theorem 2 and Remark 5], we showed, in particular, that if X is an asymmetric normed space
in which the ball B(0, 1) is closed, and M ⊂ X is (right-) approximatively compact and B̊-complete, then
P-connectedness of M implies its B-connectedness. The following result partially strengthens this fact.

Corollary 2.14. Let X be a left-complete asymmetric normed space, M ⊂ X be a P-connected regularly right-appro-
ximatively compact set. Then M is B̊-connected.

Proof. We choose an interval [a, z] as in the proof of Theorem 2.5. If the restriction of the metric projection
to any interval is ϱ-continuous, then the required result follows from Theorem 2.5 and Remark 2.6. Assume
now that the restriction of the metric projection PM to the interval [a, z] is not ϱ-continuous. Then there exist
a point x ∈ [a, z] and a sequence (xn) ⊂ [z, a], ∥xn − x∥sym → 0 such that

ϱ(PMx,PMxn) ≥ σ (2.6)

for some σ > 0 for all sufficiently large n. Let yn ∈ PMxn be arbitrary. We have

ρ(x,M) ≤ ∥yn − x | ≤ ∥yn − xn | + ∥xn − x | = ρ(xn,M) + ∥xn − x | → ρ(x,M).

This shows that (yn) is a minimizing sequence for x. By the assumption, M is regularly right-approximatively
compact, and hence there exists a subsequence (nk) such that ∥ynk − y∗ | → 0 for some point y∗ ∈ PMx. We
have

0 < σ
(2.6)
≤ lim

k→∞
ϱ(PMx,PMxnk ) = 0,

which is absurd. As a result, the metric projection is ϱ-continuous on [a, z]. Corollary 2.14 is proved.

The following result partially extends Vlasov’s result (2.4), and also Theorem 2.5 and Corollary 2.14.

Theorem 2.15. Let X be an asymmetric normed space in which the ball B(0, 1) is closed and let M ⊂ X be right-
approximatively compact. Then P-connectedness of M implies its B̊-connectedness.

Proof. Assume that M is not B̊-connected. Then there exists a ball B̊(x, r) such that B̊(x, r)∩M = A⊔C, where
A,C are nonempty open-closed (in the intersection B̊(x, r) ∩M) disjoint sets. Without loss of generality we
assume that ρ(x,A) ≥ ρ(x,C). Let a ∈ A. The restrictions of the distance functions ρ( · ,A) and ρ( · ,C) to the
interval [a, x] are continuous, and hence there exists a point x0 ∈ [a, x] such that ρ(x0,A) = ρ(x0,C) =: r0 > 0
and B(x0, r0) ⊂ B̊(x, r). It follows that

the set PMx0 is disconnected. (2.7)

Indeed, let (ak) and (ck) be minimizing sequences, respectively, from the sets A and C for the point x0. By
the assumption, M is approximatively compact, and hence some subsequences (akm ) ⊂ (ak) and (ckm ) ⊂ (ck)
converge, respectively, to points a′ and c′ from M. By the hypothesis, the ball B is closed, and hence
a′ ∈ PMx0, c′ ∈ PMx0 (see Remark 2.13). We have B(x0, r0) ⊂ B̊(x, r), and so B(x0, ρ(x0,M) + δ) ⊂ B̊(x, r) for
sufficiently small δ > 0. Further, the sets A and C are closed relative to M∩ B̊(x, r). Hence a′ ∈ A and c′ ∈ C,
which proves (2.7). However (2.7) contradicts P-connectedness of the set M. Theorem 2.15 is proved.

3)The condition that the ball B(0, 1) is closed in X is equivalent to the continuity of the norm ∥ · | : (X, ∥ · |) → (R, ∥ · |) and implies
regularity of the space X = (X, ∥ · |) (see [18]). We also note that there is an example of an asymmetric Hausdorff space X in which the
ball B(0, 1) is not closed [18].
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Remark 2.16. If, under the hypotheses of Theorem 2.15, the set M is regularly right approximatively
compact, then the condition in Theorem 2.15 that the ball B = B(0, 1) of the space X is closed becomes
superfluous (see also Remark 2.13). This result strengthens Corollary 2.14, because now it is not assumed
that the space is left-complete.

We require the following auxiliary result (see [8, Corollary 1]).

Lemma 2.A. Let M be a B̊-complete subset of an asymmetric space. Then

M ∈ (B̊) ∩ (P0) ⇔ M ∈ (B). (2.8)

In [8, Theorem 2] it was shown that if X is a symmetrizable asymmetric normed space and M ⊂ X is
approximatively compact and B̊-complete, then P-connectedness of M implies its B-connectedness and B̊-
path-connectedness. The following result partially extends this result to the case of arbitrary (not necessarily
symmetrizable) asymmetric T1-spaces.

Theorem 2.17. Assume that at least one of the following conditions is satisfied:
(1) X is an asymmetric normed space and M ⊂ X regularly right-approximatively compact;
(2) X is an asymmetric normed space with closed ball B and M ⊂ X is right-approximatively compact.
Let M be B̊-complete. Then P-connectedness of M implies its B-connectedness.

Proof. In case (1), the required result follows from Remark 2.16 and Lemma 2.A, and in case (2), from
Lemma 2.A and Theorem 2.15.

3. Density of points of approximative uniqueness in uniformly convex asymmetric spaces

Sets (and points) of approximative uniqueness (see, for example, [34], [33], [6]) have been studied rather
intensively over the recent years. We recall the corresponding definitions (see [31] and [34]).

Definition 3.1. Let M ⊂ X and x be a point of (right-) approximative compactness for M. If, for x, there
exists a unique point y ∈ M such that ∥y − yn| → 0 as n → ∞ for each sequence (yn) ⊂ M such that
∥yn−x| → ρ(x,M), then x ∈ X is called a point of (right-) approximative uniqueness for M (written, x ∈ AU(M)).

Definition 3.2. A subset M of an asymmetric normed space X = (X, ∥ · |) is called left-strongly closed if, for
each sequence (xn) ⊂M, the condition ∥xn−x| → 0 (n→∞) implies that x ∈M and ∥xn−x∥sym → 0 (n→∞).

Following [32], [34], we recall the definition of a uniformly convex asymmetric space.
Given x, y ∈ X, we set

∆(a) := ∥x − ay| + a∥y| − ∥x|, a ∈ [0, 1].

Definition 3.3. An asymmetric space X = (X, ∥ · |) is called uniformly convex if, for all ε > 0 and a ∈ (0, 1],
there exists a δ > 0 such that, for all x, y ∈ X, ∥x| = ∥y| = 1, the condition ∆(a) < δ implies that x ∈ B(µy, ε)
for some µ ∈ [1 − ε, 1].

From this definition it follows that, in any uniformly convex X, for each ε > 0, there exists a δ > 0 such
that, for all x, y ∈ X, ∥x| = ∥y| = 1, the condition ∥(x + y)/2| ⩾ 1 − δ implies that ∥x − µy| ⩽ ε) for some
µ ∈ [1 − ε, 1].

Remark 3.4. In relation to Definition 3.3 it is worth pointing out that, in the asymmetric case, definitions
of uniformly convex bodies (or, what is the same, of uniformly convex functions — their level surfaces
are, of course, uniformly convex bodies) were given by many authors (E. S. Levitin, C. Zanco, A. Zucchi,
B. T. Polyak, M. V. Balashov, P. A. Borodin, etc; see, for example, [16] and [13]), but only in the symmetrizable
case. Definition 3.3 is undoubtedly superior to the previous ones because the former applies to arbitrary (not
necessarily symmetrizable) spaces with asymmetric norm and is capable of delivering direct asymmetric
analogues of classical results for symmetric uniformly convex spaces.
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Definition 3.5. An asymmetric space X = (X, ∥ · |) is called locally uniformly convex (see [34]) if, for each y ∈ S
(S is the unit sphere), ε > 0, and a ∈ (0, 1], there exists a δ > 0 such that, for each x ∈ S, the condition
∥x − ay| + a∥y| − ∥x| < δ implies that ∥x − y| < ε.

The following auxiliary result was proved in [34, Lemma 1].

Lemma 3.B. Let X be a uniformly convex asymmetric seminormed space, ∆ ∈ (0, 1), M ⊂ X, 10 ∈ X \ M,
r = ρ(10,M) > 0. Then, for each ε ∈ (0, 1), there exists a δ0 ∈ (0, ε/8) such that

u ∈ B(µ(ũ0 − 10) + 10, ε) for some µ ∈ [1 − ε, 1]

for an arbitrary ũ0 ∈ M such that ∥ũ0 − 10| < r + δ0, and any u ∈ M, ∥u − 11| < ρ(11,M) + δ0, where 11 :=
10 + ∆(ũ0 − 10)/∥ũ0 − 10|.

We require the following auxiliary result of independent interest.

Lemma 3.6. Let X be a uniformly convex asymmetric normed space complete with respect to the symmetrization
norm, and let ∅ , M ⊂ X be an externally strongly complete set. Then any ∥ · ∥sym-neighborhood of an arbitrary
point x ∈ X \M contains a point of existence for M.

Proof. We argue as in the proof of Lemma 3.B. It can be assumed without loss of generality that ρ(x,M) = 1.
We claim that any arbitrary neighborhood O

sym
σ (x) := {u | ∥x − u∥sym ≤ σ} contains a required point of

existence v0 ∈ X \M for M (i.e., v0 ∈ E(M)).
Let ∆ ∈ (0,min{1/3, σ/3}). We proceed by induction to construct ∥ · ∥sym-Cauchy sequences (yn) ⊂M and

(xn) ⊂ X. For any sufficiently small ε ∈ (0, 1), we define εn =
ε
2n , δ0 = ε and σ0 = ∆/2. We also set x0 = x.

10. By Lemma 3.B, we can find a number δ1 ∈ (0, ε1/8), a point y1 ∈M, ∥y1−x | < ρ(x,M)+δ1, and a point
x1 ∈ [x, y1], ∥x1 − x∥sym = ∆1 := 1

2∆ (in this case, ∥y1 − x1| < ρ(x1,M) + δ1) such that, for an arbitrary u ∈ M,
∥u − x1| < ρ(x1,M) + 3δ1, we have u ∈ B(µ1(y1 − x) + x, ε1) for some µ1 ∈ [1 − ε1, 1]. We choose σ1 ∈ (0, σ) so
that σ1 < δ0/2 and that ρ(x1,M) ⩽ ρ(z,M) + δ0/2 for each z ∈ B(x1, σ1).

20. Suppose that points (yk)n
k=1 ⊂ M, (xk)n

k=1 ⊂ X and numbers (δk)n
k=1, (µk)n

k=1, (σk)n
k=1 (n ⩾ 2) are

constructed so that, for all k and n ≥ 2,

yk ∈M and ∥yk − xk−1| < ρ(xk−1,M) + δk,

xk ∈ [xk−1, yk] and ∥xk − xk−1∥sym = ∆k :=
1
2

min{∆k−1, σk−1, δk−1}

(in this case ∥yk − xk| < ρ(xk,M) + δk), and in addition, for each u ∈M such that ∥u − xk| < ρ(xk,M) + 3δk, we
have u ∈ B(µk(yk − xk−1) + xk−1, εk) for some µk ∈ [1 − εk, 1]. Hence yk+1 ∈ B(µk(yk − xk−1) + xk−1, εk) (k < n).
Moreover, σk < δk−1/2 and, for each z ∈ B(xk, σk), we have ρ(xk,M) ⩽ ρ(z,M) + δk−1/2.

By Lemma 3.B, there exist a δn+1 ∈ (0,mink=1,n δk) and a point yn+1 ∈M, xn+1 ∈ [xn, yn+1], such that

∥yn+1 − xn| < ρ(xn,M) + δn+1, ∥xn+1 − xn∥sym = ∆n+1 :=
1
2

min{∆n, σn, δn} (3.1)

and
u ∈ B(µn+1(yn+1 − xn) + xn, εn+1) for some µn+1 ∈ [1 − εn+1, 1].

for each u ∈M, ∥u − xn+1| < ρ(xn+1,M) + 3δn+1. It is clear that

∥yn+1 − xn+1| < ρ(xn+1,M) + δn+1. (3.2)

In addition, yn+1 ∈ B(µn(yn − xn−1)+ xn−1, εn). We choose σn+1 ∈ (0,mink=1,n σk) so as to have σn+1 < δn/2 and
that ρ(xn+1,M) ⩽ ρ(z,M) + δn/2 for each z ∈ B(xn+1, σn+1).
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30. We have∥∥∥∥( ∏
k⩾n+1

µk

)
yn+1 −

(∏
k⩾n

µk

)
yn

∣∣∣∣ = ( ∏
k⩾n+1

µk

)∥∥∥∥yn+1 − µnyn

∣∣∣∣
⩽ ∥yn+1 − (µn(yn − xn−1) + xn−1)| + ∥µn(yn − xn−1) + xn−1 − µnyn|

⩽ εn + ∥(1 − µn)xn−1| ⩽ 2εn.

So, ŷn := (
∏

k⩾n µk)yn is a Cauchy sequence in X. Further, by (3.1) the series
∑

n ∥xn+1 − xn∥sym converges,
and hence (xn) is a Cauchy sequence with respect to the symmetrization norm ∥ · ∥sym, Therefore, since the
space is complete, there exists a point x̄ ∈ X such that ∥xn − x̄∥sym → 0 (n → ∞). It is well known (see, for
example, [17, Proposition 1.1.12] and [10]) that if ∅ , N ⊂ X and u,w ∈ X, N ⊂ X, then

ρ(u,N) ⩽ ∥w − u | + ρ(w,N), (3.3)

Now using (3.3), we have

∥yn | ≤ ∥yn − xn | + ∥xn |
(3.2)
≤ ρ(xn,M) + δn + ∥xn |

(3.3)
≤ ρ(x̄,M) + ∥x̄ − xn | + δn + ∥xn |,

and hence since ∥xn − x̄∥sym → 0 and since by construction the sequence (δn) is bounded, it follows that the
sequence (∥yn|) is also bounded. Further,

ρ(ŷn,M) ≤ ∥yn − ŷn | =
(
1 −
∏
k⩾n

µk

)
∥yn| → 0 (3.4)

(here, we used the fact that εn =
ε
2n , µn ∈ [1 − εn, 1] and that the sequence (∥yn |) is bounded). By the

assumption, M is externally strongly complete, and now, in view of (3.4) there exists a y ∈M such that

∥ŷn − y∥sym → 0 (n→∞). (3.5)

Next, ŷn := (
∏

k⩾n µk)yn and
∏

k⩾n µk → 1, and now from (3.5) we have

∥yn − y∥sym → 0 (n→∞). (3.6)

Hence (yn) is a Cauchy sequence with respect to ∥ · ∥sym. Consequently,

∥yn − y| ⩽ ∥yn − ŷn| + ∥ŷn − y| → 0 (n→∞).

and
ρ(x̄,M) ⩽ ∥yn − x̄| ⩽ ∥yn − xn| + ∥xn − x̄| = ρ(xn,M) + δn + ∥xn − x̄|

for all n ∈N. As a corollary, x̄ ∈ O
sym
σ (x) and ρ(x̄,M) + δn

2 ⩾ ρ(xn,M). Further,

∥yn − x̄ | → ρ(x̄,M) and ρ(xn,M)→ ρ(x̄,M) (n→∞). (3.7)

So,

ρ(x̄,M) ⩽ ∥y − x̄| ⩽ ∥y − yn| + ∥yn − x̄|
(3.6),(3.7)
→ ρ(x̄,M) (n→∞), (3.8)

i.e., y ∈M is a nearest point from M for x̄. Lemma 3.6 is proved.

Remark 3.7. The proof of Lemma 3.6 shows that in the actual fact the condition that M is externally strongly
complete in Lemma 3.6 can be replaced by the condition that there exists a point x0 such that the set

con(x0,M) := {w ∈ X | w ∈ [x0, z] for some z ∈M}

is externally strongly complete.
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Recall that a set of first category (or a meager set) is a union of countably many nowhere dense sets. The
class of subsets of X of first category will be denoted by I(X), and the class of sets of second category (i.e.,
complements of sets of first category) in X will be denoted by II(X). The class of sets of second category
with respect to the symmetrization norm is denoted by IIsym(X).

In the normed space setting it is well known (see, for example, [4, § 4]) that

in Efimov–Stechkin spaces and, in particular, in complete uniformly convex spaces, the set of
points of approximative compactness of a closed set is a set of second category. (3.9)

The following two theorems partially extend (3.9) to the asymmetric case (for the first result, see [34,
§ 3]).

Theorem 3.A. Let X be a complete (or complete with respect to the symmetrization norm) locally uniformly convex
asymmetric space, M ⊂ X be a closed set for which the set of points of existence for M in X is dense in X with respect
to the asymmetric norm of X (or the symmetrization norm). Then the set of points of approximative uniqueness for M
is of second category with respect to the asymmetric norm of X (of second category with respect to the symmetrization
norm), i.e.,

AU(M) ∈ II(X) for M ⊂ X : E(M) = X,

AU(M) ∈ IIsym(X) for M ⊂ X : Esym(M) = X.

From Lemma 3.6 and Theorem 3.A we have the following result.

Theorem 3.8. Let X be a uniformly convex asymmetric space complete with respect to the symmetrization norm and
let ∅ , M ⊂ X is an externally strongly complete set. Then the set of point of approximative uniqueness for M is of
second category with respect to the symmetrization norm i.e.,

AU(M) ∈ IIsym(X), where ∅ ,M ⊂ X is externally strongly complete.

4. Stability of best and near-best approximants at points of approximative compactness

In this section, we study stability of best approximants in asymmetric spaces. Several known results for
normed spaces are carried over to the case of arbitrary asymmetric spaces.

Theorem 4.1. Let X be an asymmetric space, M be a nonempty set, x <M, x ∈ AC(M), y ∈ PMx. Then

[x, y] ⊂ AC(M),

i.e., any point from the interval [x, y] is a point of approximative compactness for M.

Proof. As in the normed case, it is easily checked that if

N ⊂ X, u ∈ X, v ∈ PMx and w ∈ [u, v], then v ∈ PMw. (4.1)

Indeed, using (3.3), we have

ρ(w,N) ≤ ∥w − v∥ = ∥u − v∥ − ∥u − w∥ = ρ(u,N) − ∥u − w∥ ≤ ρ(w,N),

i.e., ∥w − v∥ = ρ(w,N) and v ∈ PNw.
Now let x, y satisfy the hypotheses of Theorem 4.1, z ∈ (x, y). By (4.1), we have y ∈ PMz. Let (vn) ⊂M be

a minimizing sequence from M for z, i.e., by definition ∥vn − z | → ρ(z,M) + 0. It is clear that

∥y − x | ≤ ∥vn − x | ≤ ∥vn − z | + ∥z − x | → ∥y − z | + ∥z − x | = ∥y − x |.

This shows that ∥vn − x | → ∥y − x | = ρ(x,M), i.e., (vn) is a minimizing sequence from M for z. Since
x ∈ AC(M), by definition, (vn) contains a converging subsequence to some point from M.
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The following definition has no analogue in the symmetrizable spaces (and, of course, in the case of
normed linear spaces), because in this case the distance function to a set (the metric function) is always
1-Lipschitz, and hence, continuous.

Below, C(ρ(M)) is the set of points of continuity of the distance function ρ( · ,M) for a given nonempty
set M ⊂ X (i.e., x ∈ C(ρ(M)) if and only if ρ(xn,M)→ ρ(x,M) for each sequence (xn) such that ∥xn − x | → 0).

Remark 4.2. It is worth pointing out that in asymmetric spaces (unlike the classical normed spaces case)
the continuity of the metric projection onto M does not generally imply continuity of the distance function
ρ( · ,M) (for more details, see [36]).

Theorem 4.3. Let X be an asymmetric space in the which the ball B(0, 1) is closed, M be a nonempty left-strongly
closed set, x < M, PMx = {y}. Assume that x is a point of continuity of the distance function and is a point of
approximative compactness for M (i.e., x ∈ C(ρ(M)) ∩AC(M)). Then any point z ∈ [x, y] is a point of continuity of
the distance function and point of approximative compactness, i.e.,

[x, y] ⊂ C(ρ(M)) ∩AC(M).

Remark 4.4. In Theorem 4.3 we can omit the requirement that the ball B(0, 1) is closed if we assume instead
that each point x is a point of regular approximative compactness for M (in the sense of Definition 2.11).

Proof. Let a sequence (zn) left-converge to point z ∈ [x, y], i.e., ∥zn − z | → 0. We define the point xn from
the condition that the vectors −−→xxn and −→zzn have the same direction and the triangles △zyzn and △xyxn are
similar. By similarity,

ρ(zn,M) ≤ ∥y − zn | =
∥y − z | · ∥y − xn |

∥y − x |
= α∥y − xn |, where α :=

∥y − z |
∥y − x |

. (4.2)

Let y′n ∈M be a “almost nearest” point from M for the point xn, i.e.,

∥y′n − xn | ≤ ρ(xn,M) + 1/n. (4.3)

By the assumption x, is a point of continuity of the distance function, i.e., ρ(xn,M)→ ρ(x,M) as ∥xn − x | → 0
(note that ∥xn − x | → 0, since by the assumption ∥zn − z | → 0 and the vectors −−→xxn and −→zzn have the same
direction). Hence from (4.3) and the clear inequality ρ(xn,M) ≤ ∥y′n − xn |we have

∥y′n − xn | → ρ(x,M). (4.4)

By the assumption, x is a point of right approximative compactness for M, and so from (4.4) and Definition
2.9 it follows that the sequence (y′n) contains a subsequence (y′nk

) (which we identify without loss of generality
with (y′n)) left-converging to some point ŷ ∈ M, i.e., ∥y′n − ŷ | → 0. By Remark 2.13, ŷ ∈ PMx (here, we used
the fact that the ball B(0, 1) is closed), and since PMx = {y} by the assumption, we have ŷ = y. Further, by
the assumption M is left-strongly closed, and hence the convergence ∥y′n − y | → 0 implies that

∥y′n − y∥sym → 0. (4.5)

Applying (4.4) and (4.5), we obtain

∥y − xn | ≤ ∥y′n − xn | + ∥y − y′n | → ρ(x,M) (4.6)

Now from (4.6) and (4.2) and since ρ(x,M) = ∥y − x |, we have

lim
n→∞
ρ(zn,M) ≤ αρ(x,M) = ∥y − z | ≤ ρ(z,M),

lim
n→∞
ρ(zn,M) ≥ ρ(z,M)

(in the second inequality, we used the lower semicontinuity of the distance function ρ( · ,M); see [32,
p. 146]). Now it follows that ρ(zn,M) → ρ(z,M). The inclusion [x, y] ⊂ AC(M) is secured by Theorem 4.1.
Theorem 4.3 is proved.
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Recall that the one-sided Hausdorff distance (or the deviation) between sets M and N is defined as follows:

d(M,N) := sup{ρ(x,N) | x ∈M}.

Theorem 4.5. Let X be an asymmetric space in which the unit ball B(0, 1) is closed, M be a nonempty left-strongly
closed set, x < M, PMx = {y}. Assume that x is a point of continuity of the distance function and a point of right
approximative compactness (approximative uniqueness) for M. Then each point z ∈ [x, y] is a point of continuity of
the metric projection in the following sense:

d(Pδn
Mzn, {y})→ 0 as ∥zn − z | → 0, δn → 0 in X ×R, δn ≥ 0. (4.7)

Proof. By Theorem 4.3, z ∈ C(ρ(M)). It is clear that PMz = {y}. Let (zn, δn)→ (z, 0) in the sense of (4.7) and let
vn ∈ Pδn

Mzn, i.e., ∥vn − zn | ≤ ρ(zn,M) + δn. Then

∥vn − z | ≤ ∥vn − zn| + ∥zn − z | ≤ ρ(zn,M) + δn + ∥zn − z | → ρ(z,M),

i.e., (vn) is a minimizing sequence from M for z. By the assumption, x ∈ AC(M), and hence z ∈ AC(M) by
Theorem 4.3. Hence there exists a subsequence (vnk ) (left-) converging to some point v̂ ∈M, i.e., ∥vnk−v̂ | → 0.
By the assumption, the unit ball B(0, 1) is closed, and hence by Remark 2.13, v̂ ∈ PMz = {y}. Theorem 4.5 is
proved.

Theorem 4.6. Let X be an asymmetric space, M be a nonempty left-strongly closed set, x < M, PMx , ∅. Assume
that x is a point of continuity of the distance function and a point of right regular approximative compactness for M.
Then the metric projection is continuous at x in the following sense:

d(Pδn
Mxn,PMx)→ 0 as (xn, δn)→ (x, 0) in X ×R, δn ≥ 0.

Corollary 4.7. Under the hypotheses of Theorem 4.6, any point z ∈ [x, y] is a point of continuity of the restriction of
the metric projection to the set of existence points E(M).

5. Connectedness of intersections of sets with balls in uniformly convex asymmetric spaces

The following Vlasov’s result is well known in the symmetrical setting (see [39]): in a complete uniformly
convex Banach space each P-connected set is B-connected. Tsar’kov [30, Theorem 3] extended this result as
follows: in any reflexive (CLUR)-space4) (and, in particular, in any complete uniformly convex space) each
closed P0-connected set is B-connected. On the other hand, in any nonreflexive Banach space, as an example
of a disconnected P0-connected one may take the union of two distinct parallel hyperplanes generated by
a non-norm-attaining functional.) To the case of symmetrizable uniformly convex spaces, Vlasov’s result
was extended by Borodin [13]. In [8], the authors of the present paper showed that, in any symmetrizable
asymmetric Efimov–Stechkin space, each closed P0-connected set is B-path connected (see also [37]). In the
following result, we partially extend the above results to the case of general (not necessarily symmetrizable)
asymmetric normed spaces.

Definition 5.1. A set X is a semilinear space (or cone) over R if X is equipped with operations of addition of
elements and multiplication by nonnegative numbers, and if, for arbitrary x, y, z ∈ X and α, β ∈ R+,

1) x + y = y + x;
2) x + (y + z) = (x + y) + z;
3) there exists a unique θ ∈ X such that x + θ = x;
4) α(x + y) = αx + αy;
5) (α + β)x = αx + βy;
6) α(βx) = (αβ)x;
7) 0 · x = θ; 1 · x = x.

4)(CLUR) (compactly locally uniformly rotund) is the class of spaces such that x ∈ S, yn ∈ S, ∥x + yn∥/2 → 1 imply that (yn) has
a convergent subsequence. Any reflexive (CLUR)-space is an Efimov–Stechkin space. For more on (CLUR)-spaces, see [30].
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Theorem 5.2. Let K be a right-complete semilinear space, X ⊂ K be a uniformly convex asymmetric linear space
complete with respect to the symmetrization norm, whose right completion is K. Let M ⊂ X be an externally strongly
complete set. Assume that M is P0-connected in K. Then M is B̊-connected in X.

In addition, if M is B̊-complete, then M is B-connected.

Remark 5.3. In [37], some conditions are obtained under which P-connectedness of a set implies that it has
connected (or path-connected) intersections with balls.

Proof. We need some auxiliary results. Let us first verify that if x ∈ X, r > 0 and M∩B(x, r) = A1⊔C1, where
A1,C1 ∈ F (B(x, r)), max{ρ(x,A1), ρ(x,C1)} < r, then there exist x1 ∈ X and r1 > 0 such that

B(x1, r1) ⊂ B(x, r) and ρ(x1,M) = ρ(x1,A1) = ρ(x1,C1) < r1 (5.1)

(analogues of (5.1) in the normed space setting can be found in the papers by L. P. Vlasov, V. A. Koshcheev,
I. G. Tsar’kov [30], etc.). Here, as above, F (N) is the class of closed subsets of a set N.

Let us prove (5.1). For definiteness, we assume that ρ(x,A1) < ρ(x,C1) (the required result in the case
of the equality is clear). Consider a point y ∈ C1 such that ρ(x,A1) < ∥y − x | < r. Then the function
φ( · ) := ρ( · ,A1) − ρ( · ,C1) at the points x and y has values of different signs. The restriction of the
function φ to the interval [x, y] is continuous, and, therefore, there exists a point x1 ∈ [x, y] such that
ρ(x1,A1) = ρ(x1,C1) =: r0. Since ∥x1−x | = ∥y−x |−∥y−x1 | < r−r0, we have B(x1, r1) ⊂ B(x, r1+∥x−x1 |) = B(x, r)
for r1 := r − ∥x1 − x | > r0, which completes the proof of (5.1).

Let us first prove the following result. Let M ⊂ X satisfy the hypotheses of the theorem, x ∈ X, r > 0 and
let M ∩ B(x, r) = A1 ⊔ C1, where A1,C1 ∈ F (B(x, r)) and

d := ρ(x,A1) = ρ(x,C1) < r. (5.2)

Then, for each ε > 0, there exist x0 ∈ X and r0 > 0 such that

B(x0, r0) ⊂ B̊(x, r), ρ(x0,A1) = ρ(x0,C1) < r0 and

A1 ∩ B(x0, r0) ⊂ B̊(y0, ε) for some point y0 ∈ A1.
(5.3)

Let us verify (5.3). Let a point z ∈ C1 be such that ∥z−x | < d+(r−d)/10. For δ := min{(r−d)/10, 1
3ρ(x,A1)},

since the restriction of the function ρ( · ,A1)− ρ( · ,C1) to the interval [x, z] is continuous, there exists a point
z1 ∈ (x, z) such that

ρ(z1,C1) = ρ(z1,A1) − 2δ. (5.4)

Let us show that A1 is externally strongly complete. Let (zn) ⊂ X be a Cauchy sequence approaching
the set A1, i.e., ρ(zn,A1) → 0. By the assumption M is externally strongly complete, and hence, there
exists a point z ∈ M such that ∥zn − z∥sym → 0. Let yn ∈ A1: ∥yn − zn | ≤ ρ(zn,A1) + 1/n. We have
∥yn − z | ≤ ∥yn − zn | + ∥zn − z | → 0. Since A1 is closed, z ∈ A1, which proves that A1 is externally strongly
complete. A similar analysis shows that C1 is externally strongly complete. By Theorem 3.8, there exists
a point z2 ∈ AU(A1) such that ∥z2 − z1∥sym ≤ δ. Let us show that

B(z2, ρ(z2,A1) + δ) ⊂ B̊(x, r). (5.5)

We have ρ(u,N) ⩽ ∥v − u | + ρ(v,N) for arbitrary u, v ∈ X and N ⊂ X (see, for example, [10]), and hence

ρ(z2,A1) + δ ≤ ρ(z1,A1) + 2δ = ρ(z1,C1) + 4δ
≤ ∥z − z1 | + 4δ = ∥z − x | − ∥z1 − x | + 4δ
≤ ∥z − x | − (∥z2 − x | − ∥z2 − z1 |) + 4δ
≤ ∥z − x | − ∥z2 − x | + 5δ

≤ d +
r − d

10
− ∥z2 − x | + 5 ·

r − d
10

=
1

10
(6r + 4d) − ∥z2 − x | < r − ∥z2 − x |,
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which in view of (2.1) implies (5.5).
For δ > 0 we set

PδMx :=
{
y ∈M | ∥y − x | ≤ ρ(x,M) + δ

}
.

By the assumption, X is uniformly convex, and hence from the definition of a point of approximative
uniqueness we see that, for arbitrary x ∈ AU(M) and ε > 0, there exists a δ > 0 such that

PδMx ⊂ B̊(y, ε), where PMx = {y}. (5.6)

Correspondingly, we have z2 ∈ AU(A1), and hence from (5.6) for some δ = δ(ε) > 0 we have

PδA1
z2 ⊂ B̊(y1, ε), where PA1 z2 = {y1}. (5.7)

Let α1 = α1(ε) be such that ρ(z2,A1) < α1 < ρ(z2,A1) + δ.
Setting z3 ∈ B̊(z2, α1) ∩ A1, we have

ρ(z2,C1) − ρ(z2,A1) < (ρ(z1,C1) + δ) − (ρ(z1,A1) − δ)
(5.4)
= 0,

ρ(z3,C1) − ρ(z3,A1) = ρ(z3,C1) > 0,

and hence, since the restriction of the function ρ( · ,C1) − ρ( · ,A1) to the interval [z2, z3] is continuous, there
exists a point x0 ∈ [z2, z3] such that ρ(x0,A1) = ρ(x0,C1). Setting r0 := α1 − ∥x0 − z2 | (this quantity is positive,
because ρ(z2,A1) < α1 and x0 ∈ [z2, z3]), we have

B(x0, r0) ⊂ B(z2, α1) ⊂ B(z2, ρ(z2,A1) + δ) ⊂ B̊(x, r). (5.8)

Consequently, (B(x0, r0) ∩ A1)
(5.8)
⊂ (B(z2, α1) ∩ A1)

(5.7)
⊂ B̊(y1, ε) and

ρ(x0,A1) = ρ(x0,C1) ≤ ∥z3 − x0 | = ∥z3 − z2 | − ∥x0 − z2 | < α1 − ∥x0 − z2 | = r0,

which proves (5.3) with y0 = y1.
Let us proceed with the proof of Theorem 5.2. By (5.1), there exist x1 ∈ X, r1 > 0 such that

B(x1, r1) ⊂ B(x, r) and ρ(x1,M) = ρ(x1,A0) = ρ(x1,C0).

We set
A1 = B(x1, r1) ∩ A0, C1 = B(x1, r1) ∩ C0.

We argue by induction on i. Assume that there exist xi ∈ X and ri > 0 such that B(xi, ri)∩M = Ai ⊔Ci, where
Ai,Ci ∈ F (X) and ρ(xi,Ai) = ρ(xi,Ci) < ri.

By (5.3), there exist xi+1 ∈ X and ri+1 > 0 such that

B(xi+1, ri+1) ⊂ B̊(xi, ri), ρ(xi+1,Ai) = ρ(xi+1,Ci) < ri+1,

Ci+1 := (B(xi+1, ri+1) ∩ Ai) ⊂ B̊(yi, r/2(i+1)), where yi ∈ Ai.
(5.9)

We set Ai+1 = B(xi+1, ri+1) ∩ Ci. For m > n,

∥xm − xn | ≤

m−1∑
k=n

∥xk+1 − xk |
(2.1),(5.9)
≤

m−1∑
k=n

(rk+1 − rk) = rm − rn,

and hence, (xi) is a Cauchy sequence. Let x0 be the right limit of this sequence is the right completion K of
the space X, i.e., ∥x0 − xi | → 0. The sequence (ri) (ri > ri+1 ≥ 0) converges to some number r0 > 0 (r0 , 0,
because A0 ∩ C0 = ∅). It is clear that

B(x0, r0) =
∞⋂

i=1

B̊(xi, ri). (5.10)
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Each of the sequences (A2k)∞k=1, (A2k−1)∞k=1 consists of nested closed sets, and in view of (5.9), for each k ∈ N
we have y2k−1 ∈ A2k−1 ⊂ B̊(y2k−1, r/22k). Hence because (y2k−1) is a Cauchy sequence and M is externally
strongly complete, the sequence (y2k−1) ∥ · ∥sym-converges to some point u′ ∈ M. Similarly, for each k ∈ N,
we have y2k ∈ A2k ⊂ B̊(y2k, r/22k−1). Hence, since the space is complete, the sequence (y2k) converges to some
point u′′ ∈ M. It is clear that Ã :=

⋂
k A2k−1 = {u′}, C̃ :=

⋂
k A2k = {u′′}. By (5.10), we have Ã = B(x0, r0) ∩ A0,

C̃ = B(x0, r0) ∩ C0. Now, since the ball B(0, 1) is closed, we have

ρ(x0, Ã) = ρ(x0,A0) = ρ(x0, C̃) = ρ(x0,C0) = ρ(x0,M).

Finally, for the point x0 there are precisely two different nearest points from M, where u′ ∈ A0, u′′ ∈ C0,
which contradicts the P0-connectedness of the set M in the cone space K. Theorem 5.2 is proved.

Corollary 5.4. Let K be a right-complete semilinear space, X ⊂ K is a uniformly convex asymmetric linear space
complete with respect to the symmetrization norm, whose right completion is K. Then each externally strongly
complete set M ⊂ X which is a uniqueness set (a Chebyshev set) in K is B̊-connected in X.
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