On q-statistical approximation of wavelets aided Kantorovich q-Baskakov operators

Mohammad Ayman-Mursaleen ${ }^{\text {a,b }}$, Bishnu P. Lamichhane ${ }^{\text {a }}$, Adem Kiliçman ${ }^{\text {b,* }}$, Norazak Senu ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Information \& Physical Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
${ }^{b}$ Department of Mathematics \& Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract

The aim of this research is to examine various statistical approximation properties of Kantorovich q -Baskakov operators using wavelets. We discuss and investigate the weighted statistical approximation employing a Bohman-Korovkin type theorem as well as a statistical rate of convergence applying a weighted modulus of smoothness $\omega_{\rho_{\alpha}}$ correlated with the space $B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$and Lipschitz type maximal functions.

1. Preliminaries and introduction

In 1995, Agratini [1] introduced a class of Szász-type operators by means of compactly supported wavelets of Daubechies. Later on in 1997, Gonska and Zhou [20] used the Daubechies' compactly-supported wavelets to establish a new class of Baskakov-type operators. This technique of employing wavelets in modifying the classical operators is very useful which provides a tool to achieve the local information of approximation by such operators. In [28], Nasiruzzaman et al. further modified the operators of Gonska and Zhou [20] by defining their q-analog to get a better rate of convergence. In this article, our focus is to study various approximation properties exhibited by the operators described in [28]. Our proposed study aims to further enhance our understanding of these operators and their potential applications.

Note that that the Bernstein polynomials [14] converge uniformly to the value $g(x)$ for every continuous function g, where x is any real value between 0 and 1 . The following defines the Bernstein polynomials:

$$
\begin{equation*}
\left(\mathcal{B}_{\mathrm{r}}^{*} \mathrm{~g}\right)(x)=\sum_{s=0}^{\mathrm{r}}\binom{\mathrm{r}}{s} x^{s}(1-x)^{\mathrm{r}-s} \mathrm{~g}\left(\frac{s}{\mathrm{r}}\right), \tag{1}
\end{equation*}
$$

where $\binom{\eta}{i}$ refers to the binomial coefficients.
The Szász [34] as well as Baskakov [13] operators were formed in approximating the continuous functions which were defined for the unbounded interval $[0, \infty)$. Here, the Baskakov operators are written as

[^0]$$
\left(\mathcal{B}_{\mathrm{r}} \mathrm{~g}\right)(x)=\sum_{s=0}^{\infty}\binom{\mathrm{r}+s-1}{s} \frac{x^{s}}{(1+x)^{\mathrm{r}+s}} \mathrm{~g}\left(\frac{s}{\mathrm{r}}\right)
$$

Bernstein operators were modified by Kantorovich [23] and were called Bernstein-Kantorovich operators. These operators are utilized in approximating the functions of broader classes as opposed to continuous functions. Moreover, the following are the operators that define Bernstein-Kantorovich operators:

$$
\begin{equation*}
\left(\mathcal{K}_{\mathrm{r}} \mathrm{~g}\right)(x)=(\mathrm{r}+1) \sum_{s=0}^{\mathrm{r}}\binom{\mathrm{r}}{\mathrm{r}} x^{s}(1-x)^{\mathrm{r}-s} \int_{\frac{\mathrm{s}}{\mathrm{r}+1}}^{\frac{\mathrm{s}+1}{\mathrm{r}+1}} \mathrm{~g}(\mathrm{t}) \mathrm{dt}, \tag{2}
\end{equation*}
$$

for functions $g \in L_{p}[0,1](1 \leq p<\infty)$.
To determine the L_{p}-approximation, Ditzian and Totik [17] provided the Kantorovich modification of Baskakov operators, which is called the Baskakov-Kantorovich operators written as

$$
\begin{equation*}
\left(\mathcal{K}_{m} \mathrm{~g}\right)(x)=m \sum_{\mathrm{l}=0}^{\infty}\binom{m+\mathrm{l}-1}{\mathrm{l}} \frac{x^{\mathrm{l}}}{(1+x)^{m+\mathrm{l}}} \int_{\frac{\mathrm{l}}{m}}^{\frac{\mathrm{l}+1}{m}} \mathrm{~g}(\mathrm{t}) \mathrm{dt} . \tag{3}
\end{equation*}
$$

There are various modifications and generalizations of these operators which have been studied by several authors to get better and better approximation, e.g. [4,6,7,9-12, 29, 31, 33]. The q-calculus application appeared as a relatively new research field in the approximation theory. Here, the first q analogue of the famous Bernstein polynomials was established by Lupaş [24] by employing the concept of q-integers. On the other hand, in 1997, Phillips [30] took into consideration a different q-analogue of the classical Bernstein polynomials. Subsequently, numerous researchers investigated the f-generalizations with regard to a variety of operators by examining their approximation properties, e.g. [8, 12, 26, 27]. For instance, the q-variant of Baskakov operators [5] is defined as

$$
\begin{equation*}
\left(\mathcal{V}_{m, \mathrm{q}} \mathrm{~g}\right)(x)=\sum_{\mathrm{l}=0}^{\infty} B_{m, \mathrm{l} \mathrm{q}}(x) \mathrm{g}\left(\frac{[\mathrm{l}]_{\mathrm{d}}}{\mathrm{q}^{\mathrm{l}-1}[m]_{\mathrm{q}}}\right), \tag{4}
\end{equation*}
$$

where

$$
B_{m, \mathrm{q}}(x)=\left[\begin{array}{c}
m+l-1 \\
l
\end{array}\right]_{\mathrm{q}} \frac{x^{\mathrm{l}}}{(1+x)_{\mathrm{q}}^{m+\mathrm{l}}} q^{\frac{\mathrm{l}(-1)}{2}},
$$

while the q-Baskakov-Kantorovich operators [21] are defined by

$$
\begin{equation*}
\left(\mathcal{T}_{m, \mathrm{q}} \mathrm{~g}\right)(x)=[m]_{\mathrm{q}} \sum_{\mathrm{l}=0}^{\infty} \mathrm{q}^{\mathrm{d}-1} B_{m, \mathrm{lq}}(x) \int_{\frac{\mathrm{q}}{} \frac{\mathrm{q} \mathrm{l}_{\mathrm{q}}}{\left[m \mathrm{l}_{\mathrm{q}}\right.}}^{\frac{\mathrm{l}+1 \mathrm{l}_{\mathrm{q}}}{[\mathrm{l}}} \mathrm{g}\left(\mathrm{q}^{1-\mathrm{l}} \mathrm{t}\right) \mathrm{d}_{\mathrm{q} \mathrm{t}} . \tag{5}
\end{equation*}
$$

Lemma 1.1. With respect to the test functions given by $e_{j}=\mathrm{t}^{j}, j=0,1,2$, it follows that
(1) $\left(\mathcal{V}_{m, ¢} e_{0}\right)(x)=1$,
(2) $\left(\mathcal{V}_{m, \mathrm{q}} e_{1}\right)(x)=x$,
(3) $\left(\mathcal{V}_{m, \mathrm{q}} e_{2}\right)(x)=x^{2}+\frac{x}{[m]_{\mathrm{q}}}\left(1+\frac{x}{\mathrm{q}}\right)$.

1.1. Basics of q -Calculus

The q-integer $[m]_{q}$, the q-factorial $[m]_{q}$! as well as the q-binomial coefficient are given as below (see [22]) :

$$
\begin{aligned}
{[m]_{\mathbb{C}} } & := \begin{cases}\frac{1-\mathrm{q}^{m}}{1-\mathrm{q}}, & \text { if } \mathrm{q} \in \mathbb{R}^{+} \backslash\{1\} \\
m, & \text { if } \mathrm{q}=1,\end{cases} \\
{[m]_{\mathrm{q}}!} & := \begin{cases}{[m]_{\mathrm{q}}[m-1]_{\mathrm{q}} \cdots[1]_{\mathrm{q}},} & m \geq 1, \\
1, & m=0,\end{cases} \\
{\left[\begin{array}{c}
m \\
l
\end{array}\right]_{\mathbb{C}} } & :=\frac{[m]_{\mathrm{q}}!}{[l]_{\mathrm{C}}![m-l]_{\mathrm{q}}!},
\end{aligned}
$$

accordingly. Here, the q -analogue of $(1+x)^{m}$ is given by the polynomial

$$
(1+x)_{\mathrm{q}}^{m}:= \begin{cases}(1+x)(1+\mathrm{q} x) \cdots\left(1+\mathrm{q}^{m-1} x\right) & m=1,2,3, \cdots \\ 1 & n=0 .\end{cases}
$$

The Gauss binomial formula is written as

$$
(x+a)_{\mathrm{q}}^{m}=\sum_{\mathrm{l}=0}^{m}\left[\begin{array}{c}
m \\
l
\end{array}\right]_{\mathrm{q}} \mathrm{q}^{\mathrm{d}(\mathrm{l}-1) / 2} a{ }^{\mathrm{l}} x^{m-\mathrm{l}} .
$$

On the other hand, the q -derivative $D_{\mathrm{q}} \mathrm{g}$ of a function g is as follows

$$
\left(D_{\mathrm{q}} \mathrm{~g}\right)(x)=\frac{\mathrm{g}(x)-\mathrm{g}(\mathrm{q} x)}{(1-\mathrm{q}) x}, x \neq 0
$$

as well as $\left(D_{\mathrm{q}} \mathrm{g}\right)(0)=\mathrm{g}^{\prime}(0)$, provided that $\mathrm{g}^{\prime}(0)$ exists. If g is differentiable, then

$$
\lim _{\mathrm{q} \rightarrow 1} D_{\mathrm{q}} \mathrm{~g}(x)=\lim _{\mathrm{q} \rightarrow 1} \frac{\mathrm{~g}(x)-\mathrm{g}(\mathrm{q} x)}{(1-\mathrm{q}) x}=\frac{d \mathrm{~g}(x)}{d x}
$$

For $m \geq 1$,

$$
\begin{aligned}
& D_{\mathrm{q}}(1+x)_{\mathrm{q}}^{m}=[m]_{\mathrm{q}}(1+\mathrm{q} x)_{\mathrm{q}}^{m-1}, D_{\mathrm{q}}\left(\frac{1}{(1+x)_{\mathrm{q}}^{m}}\right)=-\frac{[m]_{\mathrm{q}}}{(1+x)_{\mathrm{q}}^{m+1}}, \\
& D_{\mathrm{q}}\left(\frac{u(x)}{v(x)}\right)=\frac{v(\mathrm{q} x) D_{\mathrm{q}} u(x)-u(\mathrm{q} x) D_{\mathrm{q}} v(x)}{v(x) v(\mathrm{q} x)} .
\end{aligned}
$$

The q-Jackson definite integral is given by

$$
\int_{0}^{\infty / A} f(x) d_{\mathrm{q}^{\mathrm{d}}} x=(1-\mathrm{q}) \sum_{n=-\infty}^{\infty} f\left(\frac{\mathrm{q}^{n}}{A}\right) \frac{\mathrm{q}^{n}}{A} \quad(A \in \mathbb{R}-\{0\})
$$

1.2. q-Statistical convergence

The definition of q-analog of Cesàro matrix C_{1} is not unique (see [2], [3]). Here, we may take into consideration the q-Cesàro matrix, $C_{1}(\mathrm{q})=\left(c_{n k}^{1}\left(\mathrm{q}^{k}\right)\right)_{n, k=0}^{\infty}$ expressed by

$$
c_{n k}^{1}\left(\mathrm{q}^{k}\right)= \begin{cases}\frac{\mathrm{q}^{k}}{[n+1]_{\mathrm{q}}} & \text { if } k \leq n, \\ 0 & \text { otherwise }\end{cases}
$$

which is regular for $q \geq 1$.
Suppose $\mathcal{K} \subseteq \mathbb{N}$ (the set of natural numbers). Then, $\delta(\mathcal{K})=\lim _{\mathrm{r}} \frac{1}{\mathrm{r}} \#\{k \leq \mathrm{r}: k \in \mathcal{K}\}$ is known as the asymptotic density of \mathcal{K}, in which \# denotes the cardinality of the enclosed set. Moreover, a sequence $\eta=\left(\eta_{k}\right)$ is known as statistically convergent to the number \mathfrak{s} provided that $\delta\left(\mathcal{K}_{\varepsilon}\right)=0$ for every $\varepsilon>0$, in which $\mathcal{K}_{\varepsilon}=\left\{k \leq \mathrm{r}:\left|\eta_{k}-s\right|>\varepsilon\right\}$ (refer to [19]).

In the recent past, Aktuğlu and Bekar [3] defined q-density as well as q-statistical convergence. The q-density is defined as

$$
\delta_{\mathrm{q}}(\mathcal{K})=\delta_{C_{1}^{\mathrm{f}}}(\mathcal{K})=\lim \inf _{n \rightarrow \infty}\left(C_{1}^{\mathrm{d}} \chi_{\mathcal{K}}\right)_{n}=\lim \inf _{n \rightarrow \infty} \sum_{k \in K} \frac{\mathrm{q}^{k-1}}{[n]}, \mathrm{q} \geq 1
$$

A sequence $\eta=\left(\eta_{k}\right)$ is known to be q-statistically convergent to \mathcal{L} provided that $\delta_{\mathrm{q}}\left(\mathcal{K}_{\varepsilon}\right)=0$, in which $\mathcal{K}_{\varepsilon}=\left\{k \leq n:\left|\eta_{k}-\mathcal{L}\right| \geq \varepsilon\right\}$ for every $\varepsilon>0$. In other words, for each $\varepsilon>0$,.

$$
\lim _{n} \frac{1}{[n]} \#\left\{k \leq n: \mathrm{q}^{k-1}\left|\eta_{k}-\mathcal{L}\right| \geq \varepsilon\right\}=0
$$

In this case we write $S t_{\mathrm{q}}-\lim \eta_{k}=\mathcal{L}$.
Note that if $\delta(\mathcal{K})=0 \Longrightarrow \delta_{\mathrm{q}}(\mathcal{K})=0$. Therefore, statistical convergence [19, Example 15] implies q -statistical convergence but not conversely (refer to [Example 15][3]).

2. Wavelets aided q-Baskakov-Kantorovich operators

We now recall some basic properties of wavelets $[15,25]$. Here, the wavelets denotes the set of functions of the form

$$
\Psi_{\mu, v}(x)=\mu^{-\frac{1}{2}} \Psi\left(\frac{x-v}{\mu}\right) \mu>0, v \in \mathbb{R}
$$

which are formed by translations and dilations of a single function Ψ, which is called the mother wavelet or basic wavelet. Moreover, following the Franklin-Strom̈berg theory, the constant μ may be substituted by 2^{i} while v may be substituted by $2^{i} l$, having i and l to be the integers. For an arbitrary function $g \in L_{2}(\mathbb{R})$, the wavelets have a crucial part in the orthonormal basis, in which the g function is given as:

$$
\mathrm{g}(x)=\sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} \gamma(i, l) \Psi_{i, l}(x),
$$

in which

$$
\gamma(i, l)=2^{\frac{i}{2}} \Psi_{i, l}(x) \int_{\mathbb{R}} f(x) \Psi\left(2^{i} x-l\right) \mathrm{d} x .
$$

Daubechies [16] constructed an orthonormal basis for $L_{2}(\mathbb{R})$ of the form

$$
2^{\frac{i}{2}} \Psi_{s}(x)\left(2^{i} x-1\right)
$$

where s refers to the non-negative integer, i, l denote the integers as well as the support of Ψ_{s} is $[0,2 s+1]$. For a positive constant ξ, if Ψ_{s} has ξ_{s} order of continuous derivatives, then for any $0 \leq l \leq s, s \in \mathbb{N}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}} x^{l} \Psi_{s}(x) \mathrm{d} x=0 \tag{6}
\end{equation*}
$$

Evidently, when $s=0$, the system is reduced to the Haar system. Here, with regard to any $\Psi \in L_{\infty}(\mathbb{R})$, we now have the conditions given by: (i) a finite positive ξ having the property sup $\Psi \subset[0, \xi]$, while (ii)
its first s moment vanishes. Furthermore, for $1 \leq l \leq s, s \in \mathbb{N}$, we have $\int_{\mathbb{R}} t \Psi(\mathrm{t}) \mathrm{dt}=0$ and $\int_{\mathbb{R}} \Psi(\mathrm{t}) \mathrm{dt}=1$. Therefore, by employing the Haar basis, the Baskakov type operators are expressed as [1]:

$$
\begin{equation*}
\left(\mathcal{L}_{m} \mathrm{~g}\right)(x)=m \sum_{\mathrm{l}=0}^{\infty}\binom{m+\mathrm{l}-1}{\mathrm{l}} \frac{x^{\mathrm{l}}}{(1+x)^{m+\mathrm{l}}} \int_{\mathbb{R}} \mathrm{g}(\mathrm{t}) \Psi(m \mathrm{t}-\mathrm{l}) \mathrm{dt}, \tag{7}
\end{equation*}
$$

in which the operators \mathcal{L}_{m} refer to the extensions of Baskakov-Kantorovich operators. By considering the $\sup \Psi \subset[0, \xi]$, the operators \mathcal{L}_{m} are given as [1]:

$$
\begin{equation*}
\left(\mathcal{L}_{m} \mathrm{~g}\right)(x)=\sum_{\mathrm{l}=0}^{\infty}\binom{m+\mathrm{l}-1}{\mathrm{l}} \frac{x^{\mathrm{l}}}{(1+x)^{m+\mathrm{l}}} \int_{0}^{\xi} \mathrm{g}\left(\frac{\mathrm{t}+\mathrm{l}}{m}\right) \Psi(\mathrm{t}) \mathrm{dt} . \tag{8}
\end{equation*}
$$

Now, we recall the q-Baskakov type operators by employing compactly-supported wavelets of Daubechies constructed in [28].
Let $\int_{\mathbb{R}} x^{s} \Psi_{k}(x) \mathrm{d}_{\mathrm{q}} x=0$ when $0 \leq s \leq k$ for $k \in \mathbb{N}$ as well as $\mathrm{q}>0$.
With regard to $\Psi \in L_{\infty}(\mathbb{R})$, we assume the conditions given below in terms of wavelets: (i) a finite positive ξ having the property sup $\Psi \subset[0, \xi]$; and (ii) its first k moment vanishes. For $1 \leq s \leq k$ and $k \in \mathbb{N}$, we now obtain $\int_{\mathbb{R}} t^{s} \Psi(\mathrm{t}) \mathrm{d}_{\mathrm{q} \mathrm{t}}=0$ as well as $\int_{\mathbb{R}} \Psi(\mathrm{t}) \mathrm{d}_{\mathrm{q}} \mathrm{t}=1$. Therefore, for all $1 \leq s \leq k, k \in \mathbb{N}$ as well as $0<q<1$, Nasiruzzaman et al. [28] constructed the q-analogue of Baskakov-Kantorovich type wavelets operators given by:

$$
\begin{equation*}
\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{~g}\right)(x)=[\mathrm{r}]_{\mathrm{q}} \sum_{s=0}^{\infty} \mathrm{q}^{6-1} B_{\mathrm{r}, s, \mathrm{q}}(x) \int_{\mathbb{R}} \mathrm{g}(\mathrm{t}) \Psi\left(\mathrm{q}^{6-1}[\mathrm{r}]_{\mathrm{q} \mathrm{t}}-[s]_{\mathrm{q}}\right) \mathrm{d}_{\mathrm{q} \mathrm{t}} . \tag{9}
\end{equation*}
$$

Thus, these operators $\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{g} ; x)$ extend the q -Baskakov-Kantorovich operators given by (5). For the choices of $k=0$ as well as Ψ Haar basis, we obtain the q-Baskakov-Kantorovich operators $\mathcal{T}_{\mathrm{r}, \mathrm{q}}(\mathrm{g} ; x)$ by (5). Additionally, for the choices $k=0, q=1$ as well as Ψ Haar basis, we get the Baskakov-Kantorovich operators $\mathcal{K}_{\mathrm{r}, \mathrm{q}}(\mathrm{g} ; x)$ by (3). Considering the $\sup \Psi \subset[0, \xi]$, the operators $\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{g} ; x)$ we get the following operators:

$$
\begin{equation*}
\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{~g}\right)(x)=\sum_{s=0}^{\infty} B_{\mathrm{r}, s, \mathrm{q}}(x) \int_{0}^{\xi} \mathrm{g}\left(\frac{\mathrm{t}+[\mathrm{s}]_{\mathrm{q}}}{\mathrm{q}^{s-1}[\mathrm{r}]_{\mathrm{q}}}\right) \Psi(\mathrm{t}) \mathrm{d}_{\mathrm{q}} \mathrm{t} . \tag{10}
\end{equation*}
$$

It is evident that by choosing $q=1$, we obtain classical Baskakov-Kantorovich wavelets operators $\mathcal{L}_{\mathrm{r}, \mathrm{s}}$ by (7) as well as (8).

We need the following result of [28]:
Theorem 2.1. Suppose $e_{j}=t^{j}$ when $0 \leq j \leq k$ and $k \in \mathbb{N}$. Then, we obtain

$$
\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} e_{j}\right)(x)=\left(\mathcal{V}_{\mathrm{r}, \mathrm{q}} e_{j}\right)(x)
$$

in which $x \in[0, \infty)$ as well as the operators $\left(\mathcal{V}_{\mathrm{r}, \mathrm{q}} \mathrm{g}\right)(x)$ are defined as above.

3. Weighted q-Statistical approximation

This section presents the statistical approximation of wavelets Kantorovich q-Baskakov operators $\mathcal{S}_{\mathrm{r}, \mathrm{q}}$ defined by (9) employing a Bohman-Korovkin type theorem [18].

Suppose N_{g} is the constant depending on the function g and $B_{\rho}(\mathbb{R})$ represents the weighted space of a real valued function g with the property that $|g(x)| \leq N_{g} \rho(x)$ for all $x \in \mathbb{R}$. Now, we take into consideration the weighted subspace $C_{\rho}(\mathbb{R})$ of $B_{\rho}(\mathbb{R})$ which is defined as

$$
C_{\rho}(\mathbb{R})=\left\{\mathrm{g} \in B_{\rho}(\mathbb{R}): \mathrm{g} \text { continuous in } \mathbb{R}\right\} .
$$

with the norm $\|\mathrm{g}\|_{\rho}=\sup _{x \in \mathbb{R}} \frac{|g(x)|}{\rho(x)}$ and both $C_{\rho}(\mathbb{R})$ and $B_{\rho}(\mathbb{R})$ are Banach spaces. By the use of A-statistical convergence, Duman and Orhan [18] proved the theorem given below, which is useful in proving our main result.

Theorem 3.1. (Duman and Orhan [18]). If $A=\left(a_{j \mathrm{r}}\right)_{j, \mathrm{r}}$ is a positive regular summability matrix, and let $\left(L_{\mathrm{r}}\right)_{\mathrm{r}}$ denote a sequence of positive linear operators from $C_{\rho_{1}}(\mathbb{R})$ to $B_{\rho_{2}}(\mathbb{R})$, in which ρ_{1} as well as ρ_{2} satisfies $\lim _{|x| \rightarrow \infty} \frac{\rho_{1}}{\rho_{2}}=0$. Then

$$
s t_{A}-\lim _{\mathrm{r}}\left\|L_{\mathrm{r}} \mathrm{q}-\mathrm{q}\right\|_{\rho_{2}}=0, \forall q \in C_{\rho_{1}}(\mathbb{R})
$$

if and only if

$$
s t_{A}-\lim _{\mathrm{r}}\left\|L_{\mathrm{r}} H_{v}-H_{v}\right\|_{\rho_{1}}=0 \text { for } v=0,1,2
$$

in which $H_{v}=\frac{x^{v} \rho_{1}(x)}{1+x^{2}}$.
By examining this result, it is clear that if \mathbb{R} is substituted by \mathbb{R}_{+}, then the theorem holds true. Also, by analyzing Lemma 1.1, we see that the sequence of operators $\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}}\right)_{\mathrm{r}}$ fails to satisfy the properties of Bohman-Korovkin theorem. Now, let us take into consideration the weight functions $\rho_{0}(x)=1+x^{2}$ and $\rho_{\alpha}(x)=1+x^{2+\alpha}$ for $x \in \mathbb{R}_{+}$and $\alpha>0$ together with the remark below.

Remark 3.2. It is true that for $\mathrm{q} \in(0,1), \lim _{\mathrm{r} \rightarrow \infty}[\mathrm{r}]_{\mathrm{q}}=0$ or $\frac{1}{1-\mathrm{q}}$. Now, we consider the sequence $\left(\mathrm{q}_{\mathrm{r}}\right)_{\mathrm{r}}$ for $\mathrm{q}_{\mathrm{r}} \in(0,1)$ with the property that st $-\lim _{\mathrm{r} \rightarrow \infty} \mathrm{C}_{\mathrm{r}}=1$ and st $-\lim _{\mathrm{r} \rightarrow \infty} \mathrm{q}_{\mathrm{r}}^{\mathrm{r}}=1$. Based on these facts, we have $\lim _{\mathrm{r} \rightarrow \infty}[\mathrm{r}]_{\mathrm{C}}=\infty$. This will lead to check the convergence of the operators (9). Thus, we now obtain the theorem stated as:

Theorem 3.3. Suppose that the sequence $\left(\mathrm{q}_{\mathrm{r}}\right)_{\mathrm{r}}$ satisfies Remark 3.2 above and $\mathcal{S}_{\mathrm{r}, \mathrm{q}}$ be a positive linear operator. Then, we have:

$$
S t_{\mathrm{q}}-\lim _{\mathrm{r}} \|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{~g})-\mathrm{g} \|_{\rho_{\alpha}}=0, \forall \mathrm{~g} \in C_{\rho_{0}}\left(\mathbb{R}_{+}\right)\right.
$$

Proof. Based on Lemma 1.1(i) and Theorem 2.1, we have:

$$
\begin{aligned}
\|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{~g})-\mathrm{g} \|_{\rho_{0}}\right. & =\sup _{x \in \mathbb{R}} \frac{\left|\left(\mathcal{S}_{\mathrm{r}, \mathcal{C}_{\mathrm{r}}} e_{0}\right)(x)-e_{0}(x)\right|}{1+x^{2}} \\
& =\sup _{x \in \mathbb{R}} \frac{|1-1|}{1+x^{2}} \\
& =0
\end{aligned}
$$

In other words,

$$
S t_{\mathrm{q}}-\lim _{\mathrm{r}} \|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{~g})-\mathrm{g} \|_{\rho_{0}}=0\right.
$$

Again, based on Lemma 1.1 (ii) and Theorem 2.1, we have:

$$
\begin{aligned}
\|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{~g})-\mathrm{g} \|_{\rho_{0}}\right. & =\sup _{x \in \mathbb{R}} \frac{\left|\left(\mathcal{S}_{\mathrm{r}, \mathcal{C}_{\mathrm{r}}} e_{1}\right)(x)-e_{1}(x)\right|}{1+x^{2}} \\
& =\sup _{x \in \mathbb{R}} \frac{|x-x|}{1+x^{2}} \\
& =0
\end{aligned}
$$

Using Lemma 1.1 and Theorem 2.1, we have:

$$
\begin{aligned}
& \|\left(\mathcal{S}_{\mathrm{r}, \mathrm{C}}(\mathrm{~g})-\mathrm{g} \|_{\rho_{0}}=\sup _{x \in \mathbb{R}} \frac{\left|\left(\mathcal{S}_{\mathrm{r}, \mathcal{C}_{\mathrm{r}}} e_{2}\right)(x)-e_{2}(x)\right|}{1+x^{2}},\right. \\
& =\sup _{x \in \mathbb{R}} \frac{\left|\left(x^{2}+x \frac{1}{\left[r_{\mathrm{C}_{\mathrm{r}}}\right.}\left(1+\frac{1}{\mathrm{q}_{\mathrm{r}}} x\right)\right)-x^{2}\right|}{1+x^{2}}, \\
& \left.=\sup _{x \in \mathbb{R}} \frac{\left\lvert\,\left(1+\frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{r}]_{\mathrm{C}_{n}}}-1\right) x^{2}+x \frac{1}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{F}}}}\right.}{} \right\rvert\, \\
& \leq \sup _{x \in \mathbb{R}}\left|\frac{1}{\mathbb{C}_{\mathrm{r}}[r]_{\mathrm{C}_{\mathrm{r}}}} x^{2}+x \frac{1}{[r]_{\mathrm{C}_{\mathrm{r}}}}\right|, \\
& \leq \sup _{x \in \mathbb{R}}\left(\left|x^{2}\right| \frac{1}{\mathrm{C}_{\mathrm{r}}[\mathrm{rr}]_{\mathrm{C}_{\mathrm{r}}}}+|x| \frac{1}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{F}}}}\right) \text {, } \\
& =\left(\left\|e_{2}\right\|_{\rho_{0}} \frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{rr}]_{\mathrm{C}_{\mathrm{r}}}}+\left\|e_{1}\right\|_{\rho_{0}} \frac{1}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}}\right) \text {, } \\
& \leq\left(\frac{1}{\mathrm{C}_{\mathrm{r}}^{f}\left[\mathrm{r}_{\mathrm{C}_{\mathrm{r}}}\right.}+\frac{1}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}}\right) \text {. }
\end{aligned}
$$

From Remark 3.2, we have $s t-\lim _{r \rightarrow \infty} q_{r}=1$. Furthermore, we also obtain $\lim _{r \rightarrow \infty}[r]_{q}=\infty$. Consequently

$$
S t_{\mathrm{q}}-\lim _{\mathrm{r}} \|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}}(\mathrm{~g})-\mathrm{g} \|_{\rho_{0}}=0 .\right.
$$

By employing Lemma 1.1 and also selecting $A=C_{1}$, known as the Cesáro matrix of order one, $\rho_{0}(x)=1+x^{2}$, $\rho_{\alpha}(x)=1+x^{2+\alpha}$ for $x \in \mathbb{R}_{+}$and $\alpha>0$, the proof is immediate from Theorem 3.1.

4. The Rate of Convergence

In this section, we present the rate of statistical convergence of the operators $\mathcal{S}_{\mathrm{r}, \mathrm{q}}$ (9) by means of weighted modulus of smoothness and Lipschitz type maximal functions. The weighted modulus of smoothness $\omega_{\rho_{\alpha}}$ correlated to the space $B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$of a function g is defined as:

$$
\begin{equation*}
\omega_{\rho_{\alpha}}(\mathrm{g} ; \delta)=\sup _{x \geq 0,0<i<\delta} \frac{|\mathrm{g}(x+i)-\mathrm{g}(x)|}{1+(x+i)^{2+\alpha}}, \delta>0, \alpha \geq 0 \tag{11}
\end{equation*}
$$

It satisfies the following three axioms.
(a) $\omega_{\rho_{\alpha}}(\mathrm{g} ; \beta \delta) \leq(\beta+1) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta)$ for $\delta>0$ and $\beta>0$.
(b) $\omega_{\rho_{\alpha}}(\mathrm{g} ; \mathrm{r} \delta) \leq \mathrm{r} \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta)$ for $\delta>0$ and $\mathrm{r} \in \mathbb{N}$.
(c) $\lim _{\delta \rightarrow \infty} \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta)=0$.

The following theorem gives an error estimate of an operator $\mathcal{S}_{\mathrm{r}, \mathrm{c}}$ for the unbounded function h by means of weighted modulus of smoothness correlated to the space $B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$.

Theorem 4.1. Suppose that $\mathrm{q} \in(0,1)$ and $\alpha \geq 0$. Then, for any $g \in B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$, we have

$$
\left|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{~g}\right)(x)-\mathrm{g}(x)\right| \leq \sqrt{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)}\left(1+\frac{1}{\delta} \sqrt{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\phi_{x}^{2} ; x\right)}\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta)
$$

where $\mu_{x, \alpha}(y)=1+(x+|y-x|)^{2+\alpha}$ as well as $\phi_{x}(y)=|y-x|$ for $y \geq 0$.

Proof. Suppose that $\mathrm{r} \in \mathbb{N}$ and $\mathrm{g} \in B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$. Using equality (11) and axiom (a) above, we can write that

$$
\begin{aligned}
|\mathrm{g}(y)-\mathrm{g}(x)| & \leq\left(1+(x+|y-x|)^{2+\alpha}\right)\left(1+\frac{1}{\delta}|y-x|\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta), \\
& =\mu_{x, \alpha}(y)\left(1+\frac{1}{\delta} \phi_{x}(y)\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta) .
\end{aligned}
$$

Next, using the Cauchy inequality of the positive linear operators yields

$$
\begin{aligned}
\left|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{~g}\right)(x)-\mathrm{g}(x)\right| & \leq[\mathrm{r}]_{\mathrm{q}} \sum_{s=0}^{\infty} \mathrm{q}^{6-1} v_{s, \mathrm{r}}^{\mathrm{q}}(x) \int_{\mathbb{R}}|\mathrm{g}(y)-\mathrm{g}(x)| \Psi\left([\mathrm{r}]_{\mathrm{q}} \frac{\mathrm{q}^{s-1}}{1} y-[s]_{\mathrm{q}}\right) d_{\mathrm{q}} y, \\
& \leq\left(\mathcal{S}_{\mathrm{r}, s, \mathrm{q}}\left(\mu_{x, \alpha} ; x\right)+\frac{1}{\delta} \mathcal{S}_{\mathrm{r}, s, \mathrm{q}}\left(\mu_{x, \alpha} \phi_{x} ; x\right)\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta), \\
& \leq \sqrt{\mathcal{S}_{\mathrm{r}, s, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)}\left(1+\frac{1}{\delta} \sqrt{\mathcal{S}_{\mathrm{r}, s, \mathrm{q}}\left(\phi_{x}^{2} ; x\right)}\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta) .
\end{aligned}
$$

Now, we introduce the lemma given below, which may facilitate in proving the primary findings for this research, since it is one of the facts which ensure that $\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{g}\right)(x) \in B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$.

Lemma 4.2. Suppose that $0<\mathrm{q} \leq 1$, then for $i, \mathrm{r} \in \mathbb{N}$ and $x \in \mathbb{R}_{+}$, we obtain

$$
\begin{equation*}
\left(\mathcal{V}_{\mathrm{r}, \mathrm{q}} e_{i}\right)(x) \leq \frac{1}{[\mathrm{r}]_{\mathrm{q}}^{i-1}(1+x)_{\mathrm{q}}^{\mathrm{r}}} x+\frac{2^{i-1}}{\mathrm{q}^{i-1}} x\left(\mathcal{V}_{\mathrm{r}+1, \mathrm{q}} e_{i-1}\right)(x) \tag{12}
\end{equation*}
$$

Proof. For $s \in \mathbb{N}$ as well as $0<\mathbb{q} \leq 1$, we have the inequality given below:

$$
\begin{equation*}
1 \leq[s+1]_{q} \leq 2[s]_{q} . \tag{13}
\end{equation*}
$$

Now, let $i \in \mathbb{N}$. Using Equation (4), we have:

$$
\begin{aligned}
& \left(\mathcal{V}_{\mathrm{r}, \mathrm{q}} \mathcal{q}_{i}\right)(x)=\sum_{s=0}^{\infty} v_{\mathrm{r}, s}^{\mathbb{q}}(x) e_{i}\left(\frac{[s]_{\mathbb{C}}}{\mathrm{q}^{s-1}[\mathrm{r}]_{\mathbb{q}}}\right), \\
& =\sum_{s=0}^{\infty} v_{\mathrm{r}, s}^{\mathrm{q}}(x)\left(\frac{[\mathrm{s}]_{\mathbb{C}}}{\mathrm{d}^{\mathrm{q}-1}\left[\mathrm{r}_{\mathrm{q}}\right.}\right)^{i} \text {, } \\
& =\sum_{s=0}^{\infty} v_{\mathrm{T}, s}^{\mathbb{q}}(x) \frac{[s]_{\mathrm{C}}^{i}}{\mathrm{q}^{(s-1)}{ }^{[r]]_{\mathbb{q}}^{i}}} \text {, } \\
& =\sum_{s=1}^{\infty} x v_{\mathrm{r}+1, s-1}^{\mathrm{q}}(x) \frac{[s]_{\mathrm{q}}^{i-1}}{\mathrm{q}^{(s-1)(i-1)}[\mathrm{r}]_{\mathrm{q}}^{i-1}}, \\
& =\sum_{s=0}^{\infty} x v_{\mathrm{r}^{\mathrm{q}}}{ }_{1, s}(x) \frac{[s+1]_{\mathrm{q}}^{i-1}}{\mathrm{q}^{s(i-1)}[\mathrm{r}]_{\mathrm{q}}^{i-1}},
\end{aligned}
$$

Using Inequality (13), we have,

$$
\begin{aligned}
\left(\mathcal{V}_{\mathrm{r}, \mathrm{q}} e_{i}\right)(x) & \leq \frac{x}{[\mathrm{r}]_{\mathrm{q}}^{i-1}(1+x)_{\mathrm{q}}^{\mathrm{r}}}+x \sum_{s=1}^{\infty} v_{\mathrm{r}+1, s}^{\mathrm{q}}(x) \frac{\left(2[s]_{\mathrm{q}}\right)^{i-1}}{\mathrm{q}^{s(i-1)}[\mathrm{r}]_{\mathrm{q}}^{i-1}}, \\
& =\frac{x}{[\mathrm{r}]_{\mathrm{q}}^{i-1}(1+x)_{\mathrm{q}}^{\mathrm{r}}}+\frac{2^{i-1}}{\mathrm{q}^{i-1}} x \sum_{s=1}^{\infty} v_{\mathrm{r}+1, \mathrm{~s}}^{\mathrm{q}}(x) \frac{[s]_{\mathrm{q}}^{i-1}}{\mathrm{q}^{(s-1)(i-1)}[\mathrm{r}]_{\mathrm{q}}^{i-1}} .
\end{aligned}
$$

Based on Equation (4), we have that:

$$
\left(\mathcal{V}_{\mathrm{r}+1, \mathrm{C}} e_{i-1}\right)(x)=\sum_{s=1}^{\infty} v_{\mathrm{r}+1, \mathrm{~S}}^{\mathbb{q}}(x) \frac{[s]_{\mathrm{C}}^{i-1}}{\mathbb{C}^{(s-1)(i-1)}[\mathrm{r}]_{\mathrm{q}}^{i-1}} .
$$

Consequently,

$$
\left(\mathcal{V}_{\mathrm{r}, \mathrm{q}} e_{i}\right)(x) \leq \frac{1}{[\mathrm{r}]_{\mathrm{q}}^{i-1}(1+x)_{\mathrm{q}}^{\mathrm{r}}} x+\frac{2^{i-1}}{\mathrm{q}^{i-1}} x\left(\mathcal{V}_{\mathrm{r}+1, \mathrm{q}} e_{i-1}\right)(x) .
$$

Remark 4.3. Any positive and linear operator is monotone. Theorem 2.1 and Lemma 12 ensure that $\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{g}\right)(x) \in$ $B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$for any $\mathrm{g} \in B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$and $\alpha \in \mathbb{N}_{0}$, where $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$.

We may state the major outcome of this section as follows:
Theorem 4.4. Let $\left(\mathrm{q}_{\mathrm{r}}\right)_{\mathrm{r}}$ be the sequence satisfying Remark 3.2 above and $\alpha \in \mathbb{N}_{0}$. Then, for every $\mathrm{g} \in B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$, we have

$$
\lim _{\mathrm{r}}\left\|\left(\mathcal{S}_{\mathrm{r}, \mathrm{C}_{\mathrm{r}}} \mathrm{~g}\right)(x)-\mathrm{g}(x)\right\|_{\rho_{\alpha}} \leq 3 C_{\alpha} \omega_{\rho_{\alpha}}\left(\mathrm{g} ; \delta_{\mathrm{r}}\right),
$$

where $C_{\alpha}>0$ is a constant and $\delta_{\mathrm{r}}=\sqrt{\frac{1}{\mathrm{C}_{\mathrm{r}}[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}}}$.

Proof. From Lemma 1.1, we have the following:

$$
\begin{aligned}
\mathcal{S}_{\mathrm{r}, \mathrm{C}_{\mathrm{r}}}\left(\phi_{x}^{2} ; x\right) & =\left(x^{2}+x \frac{1}{[r]_{\mathrm{C}_{\mathrm{r}}}}\left(1+\frac{1}{\mathrm{q}_{\mathrm{r}}} x\right)\right)-x^{2}, \\
& =\left(1+\frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{rr}]_{\mathrm{C}_{\mathrm{r}}}}-1\right) x^{2}+x \frac{1}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}} \\
& =\frac{1}{\mathrm{q}_{\mathrm{r}}[r]_{\mathrm{C}_{\mathrm{r}}}} x^{2}+\frac{1}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}} x .
\end{aligned}
$$

Consequently, we have the inequality:

$$
\begin{equation*}
\mathcal{S}_{\mathrm{r}, \mathrm{q}_{\mathrm{r}}}\left(\phi_{x}^{2} ; x\right) \leq \frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{r}]_{\mathrm{q}_{\mathrm{r}}}} x^{2}+\frac{3}{[\mathrm{r}]_{\mathrm{q}_{\mathrm{r}}}} x . \tag{14}
\end{equation*}
$$

Let $\alpha \geq 0$ be a constant and $\mathrm{g} \in B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$. Using Theorem 4.1 as well as the inequality in (14) above, we get the following:

$$
\left.\begin{array}{rl}
\lim _{\mathrm{r}}\left\|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}} \mathrm{~g}\right)(x)-\mathrm{g}(x)\right\|_{\rho_{\alpha}} & =\frac{\mid\left(\mathcal{S}_{\mathrm{r}, \mathrm{q} \mathrm{~g})(x)-\mathrm{g}(x) \mid}^{1+x^{2+\alpha}}\right.}{} \\
& \leq \sqrt{\frac{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)}{1+x^{2+\alpha}}}\left(1+\frac{1}{\delta} \sqrt{\frac{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\phi_{x}^{2} ; x\right)}{1+x^{1+\alpha}}}\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta), \\
& \leq \sqrt{\frac{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)}{1+x^{2+\alpha}}}\left(1+\frac{1}{\delta} \sqrt{\left|\frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}} x^{2}+\frac{3}{[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}} x\right|}\right) \\
& \times \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta), \\
& \leq \sqrt{\frac{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)}{1+x^{2+\alpha}}}\left(1+\frac{1}{\delta} \sqrt{\frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{rr}]_{\mathrm{C}_{\mathrm{r}}}}\left\|e_{2}\right\|_{\rho_{\alpha}}+\frac{3}{[\mathrm{rr}]_{\mathrm{C}_{\mathrm{r}}}}\left\|e_{2}\right\|_{\rho_{\alpha}}}\right.
\end{array}\right),
$$

Furthermore,

$$
\begin{aligned}
\lim _{\mathrm{r}}\left\|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}_{\mathrm{r}}} \mathrm{~g}\right)(x)-\mathrm{g}(x)\right\|_{\rho_{\alpha}} & \leq \sqrt{\frac{\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)}{1+x^{2+\alpha}}}\left(1+\frac{2}{\delta} \sqrt{\frac{1}{\mathrm{q}_{\mathrm{r}}\left[\mathrm{rr}_{\mathrm{q}_{\mathrm{r}}}\right.}}\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta) \\
& \leq\left\|\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)\right\|_{\delta \alpha}\left(1+\frac{2}{\delta} \sqrt{\frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}}}\right) \omega_{\rho_{\alpha}}(\mathrm{g} ; \delta)
\end{aligned}
$$

Let $C_{\alpha}=\left\|\mathcal{S}_{\mathrm{r}, \mathrm{q}}\left(\mu_{x, \alpha}^{2} ; x\right)\right\|_{\delta \alpha}$ and choose $\delta=\sqrt{\frac{1}{\mathrm{q}_{\mathrm{r}}[\mathrm{r}]_{\mathrm{C}_{\mathrm{r}}}}}$, we have:

$$
\lim _{\mathrm{r}}\left\|\left(\mathcal{S}_{\mathrm{r}, \mathrm{q}_{\mathrm{r}}} \mathrm{~g}\right)(x)-\mathrm{g}(x)\right\|_{\rho_{\alpha}} \leq 3 C_{\alpha} \omega_{\rho_{\alpha}}\left(\mathrm{g} ; \delta_{\mathrm{r}}\right) .
$$

Remark 4.5. Since $\left(\mathrm{q}_{\mathrm{r}}\right)_{\mathrm{r}}$ satisfies Remark 3.2, the sequence $\left(\delta_{\mathrm{r}}\right)_{\mathrm{r}}$ is statistically null, that is st $-\lim _{\mathrm{r}} \omega_{\rho_{\alpha}}\left(\mathrm{g} ; \delta_{\mathrm{r}}\right)=0$.
Therefore, Theorem 4.4 above gives the statistical rate of convergence of $\mathcal{S}_{\mathrm{r}, \mathrm{q}_{\mathrm{r}}}(x)$ to g .

5. Graphical analysis

Using computer software, we will demonstrate some numerical examples with illustrative graphics.
Example 5.1. Let $\mathrm{g}(x)=\left(x-\frac{1}{5}\right)\left(x-\frac{4}{9}\right), \mathrm{q}=0.95$ and $n \in\{10,30,80\}$. The convergence of the operator towards the function $\mathrm{g}(x)$ is shown in Figure 1.

Figure 1: convergence of the operator towards the function $\mathrm{g}(x)=\left(x-\frac{1}{5}\right)\left(x-\frac{4}{9}\right)$

Example 5.2. Let $\mathrm{g}(x)=x^{2}-1, \mathrm{q}=1$ and $n \in\{10,30,60\}$. The convergence of the operator towards the function $\mathrm{g}(x)$ is shown in Figure 2.

Figure 2: convergence of the operator towards the function $\mathrm{g}(x)=x^{2}-1$

Example 5.3. Let $f(x)=x^{2}-4 x+3$. For $n=50$ and different values of q , the convergence of the operator towards the function $f(x)$ is shown in Figure 3.

Figure 3: Convergence of the operator for different values of q

6. Conclusion

With the facilitation of Bohman Korovkin-type theorem, the investigation on weighted statistical approximation behavior of wavelets Kantorovich q-Baskakov operators $\mathcal{S}_{\mathrm{r}, \mathrm{q}}$ is discussed under this study. Moreover, the statistical rate of the operators $\mathcal{S}_{\mathrm{r}, \mathrm{q}}$ is provided in this research with regard to the weighted modulus of smoothness correlated to the space $B_{\rho \alpha}\left(\mathbb{R}_{+}\right)$. The statistical approximation properties discussed in this study are the same as those of classical q -Baskakov operators defined by (4) since they share the same moments.

Declarations

Ethical Approval

Not Applicable

Availability of supporting data
Not Applicable

Competing interests

Not Applicable

Funding

Not Applicable

Acknowledgments

This research is supported by JADD program (by UPM-UON).

References

[1] O. Agratini: Construction of Baskakov-type operators by wavelets, J. Numer. Anal. Approx. Theory. 26 (1997).
[2] F. A. Akgun and B.E. Rhoades, Properties of some q-Hausdorff matrices, Appl. Math. Comput., $2197392-7397$ (2013).
[3] H. Aktuğlu and Ş. Bekar, q-Cesàro matrix and q-statistical convergence, Jour. Comput. Appl. Math., 235 (2011) 4717-4723.
[4] K.J. Ansari, F. Özger, Z.Ö. Özger, Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter λ Comp. Appl. Math. 41, 181 (2022).
[5] A. Aral, V. Gupta, Generalized q-Baskakov operators , Math. Slovaca 61(4), 619-634 (2011).
[6] R. Aslan, Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators Kuwait J. Sci. 51, 100168 (2024).
[7] R. Aslan, M. Mursaleen, Some approximation results on a class of new type λ-Bernstein polynomials J. Math. Inequal. 16, 445-462 (2022).
[8] R. Aslan, M. Mursaleen, Some approximation results on Chlodowsky type q-Bernstein-Schurer operators FILOMAT. 37, 8013-8028 (2023).
[9] M. Ayman-Mursaleen, A. Kiliçman, M. Nasiruzzaman, Approximation by q-Bernstein-Stancu-Kantorovich Operators with Shifted Knots of Real Parameters FILOMAT. 36, 1179-1194, (2022).
[10] M. Ayman-Mursaleen, M. Nasiruzzaman, N. Rao, M. Dilshad, K.S. Nisar Approximation by the modified λ-Bernstein-polynomial in terms of basis function AIMS Math. 9, 4409-4426 (2024).
[11] M. Ayman-Mursaleen, N. Rao, M. Rani, A. Kiliçman, A.A.H.A. Al-Abeid A Note on Approximation of Blending Type Bernstein-Schurer-Kantorovich Operators with Shape Parameter α J. Math. 2023, 5245806 (2023).
[12] M. Ayman-Mursaleen, S. Serra-Capizzano, Statistical Convergence via q-Calculus and a Korovkin's Type Approximation Theorem Axioms. 11, 70 (2022).
[13] V. A. Baskakov, An example of sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR 113, 259-251 (1957).
[14] S. N. Bernstein, Démonstration du théor éme de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc. 13, 1-2 (1912).
[15] C. K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.
[16] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, (1992).
[17] Z. Ditzian, V. Totik, Moduli of smoothness, Springer, Berlin, New York, 1987.
[18] O. Duman, C. Orhan, Statistical approximation by Positive Linear Operators Stud. Math. 161, 187-197 (2006).
[19] H. Fast, Sur la convergence statistique, Colloq. Math., 2 241-244 (1951).
[20] H. H. Gonska and D.-X. Zhou, Using wavelets for Szá sz-type operators, Rev. Anal. Numér. Théorie Approximation, 24(1-2) (1995), 131-145.
[21] V. Gupta, C. Radu, Statistical approximation properties of q-Baskakov-Kantorovich operators, Cent. Eur. J. Math., 7(4) (2009) $809-818$.
[22] V. Kac, P. Cheung, Quantum Calculus, Springer, Berlin, New York, 2002.
[23] L. V. Kantorovich, Sur certaines developments suivant les polynômes de la forme de S. Bernstein I-II, C.R. Acad. Sci. USSR A, 563-568, 595-600 (1930).
[24] A. Lupaş, A q-analogue of the Bernstein operator, In Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 9, 85-92 (1987).
[25] Y. Meyer, Wavelets and Operators, Cambridge University Press, (1992).
[26] M. Mursaleen, S. Rahman, A. Alotaibi, Dunkl generalization of q-Szász-Mirakjan-Kantorovich operators which preserve some test functions Jou. Ineq. Appl., 2016: 317 (2016).
[27] M. Nasiruzzaman, M.A.S. Tom, S. Serra-Capizzano, N. Rao, M. Ayman-Mursaleen, Approximation results for Beta JakimovskiLeviatan type operators via q-analogue FILOMAT. 37, 8389-8404 (2023).
[28] M. Nasiruzzaman, A. Kilicman, M. Ayman-Mursaleen, Construction of q-Baskakov operators by wavelets and approximation properties Iran. J. Sci. Technol. Trans. Sci. 46, 1495-1503 (2022).
[29] F. Özger, E. Aljimi, M.T. Ersoy, Rate of Weighted Statistical Convergence for Generalized Blending-Type Bernstein-Kantorovich Operators Mathematics 10, 2027 (2022).
[30] G. M. Phillips, Bernstein polynomials based on the q-integers, The heritage of P.L.Chebyshev: Ann. Numer. Math. 4, 511-518 (1997).
[31] M. Qasim, A. Khan, Z. Abbas, P. Raina, Q.-B. Cai, Rate of Approximation for Modified Lupaş-Jain-Beta Operators J. Funct. Spaces. 2020, 5090282 (2020).
[32] N. Rao, M. Nasiruzzaman, M. Heshamuddin, M. Shadab, Approximation properties by modified Baskakov Durrmeyer operators based on shape parameter- α Iran. J. Sci. Technol. Trans. A Sci. 45, 1457-1465 (2021).
[33] E. Savaş, M. Mursaleen, Bézier type Kantorovich q-Baskakov operators via wavelets and some approximation properties B. Iran. Math. Soc. 49, 68 (2023).
[34] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval J. Res. Natl. Bur. Stand. 45, 239-245 (1950).

[^0]: 2020 Mathematics Subject Classification. Primary 41A25, 41A36; Secondary 33C45.
 Keywords. q-integers; Baskakov-Kantorovich operators; Baskakov operators; q-Baskakov-Kantorovich operators; Baskakov operators; q-Wavelets; Modulus of Smoothness; Haar basis; Statistical Convergence; Weighted function.

 Received: 15 May 2023; Revised: 14 September 2023; Accepted: 20 September 2023
 Communicated by Miodrag Spalević
 Research supported by JADD program (by UPM-UON)

 * Corresponding author: Adem Kiliçman

 Email addresses: mohdaymanm@gmail.com, mohammad.mursaleen@uon.edu.au, mursaleen.ayman@student.upm.edu.my (Mohammad Ayman-Mursaleen), bishnu.lamichhane@newcastle.edu. au (Bishnu P. Lamichhane), akilicman@yahoo.com (Adem Kiliçman), norazak@upm.edu.my (Norazak Senu)

