Fixed points of $(\epsilon-\delta)$ nonexpansive mappings

R. P. Pant ${ }^{\text {a }}$
${ }^{a}$ Dalhousie Villa Compound, Ayarpata, Mallital, Nainital (India)

Abstract

We obtain fixed point theorems for nonexpansive mappings by employing a new (ϵ, δ) condition. Our results contain the well-known fixed point theorems due to Meir and Keeler, and Banach as particular cases. The fixed-point sets and domains of the mappings satisfying our theorems have interesting algebraic, geometric and dynamical features. Various examples substantiate our results.

1. Introduction

Meir and Keeler [8] proved that a selfmapping f of a complete metric space (X, d) has a unique fixed point if it satisfies:
(a) given $\epsilon>0$ there exists a $\delta(\epsilon)>0$ such that

$$
\epsilon \leq d(x, y)<\epsilon+\delta \Rightarrow d(f x, f y)<\epsilon
$$

In 1999 Pant [10] employed the condition:
(b) given $\epsilon>0$ there exists a $\delta(\epsilon)>0$ such that

$$
\epsilon<\max \{d(x, f x), d(y, f y)\}<\epsilon+\delta \Rightarrow d(f x, f y) \leq \epsilon
$$

to resolve the Rhoades' problem [15] on the existence of contractive mappings having discontinuity at the fixed point. Later, Pant and Pant [11] showed that condition (b) applies to nonexpansive mappings as well (see Theorem 2.9 [11]) and named such mappings as ($\epsilon-\delta$) nonexpansive mappings. Condition (b) or its variants have been employed by researchers to find new solutions of Rhoades' problem, e. g., Bisht and Pant [2], Bisht and Rakocevic [3], Celik and Ozgur [4], Pant [12], Pant et al [13, 14], Tas and Ozgur [16], Zheng and Wang [18]. In the present paper, we replace condition (b) by a new $(\epsilon-\delta)$ condition that applies to contractive as well as nonexpansive mappings. Our result generalizes the fixed point results due to Meir and Keeler [8] and Banach [1].

Definition $1.1([5,6])$. If f is a self-mapping of a set X then a point x in X is called an eventually fixed point of f if there exists a natural number N such that $f^{n+1}(x)=f^{n}(x)$ for $n \geq N$. If $f x=x$ then x is called a fixed point of f. A point x in X is called a periodic point of period n if $f^{n} x=x$. The least positive integer n for which $f^{n} x=x$ is called the prime period of x.

Definition 1.2. The set $\{x \in X: f x=x\}$ is called the fixed point set of the mapping $f: X \rightarrow X$.

[^0]
2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be such that for each x, y in X with $x \neq f x$ or $y \neq f y$ we have
(i) Given $\epsilon>0$ there exists a $\delta(\epsilon)>0$ such that

$$
\epsilon<d(x, y)<\epsilon+\delta \Rightarrow d(f x, f y) \leq \epsilon
$$

(ii) $d(f x, f y)<d(x, y)$.

Then f has a fixed point. Further, f has a unique fixed point if and only if condition (ii) is satisfied for each $x \neq y$ in X.

Proof. From (ii) it follows that $d(f x, f y) \leq d(x, y)$ for each x, y in X. Therefore, f is a nonexpansive mapping and, hence, continuous. Also, for any n points $x_{1}, x_{2}, \ldots, x_{n}$ we get

$$
\begin{align*}
& d\left(f x_{1}, f x_{2}\right)+d\left(f x_{2}, f x_{3}\right)+\ldots+d\left(f x_{n-1}, f x_{n}\right) \\
& \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right) \tag{1}
\end{align*}
$$

and $\quad d\left(f x_{1}, f x_{2}\right)+\ldots+d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right)$

$$
\begin{equation*}
\leq d\left(x_{1}, x_{2}\right)+\ldots+d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{1}\right) \tag{2}
\end{equation*}
$$

Let x_{0} be any point in X and $\left\{x_{n}\right\}$ be the sequence defined by $x_{n}=f x_{n-1}$, that is, $x_{n}=f^{n} x_{0}$. If $x_{n}=x_{n+1}$ for some n, then x_{n} is a fixed point of f and the theorem holds. Therefore, assume that $x_{n} \neq x_{n+1}$ for each $n \geq 0$. Then using (ii), for each $n \geq 1$ and $p \geq 1$ we have

$$
d\left(x_{n}, x_{n+p}\right)=d\left(f x_{n-1}, f x_{n+p-1}\right)<d\left(x_{n-1}, x_{n+p-1}\right)
$$

This implies that $\left\{d\left(x_{n}, x_{n+p}\right)\right\}$ is a strictly decreasing sequence and, hence, tends to a limit $r \geq 0$. If $r>0$, then there exists a natural number N such that

$$
\begin{equation*}
n \geq N \Rightarrow r<d\left(x_{n}, x_{n+p}\right)<r+\delta(r) \tag{3}
\end{equation*}
$$

By virtue of (i) this implies that $d\left(f x_{n}, f x_{n+p}\right) \leq r$, that is, $d\left(x_{n+1}, x_{n+p+1}\right) \leq r$, which contradicts (3). Hence, $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ and $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists a point z in X such that $\lim _{n \rightarrow \infty} x_{n}=z$ and $\lim _{n \rightarrow \infty} f^{k} x_{n}=z$ for each integer $k \geq 1$. Continuity of f yields $\lim _{n \rightarrow \infty} f x_{n}=f z$. This implies $z=f z$ and z is a fixed point.

Now let y be any point in X. Then, since $f^{n} x_{0}=x_{n}$ is not a fixed point, using (ii) we get

$$
d\left(f^{n} y, f^{n} x_{0}\right)<d\left(f^{n-1} y, f^{n-1} x_{0}\right)
$$

This shows that $\left\{d\left(f^{n} y, f^{n} x_{0}\right)\right\}$ is a strictly decreasing sequence that will tend to a limit $t \geq 0$. If $t>0$, then there exists a natural number N such that

$$
\begin{equation*}
n \geq N \Rightarrow t<d\left(f^{n} y, f^{n} x_{0}\right)<t+\delta(t) \tag{4}
\end{equation*}
$$

Using (i), we get $d\left(f f^{n} y, f f^{n} x_{0}\right)=d\left(f^{n+1} y, f^{n+1} x_{0}\right) \leq t$. This contradicts (4). Hence $\lim _{n \rightarrow \infty} d\left(f^{n} y, f^{n} x_{0}\right)=0$, that is, $\lim _{n \rightarrow \infty} f^{n} y=z$. Thus, if there exists a point x_{0} such that $f^{n+1} x_{0} \neq f^{n} x_{0}$ for each n, then for each y in X the sequence of iterates $\left\{f^{n} y\right\}$ converges to z and z will be the unique fixed point. Thus $f^{n+1} x_{0} \neq f^{n} x_{0}, n \geq 0$, for some x_{0} implies uniqueness of the fixed point. Now, if condition (ii) is satisfied for all x, y in X then f can have only one fixed point. Conversely, suppose that f has a unique fixed point. Then for distinct x, y we have $x \neq f x$ or $y \neq f y$ which implies that condition (ii) holds. This proves the theorem.

Example 2.2. Let $X=[1, \infty)$ and d be the Euclidean metric. Let $f: X \rightarrow X$ be the signum function $f x=\operatorname{sgn} x$ defined as

$$
f x=-1 \text { if } x<0, f 0=0, f x=1 \text { if } x>0 .
$$

Then $f x=1$ for each x and f is a contraction mapping. f satisfies condition (ii) for all x, y in X, satisfies (i) with $\delta(\epsilon)=\epsilon$ and has a unique fixed point $x=1$. If $x \neq 1$ then $f x=f^{2} x$ and x is an eventually fixed point.

Example 2.3. Let $X=(-\infty,-1] \cup[1, \infty)$ and d be the Euclidean metric on X. Let $f: X \rightarrow X$ be the signum function $f x=\operatorname{sgn} x$ defined as in Example 2.2.

Then f satisfies the conditions of Theorem 2.1 and has two fixed points -1 and 1 . The mapping f satisfies condition (i) with $\delta(\epsilon)=2-\epsilon$ if $\epsilon<2$ and $\delta(\epsilon)=\epsilon$ if $\epsilon \geq 2$.

Example 2.4. Consider the region of the complex plane defined by $z=r e^{i \theta}=|z| e^{i \theta}, r \geq 1$, where r, θ and $|z|$ have their usual meaning. Let X be the set of points of intersection of this region with the three rays beginning at the origin and respectively making angles $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ measured counter clockwise with the positive real axis. Let d be usual metric on X. Define $f: X \rightarrow X$ by

$$
f z=\frac{z}{|z|}
$$

Then f satisfies condition (i) with $\delta(\epsilon)=\sqrt{3}-\epsilon$ if $\epsilon<\sqrt{3}$ and $\delta(\epsilon)=\epsilon$ if $\epsilon \geq \sqrt{3}$, and f satisfies $d\left(f z_{1}, f z_{2}\right)<d\left(z_{1}, z_{2}\right)$ if $z_{1} \neq f z_{1}$ or $z_{2} \neq f z_{2}$. Hence f satisfies the conditions of Theorem 2.1 and has three fixed points $e^{i 0}, e^{i \frac{2 \pi}{3}}, e^{i \frac{4 \pi}{3}}$.

In this example if we take any four points $z_{1}, z_{2}, z_{3}, z_{4}$ then, in addition to condition (ii), we get inequality (2) for $n=4$ and

$$
\begin{array}{r}
\epsilon<d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)+d\left(z_{3}, z_{4}\right)+d\left(z_{4}, z_{1}\right)<\epsilon+\delta(\epsilon) \\
\Rightarrow d\left(f z_{1}, f z_{2}\right)+d\left(f z_{2}, f z_{3}\right)+d\left(f z_{3}, f z_{4}\right)+d\left(f z_{4}, f z_{1}\right) \leq \epsilon
\end{array}
$$

with $\delta(\epsilon)=3+\sqrt{3}-\epsilon$ if $\epsilon<3+\sqrt{3}$ and $\delta(\epsilon)=\epsilon$ if $\epsilon \geq 3+\sqrt{3}$.
Example 2.5. In analogy with Example 2.4, if we consider the set of points of intersection of the region $z=r e^{i \theta}, r \geq 1$, with four rays beginning at the origin and respectively making angles $0, \frac{\pi}{2}, \pi, 3 \frac{\pi}{2}$ measured counter clockwise with the positive real axis then f satisfies conditions (i) and (ii) and we get four fixed points $e^{i 0}, e^{i \frac{\pi}{2}}, e^{i \pi}, e^{i\left(3 \frac{\pi}{2}\right)}$. If we take any five points $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$ then, analogous to (2), we get the inequalities

$$
\begin{aligned}
& \qquad \begin{array}{l}
d\left(f z_{1}, f z_{2}\right)+d\left(f z_{2}, f z_{3}\right)+d\left(f z_{3}, f z_{4}\right)+d\left(f z_{4}, f z_{5}\right)+d\left(f z_{5}, f z_{1}\right) \\
<d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)+d\left(z_{3}, z_{4}\right)+d\left(z_{4}, z_{5}\right)+d\left(z_{5}, z_{1}\right)
\end{array} \\
& \text { and } \quad \epsilon<d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)+d\left(z_{3}, z_{4}\right)+d\left(z_{4}, z_{5}\right)+d\left(z_{5}, z_{1}\right)<\epsilon+\delta(\epsilon) \\
& \quad \Longrightarrow d\left(f z_{1}, f z_{2}\right)+d\left(f z_{2}, f z_{3}\right)+d\left(f z_{3}, f z_{4}\right)+d\left(f z_{4}, f z_{5}\right)+d\left(f z_{5}, f z_{1}\right) \leq \epsilon .
\end{aligned}
$$

In a similar manner, if we take the intersection of the region $z=r e^{i \theta}, r \geq 1$, with two rays beginning at the origin and making angles $0, \pi$ respectively with the positive real axis then we get Example 2.3 given above. Likewise, if we take intersection of the region $z=r e^{i \theta}, r \geq 1$, with the positive real axis then we get Example 2.2 above.

Example 2.6. If we consider the set of points of intersection of the region $z=r e^{i \theta}, r \geq 1$, with N rays beginning at the origin and respectively making angles $0, \frac{2 \pi}{N}, 2\left(\frac{2 \pi}{N}\right), 3\left(\frac{2 \pi}{N}\right), \ldots,(N-1)\left(\frac{2 \pi}{N}\right)$ measured counter clockwise with the positive real axis, then for the function $f z=\frac{z}{|z|}$ we will get N fixed points $e^{i 0}, e^{i \frac{i \pi}{N}}, e^{i 2\left(\frac{2 \pi}{N}\right)}, e^{i 3\left(\frac{2 \pi}{N}\right)}, \ldots, e^{i(N-1)\left(\frac{2 \pi}{N}\right)}$. Also, for any $(N+1)$ points we will get inequalities analogous to (2).

Example 2.7. Let us consider a family of concentric circles $z=r e^{i \theta}=|z| e^{i \theta}, r=4^{n}, n=0,1,2, \ldots$, in the complex plane, where r, θ and $|z|$ have their usual meaning. Let X be the set of points of intersection of these circles with the three rays beginning at the origin and respectively making angles $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ measured counter clockwise with the positive real axis. Let d be usual metric on X. Define $f: X \rightarrow X$ by $f z=\frac{z}{|z|}$.

Then f has three fixed points $e^{i 0}, e^{i \frac{2 \pi}{3}}, e^{i \frac{4 \pi}{3}}$ and every other point in X is an eventually fixed point since $f^{2} z=f z$ for such points. f satisfies condition (i) with $\delta(\epsilon)=\sqrt{3}-\epsilon$ if $\epsilon<\sqrt{3}$ and $\delta(\epsilon)=\epsilon$ if $\epsilon \geq \sqrt{3}$. If $z_{1} \neq f z_{1}$ or $z_{2} \neq f z_{2}$ then we have $d\left(f z_{1}, f z_{2}\right) \leq\left(\frac{2}{3}\right) d\left(z_{1}, z_{2}\right)$ and condition (ii) is satisfied. For any four points $z_{1}, z_{2}, z_{3}, z_{4}$ we shall get $d\left(f z_{1}, f z_{2}\right)+d\left(f z_{2}, f z_{3}\right)+d\left(f z_{3}, f z_{4}\right)+d\left(f z_{4}, f z_{1}\right) \leq \frac{2}{3}\left[d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)+d\left(z_{3}, z_{4}\right)+d\left(z_{4}, z_{1}\right)\right]$.

Example 2.8. Let $X=\left\{4^{n} e^{i \theta}: 0 \leq \theta \leq 2 \pi, n=0,1,2, \ldots\right\}$ be the self-similar family of concentric circles, each lying within larger circles having radii in a geometric progression, in the $X Y$-plane and let d be the usual metric on X. Define $f: X \rightarrow X$ by $f z=\frac{z}{|z|}$.

Then each point on the unit circle $z=e^{i \theta}$ is a fixed point while every other point is an eventually fixed point. In this example, the unit circle is a fixed circle. Fixed circles are presently an active area of study (see [7, 9, 17]). If $x \neq f x$ or $y \neq f y$ then $d(f x, f y) \leq \frac{2}{3} d(x, y)$ and, therefore, conditions (i) and (ii) hold.

Example 2.9. Let (X, d) be a metric space and f be the identity mapping on X, that is, $f x=x$ for each x in X. Then f satisfies conditions (i) and (ii) of Theorem 2.1 and each point is a fixed point.

Remark 2.10. If a selfmapping f of a complete metric space (X, d) satisfies the condition (a) of the Meir-Keeler theorem then f has a unique fixed point and consequently satisfies the conditions of Theorem 2.1 also. Hence Theorem 2.1 contains the Meir-Keeler theorem as a particular case. This further implies that Theorem 2.1 contains the Banach contraction theorem since the Meir-Keeler theorem contains the Banach contraction theorem.
Remark 2.11. In Example 2.6 the fixed point set consists of N fixed points $e^{i 0}, e^{i \frac{2 \pi}{N}}, e^{i 2\left(\frac{2 \pi}{N}\right)}, e^{i 3\left(\frac{2 \pi}{N}\right)}, \ldots, e^{i(N-1)\left(\frac{2 \pi}{N}\right)}$. Some interesting features of this set are:
A. These fixed points are the $N^{\text {th }}$ roots of unity, lie on the unit circle, form a cyclic group under multiplication,
B. These points are the vertices of a regular polygon of N sides.
C. If $N=2^{n}-1$ then the fixed point set is identical with the periodic points of period n for the doubling map which is important in dynamics of complex functions (see [5], [6]).

Similarly, the fixed points in Examples 2.4 and 2.5 respectively represent the cube roots and $4^{t h}$ roots of unity and the set of fixed points in Example 2.4 is identical with the set of periodic points of period 2 for the doubling map.
Remark 2.12. The domain of a mapping satisfying Theorem 2.1 may possess interesting geometric features. For example, the domain of the mapping in Example 2.8 is a self-similar family of circles.

3. Applications

We now give an application of condition (ii) in determining the cardinality of the fixed point set of a mapping for which Theorem 2.1 holds.

Suppose (X, d) is a complete metric space and Theorem 2.1 holds for $f: X \rightarrow X$. Then f has one or more fixed points. We have seen in Theorem 2.1 that if condition (ii) is satisfied for all $x, y, x \neq y$, in X then f has a unique fixed point. If $u \neq v$ are fixed points of f then we obviously get $d(f u, f v)=d(u, v)$.

Suppose each set of $n+1$ points $y_{1}, y_{2}, \ldots, y_{n+1}$ in X satisfies

$$
\begin{aligned}
& d\left(f y_{1}, f y_{2}\right)+d\left(f y_{2}, f y_{3}\right)+\ldots+d\left(f y_{n}, f y_{n+1}\right)+d\left(f y_{n+1}, f y_{1}\right) \\
& <d\left(y_{1}, y_{2}\right)+d\left(y_{2}, y_{3}\right)+\ldots+d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{1}\right) .
\end{aligned}
$$

Then, the number of fixed points of f cannot exceed n. For, if f has $n+1$ fixed points, say $z_{1}, z_{2}, \ldots, z_{n+1}$, then we get

$$
\begin{aligned}
& d\left(f z_{1}, f z_{2}\right)+d\left(f z_{2}, f z_{3}\right)+\ldots+d\left(f z_{n}, f z_{n+1}\right)+d\left(f z_{n+1}, f z_{1}\right) \\
& =d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)+\ldots+d\left(z_{n}, z_{n+1}\right)+d\left(z_{n+1}, z_{1}\right)
\end{aligned}
$$

which contradicts our assumption.
Now, suppose there exists a set of n points $x_{1}, x_{2}, \ldots, x_{n}$ in X such that f does not satisfy

$$
\begin{aligned}
& d\left(f x_{1}, f x_{2}\right)+d\left(f x_{2}, f x_{3}\right)+\ldots+d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right) \\
& <d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{1}\right) .
\end{aligned}
$$

This condition implies that each of $x_{1}, x_{2}, \ldots, x_{n}$ is a fixed point of f. To see this, suppose $x_{1}, x_{2}, \ldots, x_{n-1}$ are fixed points of but not x_{n}. Then

$$
\begin{aligned}
& d\left(f x_{1}, f x_{2}\right)+d\left(f x_{2}, f x_{3}\right)+\ldots+d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right) \\
& =d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-2}, x_{n-1}\right)+d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right)
\end{aligned}
$$

Using (ii) we get $d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right)<d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{1}\right)$ which implies

$$
\begin{aligned}
& d\left(f x_{1}, f x_{2}\right)+d\left(f x_{2}, f x_{3}\right)+\ldots+d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right) \\
& <d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{1}\right)
\end{aligned}
$$

This contradicts our assumption. Hence each of $x_{1}, x_{2}, \ldots, x_{n}$ is a fixed point of f. This can be summarised as:

Theorem 3.1. The cardinality of the set of fixed point of a selfmapping f satisfying the conditions of Theorem 2.1 equals n if and only if for each set of $n+1$ points $y_{1}, y_{2}, \ldots, y_{n+1}$ we have

$$
\begin{align*}
& d\left(f y_{1}, f y_{2}\right)+d\left(f y_{2}, f y_{3}\right)+\ldots+d\left(f y_{n}, f y_{n+1}\right)+d\left(f y_{n+1}, f y_{1}\right) \\
& \quad<d\left(y_{1}, y_{2}\right)+d\left(y_{2}, y_{3}\right)+\ldots+d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{1}\right) \tag{6}
\end{align*}
$$

while there exists a set of n points $x_{1}, x_{2}, \ldots, x_{n}$ in X that does not satisfy

$$
\begin{array}{r}
d\left(f x_{1}, f x_{2}\right)+d\left(f x_{2}, f x_{3}\right)+\ldots+d\left(f x_{n-1}, f x_{n}\right)+d\left(f x_{n}, f x_{1}\right) \\
<d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{1}\right) \tag{7}
\end{array}
$$

Remark 3.2. The proof of Theorem 2.1 shows that if for some x in X we have $f^{n} x \neq f^{n+1} x$ for each $n \geq 0$ then f has a unique fixed point. This implies that if f has more than one fixed point then the orbit $\left\{f^{n} x: n=0,1, \ldots\right\}$ of each x in X is a finite set, that is, starting the iteration with any initial point we reach the fixed point in a finite number of steps. This simplifies the search for fixed points. If f has a finite number of fixed points then inequalities (6) and (7) will help in finding cardinality of the fixed point set.

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3(1922), 133-181.
[2] R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445-2(2017), 1239-1242.
[3] R. K. Bisht and V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point. Fixed Point Theory, 19(1) (2018), 57-64.
[4] U. Celik and N. Ozgur, A new solution to the discontinuity problem on metric spaces, Turkish J. Math. 44 (4) (2020), 1115-1126.
[5] R. L. Devaney, An introduction to chaotic dynamical systems, Benjamin/Cummings Publishing Co., California, 1986.
[6] R. A. Holmgren, A first course in discrete dynamical systems, Springer-Verlag, New York, 1994.
[7] A. Hussain, H. Al-Sulami, N. Hussain, and H. Farooq, Newly fixed disc results using advanced contractions on F-metric space. Journal of Applied Analysis and Computation, 10 (6) (2020), 2313-2322.
[8] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969), 326-329.
[9] N. Y. Ozgur and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42 (4) (2019), 1433-1449.
[10] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., 240(1999) 284-289.
[11] A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31:11(2017), 3501-3506.
[12] R. P. Pant, Noncompatible mappings and common fixed points, Soochow J. Math. 26(1) (2000), 29-35.
[13] R. P. Pant, N. Y. Özgür and N. Tas, Discontinuity at fixed points with applications, Bull. Belgian Math. Soc. - Simon Stevin 26-4 (2019), 571-589.
[14] R. P. Pant, N. Y. Özgür and N. Tas, On Discontinuity Problem at Fixed Point, Bull. Malays. Math. Sci. Soc 43 (2020), 499-517.
[15] B. E. Rhoades, Contractive definitions and continuity, Contemporary Mathematics (Amer. Math. Soc.) 72(1988), 233-245.
[16] N. Tas and N. Y. Ozgur, A new contribution to discontinuity at fixed point, Fixed Point Theory 20(2)(2019), 715-728.
[17] N. Tas, N. Y, Ozgur and N. Mlaiki, New types of F_{c}-contractions and the fixed circle Problem, Mathematics 6(2018), 188.
[18] D. Zheng and P. Wang, Weak $\theta-\varphi$-contractions and discontinuity, J. Nonlinear Sci. Appl., 10 (2017), 2318-2323.

[^0]: 2020 Mathematics Subject Classification. Primary 47H10, Secondary 54H25.
 Keywords. Contraction mappings, non-expansive mappings, fixed points, eventual fixed points, cardinality.
 Received: 24 June 2023; Accepted: 17 October 2023
 Communicated by Vladimir Rakočević
 Email address: pant_rp@rediffmail.com (R. P. Pant)

