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Fixed points of (ϵ − δ) nonexpansive mappings

R. P. Panta

aDalhousie Villa Compound, Ayarpata, Mallital, Nainital (India)

Abstract. We obtain fixed point theorems for nonexpansive mappings by employing a new (ϵ, δ) condition.
Our results contain the well-known fixed point theorems due to Meir and Keeler, and Banach as particular
cases. The fixed-point sets and domains of the mappings satisfying our theorems have interesting algebraic,
geometric and dynamical features. Various examples substantiate our results.

1. Introduction

Meir and Keeler [8] proved that a selfmapping f of a complete metric space (X, d) has a unique fixed
point if it satisfies:

(a) given ϵ > 0 there exists a δ(ϵ) > 0 such that

ϵ ≤ d(x, y) < ϵ + δ⇒ d( f x, f y) < ϵ.

In 1999 Pant [10] employed the condition:

(b) given ϵ > 0 there exists a δ(ϵ) > 0 such that

ϵ < max{d(x, f x), d(y, f y)} < ϵ + δ⇒ d( f x, f y) ≤ ϵ

to resolve the Rhoades’ problem [15] on the existence of contractive mappings having discontinuity at the
fixed point. Later, Pant and Pant [11] showed that condition (b) applies to nonexpansive mappings as well
(see Theorem 2.9 [11]) and named such mappings as (ϵ − δ) nonexpansive mappings. Condition (b) or its
variants have been employed by researchers to find new solutions of Rhoades’ problem, e. g., Bisht and
Pant [2], Bisht and Rakocevic [3], Celik and Ozgur [4], Pant [12], Pant et al [13, 14], Tas and Ozgur [16],
Zheng and Wang [18]. In the present paper, we replace condition (b) by a new (ϵ− δ) condition that applies
to contractive as well as nonexpansive mappings. Our result generalizes the fixed point results due to Meir
and Keeler [8] and Banach [1].

Definition 1.1 ([5, 6]). If f is a self-mapping of a set X then a point x in X is called an eventually fixed point of f if
there exists a natural number N such that f n+1(x) = f n(x) for n ≥ N. If f x = x then x is called a fixed point of f . A
point x in X is called a periodic point of period n if f nx = x. The least positive integer n for which f nx = x is called
the prime period of x.

Definition 1.2. The set {x ∈ X : f x = x} is called the fixed point set of the mapping f : X→ X.
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2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space and f : X → X be such that for each x, y in X with x , f x or
y , f y we have

(i) Given ϵ > 0 there exists a δ(ϵ) > 0 such that

ϵ < d(x, y) < ϵ + δ⇒ d( f x, f y) ≤ ϵ,

(ii) d( f x, f y) < d(x, y).

Then f has a fixed point. Further, f has a unique fixed point if and only if condition (ii) is satisfied for each x , y in
X.

Proof. From (ii) it follows that d( f x, f y) ≤ d(x, y) for each x, y in X. Therefore, f is a nonexpansive mapping
and, hence, continuous. Also, for any n points x1, x2, . . . , xn we get

d( f x1, f x2) + d( f x2, f x3) + . . . + d( f xn−1, f xn)
≤ d(x1, x2) + d(x2, x3) + . . . + d(xn−1, xn), (1)

and d( f x1, f x2) + . . . + d( f xn−1, f xn) + d( f xn, f x1)
≤ d(x1, x2) + . . . + d(xn−1, xn) + d(xn, x1). (2)

Let x0 be any point in X and {xn} be the sequence defined by xn = f xn−1, that is, xn = f nx0. If xn = xn+1 for
some n, then xn is a fixed point of f and the theorem holds. Therefore, assume that xn , xn+1 for each n ≥ 0.
Then using (ii), for each n ≥ 1 and p ≥ 1 we have

d(xn, xn+p) = d( f xn−1, f xn+p−1) < d(xn−1, xn+p−1).

This implies that {d(xn, xn+p)} is a strictly decreasing sequence and, hence, tends to a limit r ≥ 0. If r > 0,
then there exists a natural number N such that

n ≥ N⇒ r < d(xn, xn+p) < r + δ(r). (3)

By virtue of (i) this implies that d( f xn, f xn+p) ≤ r, that is, d(xn+1, xn+p+1) ≤ r, which contradicts (3). Hence,
limn→∞ d(xn, xn+p) = 0 and {xn} is a Cauchy sequence. Since X is complete, there exists a point z in X such
that limn→∞ xn = z and limn→∞ f kxn = z for each integer k ≥ 1. Continuity of f yields limn→∞ f xn = f z. This
implies z = f z and z is a fixed point.

Now let y be any point in X. Then, since f nx0 = xn is not a fixed point, using (ii) we get

d( f ny, f nx0) < d( f n−1y, f n−1x0).

This shows that {d( f ny, f nx0)} is a strictly decreasing sequence that will tend to a limit t ≥ 0. If t > 0, then
there exists a natural number N such that

n ≥ N⇒ t < d( f ny, f nx0) < t + δ(t). (4)

Using (i), we get d( f f ny, f f nx0) = d( f n+1y, f n+1x0) ≤ t. This contradicts (4). Hence limn→∞ d( f ny, f nx0) = 0,
that is, limn→∞ f ny = z. Thus, if there exists a point x0 such that f n+1x0 , f nx0 for each n, then for each y in X
the sequence of iterates { f ny} converges to z and z will be the unique fixed point. Thus f n+1x0 , f nx0,n ≥ 0,
for some x0 implies uniqueness of the fixed point. Now, if condition (ii) is satisfied for all x, y in X then f
can have only one fixed point. Conversely, suppose that f has a unique fixed point. Then for distinct x, y
we have x , f x or y , f y which implies that condition (ii) holds. This proves the theorem.



R. P. Pant / Filomat 38:9 (2024), 2995–3000 2997

Example 2.2. Let X = [1,∞) and d be the Euclidean metric. Let f : X → X be the signum function f x = s1n x
defined as

f x = −1 if x < 0, f 0 = 0, f x = 1 if x > 0.

Then f x = 1 for each x and f is a contraction mapping. f satisfies condition (ii) for all x, y in X, satisfies (i) with
δ(ϵ) = ϵ and has a unique fixed point x = 1. If x , 1 then f x = f 2x and x is an eventually fixed point.

Example 2.3. Let X = (−∞,−1]∪ [1,∞) and d be the Euclidean metric on X. Let f : X→ X be the signum function
f x = s1n x defined as in Example 2.2.

Then f satisfies the conditions of Theorem 2.1 and has two fixed points−1 and 1. The mapping f satisfies condition
(i) with δ(ϵ) = 2 − ϵ if ϵ < 2 and δ(ϵ) = ϵ if ϵ ≥ 2.

Example 2.4. Consider the region of the complex plane defined by z = reiθ = |z|eiθ, r ≥ 1, where r, θ and |z| have
their usual meaning. Let X be the set of points of intersection of this region with the three rays beginning at the origin
and respectively making angles 0, 2π

3 ,
4π
3 measured counter clockwise with the positive real axis. Let d be usual metric

on X. Define f : X→ X by

f z =
z
|z|
.

Then f satisfies condition (i) with δ(ϵ) =
√

3−ϵ if ϵ <
√

3 and δ(ϵ) = ϵ if ϵ ≥
√

3, and f satisfies d( f z1, f z2) < d(z1, z2)
if z1 , f z1 or z2 , f z2. Hence f satisfies the conditions of Theorem 2.1 and has three fixed points ei0, ei 2π

3 , ei 4π
3 .

In this example if we take any four points z1, z2, z3, z4 then, in addition to condition (ii), we get inequality
(2) for n = 4 and

ϵ < d(z1, z2) + d(z2, z3) + d(z3, z4) + d(z4, z1) < ϵ + δ(ϵ)
⇒ d( f z1, f z2) + d( f z2, f z3) + d( f z3, f z4) + d( f z4, f z1) ≤ ϵ,

with δ(ϵ) = 3 +
√

3 − ϵ if ϵ < 3 +
√

3 and δ(ϵ) = ϵ if ϵ ≥ 3 +
√

3.

Example 2.5. In analogy with Example 2.4, if we consider the set of points of intersection of the region z = reiθ, r ≥ 1,
with four rays beginning at the origin and respectively making angles 0, π2 , π, 3

π
2 measured counter clockwise with

the positive real axis then f satisfies conditions (i) and (ii) and we get four fixed points ei0, ei π2 , eiπ, ei(3 π2 ). If we take
any five points z1, z2, z3, z4, z5 then, analogous to (2), we get the inequalities

d( f z1, f z2) + d( f z2, f z3) + d( f z3, f z4) + d( f z4, f z5) + d( f z5, f z1)
< d(z1, z2) + d(z2, z3) + d(z3, z4) + d(z4, z5) + d(z5, z1), (5)

and ϵ < d(z1, z2) + d(z2, z3) + d(z3, z4) + d(z4, z5) + d(z5, z1) < ϵ + δ(ϵ)
=⇒ d( f z1, f z2) + d( f z2, f z3) + d( f z3, f z4) + d( f z4, f z5) + d( f z5, f z1) ≤ ϵ.

In a similar manner, if we take the intersection of the region z = reiθ, r ≥ 1, with two rays beginning at the origin and
making angles 0, π respectively with the positive real axis then we get Example 2.3 given above. Likewise, if we take
intersection of the region z = reiθ, r ≥ 1, with the positive real axis then we get Example 2.2 above.

Example 2.6. If we consider the set of points of intersection of the region z = reiθ, r ≥ 1, with N rays beginning at
the origin and respectively making angles 0, 2π

N , 2( 2π
N ), 3( 2π

N ), . . . , (N − 1)( 2π
N ) measured counter clockwise with the

positive real axis, then for the function f z = z
|z| we will get N fixed points ei0, ei 2π

N , ei2( 2π
N ), ei3( 2π

N ), . . . , ei(N−1)( 2π
N ). Also,

for any (N + 1) points we will get inequalities analogous to (2).
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Example 2.7. Let us consider a family of concentric circles z = reiθ = |z|eiθ, r = 4n,n = 0, 1, 2, . . . , in the complex
plane, where r, θ and |z| have their usual meaning. Let X be the set of points of intersection of these circles with
the three rays beginning at the origin and respectively making angles 0, 2π

3 ,
4π
3 measured counter clockwise with the

positive real axis. Let d be usual metric on X. Define f : X→ X by f z = z
|z| .

Then f has three fixed points ei0, ei 2π
3 , ei 4π

3 and every other point in X is an eventually fixed point since f 2z = f z
for such points. f satisfies condition (i) with δ(ϵ) =

√
3− ϵ if ϵ <

√
3 and δ(ϵ) = ϵ if ϵ ≥

√
3. If z1 , f z1 or z2 , f z2

then we have d( f z1, f z2) ≤ ( 2
3 )d(z1, z2) and condition (ii) is satisfied. For any four points z1, z2, z3, z4 we shall get

d( f z1, f z2) + d( f z2, f z3) + d( f z3, f z4) + d( f z4, f z1) ≤ 2
3 [d(z1, z2) + d(z2, z3) + d(z3, z4) + d(z4, z1)].

Example 2.8. Let X = {4neiθ : 0 ≤ θ ≤ 2π,n = 0, 1, 2, . . .} be the self-similar family of concentric circles, each lying
within larger circles having radii in a geometric progression, in the XY-plane and let d be the usual metric on X.
Define f : X→ X by f z = z

|z| .

Then each point on the unit circle z = eiθ is a fixed point while every other point is an eventually fixed point. In
this example, the unit circle is a fixed circle. Fixed circles are presently an active area of study (see [7, 9, 17]). If
x , f x or y , f y then d( f x, f y) ≤ 2

3 d(x, y) and, therefore, conditions (i) and (ii) hold.

Example 2.9. Let (X, d) be a metric space and f be the identity mapping on X, that is, f x = x for each x in X. Then
f satisfies conditions (i) and (ii) of Theorem 2.1 and each point is a fixed point.

Remark 2.10. If a selfmapping f of a complete metric space (X, d) satisfies the condition (a) of the Meir-Keeler
theorem then f has a unique fixed point and consequently satisfies the conditions of Theorem 2.1 also. Hence Theorem
2.1 contains the Meir-Keeler theorem as a particular case. This further implies that Theorem 2.1 contains the Banach
contraction theorem since the Meir-Keeler theorem contains the Banach contraction theorem.

Remark 2.11. In Example 2.6 the fixed point set consists of N fixed points ei0, ei 2π
N , ei2( 2π

N ), ei3( 2π
N ), . . . , ei(N−1)( 2π

N ). Some
interesting features of this set are:

A. These fixed points are the Nth roots of unity, lie on the unit circle, form a cyclic group under multiplication,
B. These points are the vertices of a regular polygon of N sides.
C. If N = 2n

− 1 then the fixed point set is identical with the periodic points of period n for the doubling map which
is important in dynamics of complex functions (see [5], [6]).

Similarly, the fixed points in Examples 2.4 and 2.5 respectively represent the cube roots and 4th roots of
unity and the set of fixed points in Example 2.4 is identical with the set of periodic points of period 2 for
the doubling map.

Remark 2.12. The domain of a mapping satisfying Theorem 2.1 may possess interesting geometric features. For
example, the domain of the mapping in Example 2.8 is a self-similar family of circles.

3. Applications

We now give an application of condition (ii) in determining the cardinality of the fixed point set of a
mapping for which Theorem 2.1 holds.

Suppose (X, d) is a complete metric space and Theorem 2.1 holds for f : X→ X. Then f has one or more
fixed points. We have seen in Theorem 2.1 that if condition (ii) is satisfied for all x, y, x , y, in X then f has
a unique fixed point. If u , v are fixed points of f then we obviously get d( f u, f v) = d(u, v).

Suppose each set of n + 1 points y1, y2, . . . , yn+1 in X satisfies

d( f y1, f y2) + d( f y2, f y3) + . . . + d( f yn, f yn+1) + d( f yn+1, f y1)
< d(y1, y2) + d(y2, y3) + . . . + d(yn, yn+1) + d(yn+1, y1).
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Then, the number of fixed points of f cannot exceed n. For, if f has n + 1 fixed points, say z1, z2, . . . , zn+1,
then we get

d( f z1, f z2) + d( f z2, f z3) + . . . + d( f zn, f zn+1) + d( f zn+1, f z1)
= d(z1, z2) + d(z2, z3) + . . . + d(zn, zn+1) + d(zn+1, z1),

which contradicts our assumption.

Now, suppose there exists a set of n points x1, x2, . . . , xn in X such that f does not satisfy

d( f x1, f x2) + d( f x2, f x3) + . . . + d( f xn−1, f xn) + d( f xn, f x1)
< d(x1, x2) + d(x2, x3) + . . . + d(xn−1, xn) + d(xn, x1).

This condition implies that each of x1, x2, . . . , xn is a fixed point of f . To see this, suppose x1, x2, . . . , xn−1 are
fixed points of but not xn. Then

d( f x1, f x2) + d( f x2, f x3) + . . . + d( f xn−1, f xn) + d( f xn, f x1)
= d(x1, x2) + d(x2, x3) + . . . + d(xn−2, xn−1) + d( f xn−1, f xn) + d( f xn, f x1)

Using (ii) we get d( f xn−1, f xn) + d( f xn, f x1) < d(xn−1, xn) + d(xn, x1) which implies

d( f x1, f x2) + d( f x2, f x3) + . . . + d( f xn−1, f xn) + d( f xn, f x1)
< d(x1, x2) + d(x2, x3) + . . . + d(xn−1, xn) + d(xn, x1).

This contradicts our assumption. Hence each of x1, x2, . . . , xn is a fixed point of f . This can be summarised
as:

Theorem 3.1. The cardinality of the set of fixed point of a selfmapping f satisfying the conditions of Theorem 2.1
equals n if and only if for each set of n + 1 points y1, y2, . . . , yn+1 we have

d( f y1, f y2) + d( f y2, f y3) + . . . + d( f yn, f yn+1) + d( f yn+1, f y1)
< d(y1, y2) + d(y2, y3) + . . . + d(yn, yn+1) + d(yn+1, y1), (6)

while there exists a set of n points x1, x2, . . . , xn in X that does not satisfy

d( f x1, f x2) + d( f x2, f x3) + . . . + d( f xn−1, f xn) + d( f xn, f x1)
< d(x1, x2) + d(x2, x3) + . . . + d(xn−1, xn) + d(xn, x1). (7)

Remark 3.2. The proof of Theorem 2.1 shows that if for some x in X we have f nx , f n+1x for each n ≥ 0 then f has
a unique fixed point. This implies that if f has more than one fixed point then the orbit { f nx : n = 0, 1, . . .} of each x
in X is a finite set, that is, starting the iteration with any initial point we reach the fixed point in a finite number of
steps. This simplifies the search for fixed points. If f has a finite number of fixed points then inequalities (6) and (7)
will help in finding cardinality of the fixed point set.
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[13] R. P. Pant, N. Y. Özgür and N. Tas, Discontinuity at fixed points with applications, Bull. Belgian Math. Soc. - Simon Stevin 26 - 4

(2019), 571-589.
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