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Abstract. In this paper, the problem of locating the left eigenvalues of the quaternion matrices and their
connection with the zeros of the quaternion polynomials with quaternion coefficients is considered by
using various matrix tools. As an application of which, various famous results for locating the zeros of
regular polynomials of a quaternionic variable with quaternionic coefficients are obtained, which include
the extension of Cauchy’s theorem, Parodi’s theorem as well.

1. Introduction and statement of results

In an effort to expand complex numbers to greater spatial dimensions, the Irish mathematician Sir
William Rowan Hamilton (1805-1865) invented quaternions in 1843. Hamilton became obsessed on quater-
nions and their uses [4] after inventing them, and he did so for the remainder of his life. However, he
probably never imagined that his invention, quaternions, would one day be used to programme video
games and steer spacecraft [9]. Quaternions are now widely employed in computer science in addition
to being a part of modern mathematics, they are also extensively employed in control theory, physics,
mechanics, altitude control, signal processing, and computer graphics (mainly for representing rotations
and orientations of objects in three-dimensional space). Quaternions, for instance, are used to control the
altitude of spacecraft (See [6] and also references therein). There has been a lot of activity in recent years in
the study of the quaternion-related mathematical objects; each year, several research articles are published
in a wide range of publications, and various methodologies are used for various objectives.
Quaternion Number: A quaternion is a number of the form q = α + βi + γ j + δk, α, β, γ, δ ∈ R and i, j, k
satisfy i2 = j2 = k2 = i jk = −1, i j = − ji = k, jk = −kj = i, ki = −ik = j. The non commutative division ring of
quaternions is denoted byH. Every element q = α+ βi+ γ j+ δk ∈H, is composed by the real partℜ(q) = α
and the imaginary partℑ(q) = βi+γ j+δk. The conjugate of q, denoted by q̄ is a quaternion q̄ = α−βi−γ j−δk
and the norm of q is |q| =

√
qq̄ =

√
α2 + β2 + γ2 + δ2. The inverse of each non zero element q ofH is given

by q−1 = |q|−2q̄.
The study’s main challenge is the non commutative multiplication of quaternions, however in this article,
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we were able to prove various results concerned with (finite) quaternionic matrices, which in turn yield
various results concerning the location of zeros of quaternion polynomials.
Quaternionic Polynomials: Unlike the real or complex case, there are several possible ways to define
quaternionic polynomials depending on the position of coefficients a0, a1, a2, ..., an ∈Hwith respect to the in-
determinate q ∈H.The quaternion polynomial of degree n is the expression f (q) = qnan+qn−1an−1+...+qa1+a0
or P(q) = anqn + an−1qn−1 + ... + a1q + a0, an , 0 in the quaternion indeterminate q. This polynomial is called
monic quaternion polynomial of degree n if an = 1.
Quaternion companion matrix: The n×n companion matrix of a monic quaternion polynomial of the form
f (q) = qn + qn−1an−1 + ... + qa1 + a0, is given by

C f =


0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
. . . ... . .
0 0 0 ... 1 −an−1


Whereas, the n × n companion matrix for a monic quaternion polynomial of the form P(q) = qn + an−1qn−1 +
... + a1q + a0, is given by

CP =


0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . .
0 0 0 ... 0 1
−a0 −a1 −a2 ... −an−2 −an−1


For an n × n matrix A = (aµν) of quaternions, the non commutativity of quaternions result in two different
types of eigenvalues (For reference see [5]).
Right eigenvalue: Given an n × n matrix A = (aµν) of quaternions, λ ∈ H is called the right eigenvalue of
A, if Ax = xλ for some non-zero eigenvector x = [x1, x2, ..., xn]T of quaternions.
Left eigenvalue: Given an n × n matrix A = (aµν) of quaternions, λ ∈H is called the left eigenvalue of A, if
Ax = λx for some non-zero eigenvector x = [x1, x2, ..., xn]T of quaternions.
For complex case, concerning the location of the eigenvalues, the famous Geršgorin theorem can be stated
as;

Theorem 1.1. All the eigenvalues of a n × n complex matrix A = (aµν) are contained in the union of n Geršgorin
discs defined by Dµ = {z ∈ C : |z − aµµ| ≤

∑n
ν=1
ν,µ
|aµν|}.

The quaternion version of Geršgorin theorem for left eigenvalues is mentioned (without proof) in [12],
however here we present this theorem along with the proof, more precisely we prove:

Theorem 1.2. All the left eigenvalues of a n × n matrix A = (aµν) of quaternions lie in the union of the n Geršgorin
balls defined by Bµ = {q ∈H : |q − aµµ| ≤ ρµ(A)} where ρµ(A) =

∑n
ν=1
ν,µ
|aµν|.

Next, we prove the following result which gives the connection between the left eigenvalues of a companion
matrix and the zeros of associated quaternion polynomial.

Theorem 1.3. Let P(q) = qn + an−1qn−1 + ...+ a1q+ a0 be a quaternion polynomial with quaternionic coefficients and
q be quaternionic variable, then for any diagonal matrix D = dia1(d1, d2, ..., dn−1, dn), where d1, d2, ..., dn are positive
real numbers, the left eigenvalues of D−1CPD and the zeros of P(q) are same.

Note that Theorem 1.3 remains valid if we replace P(q) by f (q).

Remark 1.4. If we take d1 = d2 = d3 = ... = dn = 1, then Theorem 1.3 reduces to the following result.

Corollary 1.5. If λ is the left eigenvalue of the companion matrix CP associated with the quaternionic polynomial
P(q), then λ is a zero of P(q).
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In the complex case, the matrix A and its transpose AT have same eigenvalues, so one may use the Geršgorin
discs of both A and AT, whichever give the better estimates to locate the regions containing the eigenvalues of
A. However, in case of quaternionic matrices, a matrix and its transpose may have different left eigenvalues
as shown by following simple example

A =
[
1 i
j k

]
On the other hand, very little is known about left eigenvalues of quaternionic matrices. Wood [11] proved
that every quaternionic matrix has at least one left eigenvalue. Huang and So [5] completely solved the case
of 2 × 2 matrices. The case n = 3 was studied by So [10]. Finally, Zhang [12] and Farid, Wang and Zhang
[3] gave several Geršgorin type theorems for quaternionic matrices. Now in view of Corollary 1.5, the left
eigenvalues of C f and the zeros of polynomial f (q) are same, the left eigenvalues of CP and the zeros of
polynomial P(q) are also same, we may therefore use Theorem 1.2 and Theorem 1.3 as a tool in determining
the zeros of a given polynomial and vice-versa.
Virtually every discipline of mathematics, from Applied Analysis, Fourier Analysis, and Computer Sciences
to Algebraic Number Theory and Algebraic Geometry, possesses its own theory that has been derived from
the study of polynomials. Polynomials flourish and much that is beautiful in mathematics is related to
polynomials. For a polynomial of degree n with complex coefficients, the exact computation of zeros can
be made when n varies from 1 to 4, but there are no general methods to compute the zeros of polynomials
of degree n > 4 and for this reason, the estimation of regions containing the zeros of polynomials become
an interesting area of research. In 1829, concerning the location of zeros of a polynomial with complex
coefficients, A. L Cauchy [1] gave a very simple expression of the region containing all the zeros in terms of
the coefficients of a polynomial. In fact he proved the following theorem.

Theorem 1.6. If P(z) = zn + zn−1cn−1 + zn−2cn−2 + ... + zc1 + c0 is a complex polynomial, then all the zeroes of P(z)
lie inside the disc |z| < 1 + max

0≤ν≤n−1
|cν|.

In view of the applications of the zeros of quaternionic polynomials, various authors have shown their
interest in this field and were successful in extending various results concerning the location of the zeros
of complex polynomials to the quaternion settings. Recently, Carney et al. [2] extended Eneström-Kakeya
theorem to quaternion settings by proving following result.

Theorem 1.7. If p(q) = qnan+qn−1an−1+qn−2an−2+ ...+qa1+a0 is a polynomial of degree n (where q is a quaternionic
variable) with real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an, then all the zeros of p lie in |q| ≤ 1.

In the same paper, they generalized of Theorem 1.7 to the polynomials whose coefficients are monotonic
but not necessarily non-negative by establishing the following result.

Theorem 1.8. If p(q) = qnan+qn−1an−1+qn−2an−2+ ...+qa1+a0 is a polynomial of degree n (where q is a quaternionic
variable) with real coefficients satisfying a0 ≤ a1 ≤ ... ≤ an, then all the zeros of p lie in |q| ≤ an+|a0 |−a0

|an |
.

Milovanović et al. [7] generalized Theorem 1.7 and Theorem 1.8 by proving the following result.

Theorem 1.9. If p(q) = qnan+qn−1an−1+qn−2an−2+ ...+qa1+a0 is a polynomial of degree n (where q is a quaternionic
variable) with real coefficients satisfying a0 ≤ a1 ≤ ... ≤ aλ−1 ≤ aλ ≥ ... ≥ an−1 ≥ an, where 0 ≤ λ ≤ n, then all the
zeros of p lie in |q| ≤ 2aλ−an+|a0 |−a0

|an |
.

Because of the restriction on the coefficients that they should be real and monotonic, the results discussed
above are applicable to a small class of polynomials, so its interesting to look for the results without any
restriction on the coefficients and applicable to every quaternionic polynomial with quaternion/complex
or real coefficients. In this direction, here we present some results concerning the location of the zeros of
quaterionic polynomials with quaternionic coefficients by using various quaternion matrix tools including
Theorem 1.2 and Theorem 1.3. We begin by proving the following result, which is an extension of Theorem
1.6 to quaternion settings, more precisely we prove:
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Theorem 1.10. If f (q) = qn + qn−1an−1 + qn−2an−2 + ... + qa1 + a0 is a quaternion polynomial with quaternion
coefficients and q is quaternionic variable, then all the zeroes of f (q) lie inside the ball |q| < 1 + max

0≤ν≤n−1
|aν|.

As a generalization of Theorem 1.10, we prove the following result;

Theorem 1.11. Let f (q) = qn + qn−1an−1 + qn−2an−2 + ... + qa1 + a0 be a quaternion polynomial with quaternion
coefficients and q be quaternionic variable, then all the zeroes of f (q) lie in the union of balls

{q ∈H : |q| ≤ r
(
1 +
|aν|
rn−ν

)
, ν = 0, 1, 2, ...,n − 2} and {q ∈H : |q + an−1| ≤ r}

where r is a positive real number.

Since |q| = |q + an−1 − an−1| ≤ r + |an−1| = r
(
1 + |an−1 |

r

)
, the above theorem reduces to the following result.

Corollary 1.12. Let f (q) = qn + qn−1an−1 + qn−2an−2 + ... + qa1 + a0 be a quaternion polynomial with quaternion
coefficients and q be quaternionic variable, then all the zeroes of f (q) lie in the union of balls

{q ∈H : |q| ≤ r
(
1 +
|aν|
rn−ν

)
, ν = 0, 1, 2, ...,n − 1}

where r is a positive real number.

Remark 1.13. For r = 1 Corollary 1.12 reduces to Theorem 1.10.

Next we prove the following result which is an extension of a theorem due to M. Parodi [8] to quaternion
settings, more precisely we prove.

Theorem 1.14. If P(q) = qn + an−1qn−1 + ...+ a1q+ a0 is a quaternion polynomial with quaternion coefficients and q
is quaternionic variable, then all the zeros of P(q) lie in the unions of the balls

{q ∈H : |q| ≤ 1} and {q ∈H : |q + an−1| ≤

n−2∑
ν=0

|aν|}.

Lastly, we prove the following theorem.

Theorem 1.15. If P(q) = qn + an−1qn−1 + ...+ a1q+ a0 is a quaternion polynomial with quaternion coefficients and q
is quaternionic variable, then all the zeros of P(q) lie in the ball

{q ∈H : |q| ≤
n∑
ν=1

|an−ν|
1/ν
}.

2. Computations and Analysis

In this section, we present some examples for which existing Eneström-Kakeya type results are appli-
cable to show that the obtained results give better information about the location of the zeros than existing
results present in the literature. It is worth mentioning that all existing Eneström-Kakeya type results are ap-
plicable to a small class of polynomials with real coefficients satisfying monotonicity condition, whereas the
results proved in this paper are applicable to every polynomial with quaternion/complex or real coefficients.

Example 1:
Let p(q) = q4

−
q3

4 −
q2

4 −
q
4 −

1
4 . It is easy to see that Theorem 1.7 is not applicable and on using Theorem 1.8 or

Theorem 1.9 (with λ = n = 4), it follows that all the zeros of p(q) lie in the ball |q| ≤ 1.5.Whereas, if we use
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Theorem 1.10, it follows that all the zeros of p(q) lie in the ball |q| < 1.25. Thus, Theorem 1.10 gives better
bound with a significant improvement.

Example 2:
Let p(q) = q3 +

q2

2 +
q
2 −

1
2 . Again it is easy to see that Theorem 1.7 is not applicable and on using Theorem

1.8 or Theorem 1.9 (with λ = n = 3), it follows that all the zeros of p(q) lie in the ball |q| ≤ 2.Whereas, if we
use Theorem 1.10, it follows that all the zeros of p(q) lie in the ball |q| < 1.5. Thus, Theorem 1.10 gives better
bound with a significant improvement.

Example 3:
Let p(q) = q3 +

q2

3 +
q
4 −

1
2 . Again it is easy to see that Theorem 1.7 is not applicable and on using Theorem

1.8 or Theorem 1.9 (with λ = n = 3), it follows that all the zeros of p(q) lie in the ball |q| ≤ 2.Whereas, if we
use Theorem 1.10, it follows that all the zeros of p(q) lie in the ball |q| < 1.5. Thus, Theorem 1.10 gives better
bound with a significant improvement.

3. Lemma

For the proof of Theorem 1.15, we need the following Lemma.

Lemma 3.1. Let P(q) = qn + an−1qn−1 + ... + a1q + a0 be a quaternion polynomial with quaternion coefficients and q
be a quaternionic variable, then for any positive real number r, all the zeros of P(q) lie in the ball{

q ∈H : |q| ≤ max
{
r,

n−1∑
ν=0

|aν|
rn−ν−1

}}
.

Proof. [Proof of Lemma 3.1] Let CP be the companion matrix of the polynomial P(q) and for any positive
real number r define a diagonal matrix T = dia1(1/rn−1, 1/rn−2, ..., 1/r, 1). Then

T−1CPT =



rn−1 0 ... 0 0
0 rn−2 ... 0 0
0 0 ... 0 0
. . ... . .
0 0 ... r 0
0 0 ... 0 1





0 1 0 ... 0 0
0 0 1 ... 0 0
0 0 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... 0 1
−a0 −a1 −a2 ... −an−2 −an−1





1/rn−1 0 ... 0 0
0 1/rn−2 ... 0 0
0 0 ... 0 0
. . ... . .
0 0 ... 1/r 0
0 0 ... 0 1



=



0 r 0 ... 0 0
0 0 r ... 0 0
0 0 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... 0 r
−

a0
rn−1 −

a1
rn−2 −

a2
rn−3 ... − an−2

r −an−1


Applying Theorem 1.2 to the matrix T−1CPT, it follows that all the left eigenvalues of the matrix T−1CpT lie
in the union of balls

|q| ≤ r

and

|q + an−1| ≤

n−2∑
ν=0

|aν|
rn−ν−1 .
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Since |q| = |q+ an−1 − an−1| ≤
n−2∑
ν=0

|aν |
rn−ν−1 + |an−1| =

n−1∑
ν=0

|aν |
rn−ν−1 , implies, all the left eigenvalues of the matrix T−1CPT

lie in the union of balls

|q| ≤ r

and

|q + an−1| ≤

n−1∑
ν=0

|aν|
rn−ν−1 .

That is, all the left eigenvalues of the matrix T−1CPT lie in the ball{
q ∈H : |q| ≤ max

{
r,

n−1∑
ν=0

|aν|
rn−ν−1

}}
. (1)

Since T is a diagonal matrix with real positive entries, by Theorem 1.3, it follows that the left eigenvalues
of T−1CPT are the zeros of P(q). Hence, all the zeros of P(q) lie in the balls given by (1).
That completes the proof.

4. Proof of the Main Theorems

Proof. [Proof of Theorem 1.2] Let A = (aµν) be n × n matrix of quaternions and λ be left eigenvalue of A
corresponding to the non-zero eigenvector x = [x1, x2, ..., xn]T. Further let xm be such that |xm| ≥ |xν| for all ν,
then |xm| > 0.
Equating mth row of Ax = λx,we obtain

n∑
ν=1

amνxν = λxm,

that is,

n∑
ν=1
ν,m

amνxν = (λ − amm)xm,

which with the help of triangle inequality yields,

|λ − amm||xm| =

∣∣∣∣∣ n∑
ν=1
ν,m

amνxν

∣∣∣∣∣
≤

n∑
ν=1
ν,m

|amν||xν|.

Since |xm| , 0, implies

|λ − amm| ≤

n∑
ν=1
ν,m

|amν| = ρm(A).

Hence, the left eigenvalue λ of A lies in the Geršgorin ball |q − amm| ≤ ρm(A). Since λwas chosen arbitrarily,
it follows that all the left eigenvalues lie in the union of the Geršgorin balls Bµ = {q ∈H : |q − aµµ| ≤ ρµ(A)}.
where ρµ(A) =

∑n
ν=1
ν,µ
|aµν|.
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Proof. [Proof of Theorem 1.3] Let CP be the companion matrix of the polynomial P(q) and D = dia1(d1, d2, ..., dn)
be a diagonal matrix, where d1, d2, ..., dn are positive real numbers. Then

D−1CPD =



0 d2/d1 0 ... 0 0
0 0 d3/d2 ... 0 0
0 0 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... 0 dn/dn−1

−
a0d1
dn

−
a1d2
dn

−
a2d3
dn

... − an−2dn−1
dn

−an−1


Now if λ is left eigenvalue of D−1CPD corresponding to the non-zero eigenvector v = [v1, v2, ..., vn]T, then
by definition of left eigenvalues (D−1CPD)v = λv, implies

0 d2/d1 0 ... 0 0
0 0 d3/d2 ... 0 0
0 0 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... 0 dn/dn−1

−
a0d1
dn

−
a1d2
dn

−
a2d3
dn

... − an−2dn−1
dn

−an−1





v1
v2
v3
...
...

vn−1
vn


= λ



v1
v2
v3
...
...

vn−1
vn


,

which on simplification yields the following system of linear equations

d2

d1
v2 = λv1

d3

d2
v3 = λv2

.

.

dn

dn−1
vn = λvn−1

−
a0d1v1

dn
−

a1d2v2

dn
−

a2d3v3

dn
− ... −

an−2dn−1vn−1

dn
− an−1vn = λvn. (2)

The first n − 1 equations on consecutive substitution yield divi = λi−1d1v1, i = 2, 3, ...,n. In view of this,
equation (2) reduces to

−a0d1v1 − a1λd1v1 − a2λ
2d1v1 − ... − an−2λ

n−2d1v1 − an−1λ
n−1d1v1 = λ

nv1d1,

that is,

(−a0 − a1λ − a2λ
2
− ... − an−2λ

n−2
− an−1λ

n−1)v1 = λ
nv1

v being a non zero vector implies that v1 , 0, hence from above equation, we conclude

λn + an−1λ
n−1 + an−2λ

n−2 + ... + a2λ
2 + a1λ + a0 = 0.

This shows that λ is a zero of P(q). Since λ was chosen arbitrarily, it follows that the left eigenvalues of
D−1CPD are the zeros of P(q).
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Proof. [Proof of Theorem 1.10] By definition the companion matrix C f of f (q) = qn + qn−1an−1 + ... + qa1 + a0
is given by

C f =


0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
. . . ... . .
0 0 0 ... 1 −an−1


where a0, a1, ..., an−1 are quaternion coefficients. On applying Theorem 1.2 to C f , it follows that all the left
eigenvalues of C f lie in the union of the balls;

|q| ≤ |a0| < 1 + |a0|,

|q| ≤ 1 + |a1|,

. . . .

. . . .

|q| ≤ 1 + |an−2|

and

|q + an−1| ≤ 1.

Since |q| = |q + an−1 − an−1| ≤ 1 + |an−1|, it follows from above n inequalities that all the left eigenvalues of C f
lie in the ball |q| < 1 + max

0≤ν≤n−1
|aν|. Since the left eigenvalues of C f are the zeros of f (q), it follows that all the

zeros of f (q) lie in the ball |q| < 1 + max
0≤ν≤n−1

|aν|.

Proof. [Proof of Theorem 1.11] Let C f be the companion matrix of the polynomial f (q) and for any positive
real number r define a diagonal matrix T = dia1(rn−1, rn−2, ..., r, 1). Then

T−1C f T =



0 0 0 ... 0 −a0
rn−1

r 0 0 ... 0 −a1
rn−2

0 r 0 ... 0 −a2
rn−3

. . . ... . .
0 0 0 ... 0 −an−2

r
0 0 0 ... r −an−1


Applying Theorem 1.2 to the matrix T−1C f T, it follows all the left eigenvalues of the matrix T−1C f T lie in
the union of the balls;

|q| ≤
|a0|

rn−1 < r
(
1 +
|a0|

rn

)
,

|q| ≤ r
(
1 +
|a1|

rn−1

)
,

. . . .

. . . .

|q| ≤ r
(
1 +
|an−2|

r2

)

and

|q + an−1| ≤ r.
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That is, all the left eigenvalues of the matrix T−1C f T lie in the union of the balls

{q ∈H : |q| ≤ r
(
1 +
|aν|
rn−ν

)
, ν = 0, 1, 2, ...,n − 2} and {q ∈H : |q + an−1| ≤ r} (3)

Since T is a diagonal matrix with real positive entries, by Theorem 1.3, it follows that the left eigenvalues
of T−1C f T are the zeros of f (q). Hence, all the zeros of f (q) lie in the union of the balls given by (3).

Proof. [Proof of Theorem 1.14] By definition the companion matrix CP of P(q) = qn + an−1qn−1 + ... + a1q + a0
is given by

CP =


0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . .
0 0 0 ... 0 1
−a0 −a1 −a2 ... −an−2 −an−1


where a0, a1, ..., an−1 are quaternion coefficients. On applying Theorem 1.2 to CP, it follows that all the left

eigenvalues of CP lie in the union of the balls |q| ≤ 1 and |q + an−1| ≤
n−2∑
ν=0
|aν|. Since the left eigenvalues of CP

are the zeros of P(q), it follows that all the zeros of P(q) lie in the union of the balls

{q ∈H : |q| ≤ 1} and {q ∈H : |q + an−1| ≤

n−2∑
ν=0

|aν|}.

Proof. [Proof of Theorem 1.15] By Lemma 3.1, for any positive real number r, all the zeros of P(q) lie in the
ball {

q ∈H : |q| ≤ max
{
r,

n−1∑
ν=0

|aν|
rn−ν−1

}}
.

Replacing ν by n − ν, it follows that all the zeros of P(q) lie in the ball{
q ∈H : |q| ≤ max

{
r,

n∑
ν=1

|an−ν|

rν−1

}}
. (4)

Let r = max
1≤ν≤n

|an−ν|
1/ν, then r ≥ |an−ν|

1/ν and hence |an−ν|
ν−1
ν ≤ rν−1, ν = 1, 2, ...,n, so that

|an−ν|

rν−1 ≤ |an−ν|
1/ν, 1 ≤ ν ≤ n.

Therefore from (4), it follows that all the zeros of P(q) lie in the ball

{q ∈H : |q| ≤
n∑
ν=1

|an−ν|
1/ν
}.
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[12] F. Zhang, Geršgorin type theorems for quaternionic matrices, Linear Algebra and its Applications, 424 (2007), 139-153.


