Hankel determinant and related problems for q-analogue of convex functions

Majid Khan ${ }^{\text {a }}$, Nazar Khan ${ }^{\text {a }}$, Qin Xin ${ }^{\text {b }}$, Fairouz Tchier ${ }^{\text {c }}$, Sarfraz Nawaz Malik ${ }^{\text {d }}$, Qazi Zahoor Ahmade, ${ }^{\text {e, }}$
${ }^{a}$ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
${ }^{b}$ Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands, Denmark
${ }^{c}$ Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia ${ }^{d}$ Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
${ }^{e}$ Higher Education Department, Govt. ANK(S) Degree College KTS, Haripur 22585, Pakistan

Abstract

In this article, by using the idea of q-analogue of the hyperbolic tangent functions we define a new class of q-convex functions. This study's main contribution is the development of sharp coefficient bounds in open unit disc, particularly the first five bounds, the Fekete-Szegö type functional, and the upper bounds of the third-order Hankel determinant. We also consider the Zalcman and generalized Zalcman conjectures for our newly defined class.

1. Introduction and Preliminaries

Let ξ represents an analytic function in the open unit disc $U=\{\tau: \tau \in \mathbb{C}$ and $|\tau|<1\}$ is affirmatively true under the conditions $\xi(0)=0$ and $\xi^{\prime}(0)=1$, as well as for all similar types of functions occurring in class \mathcal{A} and every $\xi \in \mathcal{A}$ has the following series of the form:

$$
\begin{equation*}
\xi(\tau)=\tau+\sum_{n=2}^{\infty} a_{n} \tau^{n} \tag{1}
\end{equation*}
$$

The analytic function ξ is called univalent in U, if there exists one to one correspondance between U and its image under ξ. The set of all such normalized univalent functions is denoted by \mathcal{S}. An analytic function w along with the conditions $w(0)=0$,and $|w(\tau)|<1$, is called Schwarz function. Let us suppose that two functions ξ and ξ_{1} are analytic in U and ξ is subordinate to ξ_{1} (denoted by $\xi<\xi_{1}$), if there exists a Schwarz function w such that

$$
\begin{equation*}
\xi(\tau)=\xi_{1}(w(\tau)) \tag{2}
\end{equation*}
$$

[^0]In particular if ξ_{1} is univalent in U then $\xi<\xi_{1}$ if and only if $\xi(0)=\xi_{1}(0)$, and $\xi(U) \subset \xi_{1}(U)$.
Those functions that satisfy the requirements $p(0)=1$ and $\mathfrak{R}(p(\tau))>0$, are called Caratheodory functions and are represented by the class \mathcal{P}. For every $p \in \mathcal{P}$, there is a series expansion of the form:

$$
\begin{equation*}
p(\tau)=1+\sum_{n=1}^{\infty} b_{n} \tau^{n} \tag{3}
\end{equation*}
$$

In 1992, Ma and Minda [11] made an interesting contribution and defined a general form of the family of univalent functions as follows:

$$
\begin{equation*}
\mathcal{S}^{*}(\varphi)=\left\{\xi \in \mathcal{A}: \frac{\tau \xi^{\prime}(\tau)}{\xi(\tau)} \prec \varphi(\tau)\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\varphi)=\left\{\xi \in \mathcal{A}: \frac{\left(\tau \xi^{\prime}(\tau)\right)^{\prime}}{\xi^{\prime}(\tau)}<\varphi(\tau)\right\} . \tag{5}
\end{equation*}
$$

In recent years, a number of sub-families of the normalized analytic functions have been studied as a special case of $\mathcal{S}^{*}(\varphi)$ and $\mathcal{C}(\varphi)$. For example, Janowski [10] investigated the class of Janowski starlike $\mathcal{S}^{*}(L, M)$ and convex functions $C(L, M)$ for $-1 \leq M<L \leq 1$. Recently, Cho et al. [4] choose $\varphi(\tau)=1+\sin \tau$ and defined a class $\left(\mathcal{S}_{\mathrm{sin}}^{*}\right)$ of starlike functions:

$$
\mathcal{S}_{\mathrm{sin}}^{*}=\left\{\xi \in \mathcal{A}: \frac{\tau \xi^{\prime}(\tau)}{\xi(\tau)}<1+\sin \tau\right\} .
$$

Mendiratta et al. [14] studied the function class $\mathcal{S}_{e}^{*} \equiv \mathcal{S}^{*}\left(e^{\tau}\right)$ of strongly starlike functions using the technique of subordination. Recently, Bano and Raza [3] chose $\varphi(\tau)=\cos \tau$.

The Hankel determinant is a similar coefficient problem to Fekete and Szegö. In the study of singularities and power series with integral coefficients, Hankel determinants are highly helpful.

For $\xi \in \mathcal{A}, n, j \in \mathbb{N}$, and $a_{1}=1$ the $j^{\text {th }}$ Hankel determinant $\mathcal{H}_{j, n}(\xi)$ is defined by

$$
\mathcal{H}_{j, n}(\xi)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+j-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+j} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+j-1} & a_{n+j-2} & \ldots & a_{n+2 j-2}
\end{array}\right| .
$$

In 1966, Pommerenke [15] investigated the Hankel determinants for univalent starlike functions. Babalola [2] examined the third Hankel determinant for particular kinds of univalent functions in 2010. The authors in [21] investigated the second Hankel determinant for bi-univalent functions associated with nephroid domain. Using the Gegenbauer polynomials Srivastava et al. [22] find the Fekete Szegö functional for analytic functions satisfying a certain subordination condition. Recently Srivastava et al. [23] computed the best possible upper and the best possible lower estimates for the Hermitian-Toeplitz of the third order for a class of starlike functions associated with cardioid shape region in the right half plane. In [24] authors investigated third Hankel determinant involving Hohlov operator. The estimates of the fourth Hankel determinant for a class of analytic functions involving cardioid domain was investigated in [25]. In 2022 Shi et al. [19] investigated Hankel determinant for inverse functions subordinated to the exponential functions.

Jackson $[8,9]$ used the concept of fundamental q-calculus and defined the q-analogues of derivatives, and further this operator was utilized by Ismail et al. [7] to define a q-analogue of starlike functions. Historically, however, Srivastava initially provided a systematic usage of the q-calculus in the context of Geometric Function Theory and also used the basic (or $q-$) hypergeometric functions in a book chapter (see
[20, pp. 347 et seq.]). Several new subclasses of starlike and convex functions, as well as sharp bounds for second and third-order Hankel determinants, have been investigated recently by researchers using the operator D_{q}. Srivastava et al. for example, [26] determine the Hankel determinant for bi-univalent functions by using symmetric q-derivative operator. In [27], the authors achieved the same work for close-to-convex functions and different mathematicians applied the q-derivative operator and investigated some interesting properties for different classes of analytic functions (see, for example [13, 17, 33]) Concurrently, Srivastava et al. [29] explored Hankel and Toeplitz determinants connected to the generalized conic domain and identified a new subclass of q-starlike functions. Authors in [28] investigated Fekete Szegö inequalities for starlike functions by using symmetrical points in 2020. An upper bound of the third Hankel determinant by using k-Fibonacci numbers for a subclass of q-starlike functions is considered in [18]. In 2021, Srivastava et al. [30] generalized the class of q-starlike functions associated with exponential functions and determined the third order Hankel determinant. In this article, we tackle the sharp third order Hankel determinant and related problems for a subclass of q-convex functions. Now we discuss some basic definitions related to q-calculus.
Definition 1.1. ([8]). The q-derivative operator or (q-difference operator) for $\xi \in \mathcal{A}$ is defined by

$$
\begin{align*}
D_{q} \xi(\tau) & =\frac{\xi(\tau)-\xi(q \tau)}{(1-q) \tau}, \quad \tau \neq 0, q \neq 1 \tag{6}\\
& =1+\sum_{n=2}^{\infty}[n]_{q} a_{n} \tau^{n-1}
\end{align*}
$$

where,

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=\sum_{v=0}^{n-1} q^{v}
$$

Inspired fundamentally by the aforementioned works (see, [17, 26, 29]) on coefficient estimate problems, we establish a new class $C_{\tanh }(q)$ of q-convex functions connected to the q-analogue of the hyperbolic tangent function using the idea of subordination.

Definition 1.2. A function $\xi \in \mathcal{S}$ belonging to the class $C_{\tanh }(q)$, if it satisfies the following subordination condition

$$
\begin{equation*}
\frac{D_{q}\left(\tau D_{q} \xi(\tau)\right)}{D_{q} \xi(\tau)}<1+\tanh (q \tau), \tau \in U . \tag{7}
\end{equation*}
$$

The image of the function $1+\tanh (q \tau)$ under U is symmetric about real axis. It turns from circular disk to oval shaped and then to eight-shaped region as the parameter $q \rightarrow 1-$, as shown in the Figure 1 .
Remark 1.3. When $q \rightarrow 1-$, then $C_{\tanh }(q)=C_{\text {tanh }}$.

2. A Set of Lemmas

Following lemmas will be used to investigate the sharp coefficient problems for the class $C_{\tanh }(q)$.
Lemma 2.1. ([6]). Let the function $p(\tau)$ of the form (3), then

$$
\begin{equation*}
\left|b_{n}\right| \leq 2, n \in \mathbb{N} \tag{8}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left|b_{n}-\mu b_{i} b_{n-i}\right| \leq 2, n>i, \mu \in[0,1] . \tag{9}
\end{equation*}
$$

The equality holds for

$$
\xi(\tau)=\frac{(1+\tau)}{(1-\tau)}
$$

Figure 1: The images of $1+\tanh (q U)$ for different values of q.

Lemma 2.2. ([1]). Let the function $p \in \mathcal{P}$, be given by (3), then

$$
\left|b_{3}-2 Q b_{1} b_{2}+W b_{1}^{3}\right| \leq 2
$$

if

$$
0 \leq Q \leq 1, \text { and } Q(2 Q-1) \leq W \leq Q .
$$

Lemma 2.3. ([6]). Let an analytic function $p(\tau)$ of the form (3), then

$$
2 b_{2}=b_{1}^{2}+x\left(4-b_{1}^{2}\right)
$$

and

$$
4 b_{3}=b_{1}^{3}+2\left(4-b_{1}^{2}\right) b_{1} x-\left(4-b_{1}^{2}\right) b_{1} x^{2}+2\left(4-b_{1}^{2}\right)\left(1-|x|^{2}\right) \tau
$$

where, $x, \tau \in \mathbb{C}$, with $|\tau| \leq 1$ and $|x| \leq 1$.

Lemma 2.4. ([16]). Consider the function $p \in \mathcal{P}$ of the form (3), $0<Q_{1}<1,0<Q_{2}<1$ and

$$
\begin{align*}
& 8 Q_{1}\left(1-Q_{2}\right)\left\{\left(Q_{2} Q_{3}-2 Q_{4}\right)^{2}+\left(Q_{2}\left(Q_{1}+Q_{2}\right)-Q_{3}\right)^{2}\right\}+Q_{2}\left(1-Q_{2}\right)\left(Q_{3}-2 Q_{1} Q_{2}\right)^{2} \\
\leq & 4 Q_{2}^{2} Q_{1}\left(1-Q_{2}\right)^{2}\left(1-Q_{1}\right) . \tag{10}
\end{align*}
$$

Then

$$
\begin{equation*}
\left|Q_{4} b_{1}^{4}+Q_{1} b_{2}^{2}+2 Q_{2} b_{1} b_{3}-\frac{3}{2} Q_{3} b_{1}^{2} b_{2}-b_{4}\right| \leq 2 . \tag{11}
\end{equation*}
$$

Lemma 2.5. [5]. Let $\bar{E}=\{\tau \in \mathbb{C}: \tau \leq 1\}$, and for real numbers X, Y, Z, let

$$
\Upsilon(X, Y, Z):=\max \left\{\left|X+Y x+Z x^{2}\right|+1-|x|^{2}, \quad x \in \bar{E}\right\}
$$

If $X Z \geq 0$, then

$$
\Upsilon(X, Y, Z)=\left\{\begin{array}{cc}
|X|+|Y|+|Z|, & \text { if }|Y| \geq 2(1-|Z|) \\
1+|X|+\frac{Y^{2}}{4(1-|Z|)}, & \text { if }|Y|<2(1-|Z|) .
\end{array}\right.
$$

3. Main Results

Theorem 3.1. If ξ be an analytic function of the form (1) belongs to $C_{\tanh }(q)$, then

$$
\begin{aligned}
\left|a_{2}\right| & \leq \frac{1}{[2]_{q}} \\
\left|a_{3}\right| & \leq \frac{1}{[3]_{q}[2]_{q}} \\
\left|a_{4}\right| & \leq \frac{1}{[4]_{q}[3]_{q}}, \\
\left|a_{5}\right| & \leq \frac{1}{[5]_{q}[4]_{q}}
\end{aligned}
$$

All bounds of Theorem 3.1 are sharp for the functions given in (21)-(24).
Proof. Let $\xi \in C_{\tanh }(q)$, and satisfies (7), then from (2) we have

$$
\begin{equation*}
\frac{D_{q}\left(\tau D_{q} \xi(\tau)\right)}{D_{q} \xi(\tau)}=1+\tanh (q(w(\tau)) \tag{12}
\end{equation*}
$$

Let

$$
\begin{align*}
w(\tau) & =\frac{p(\tau)-1}{p(\tau)+1} \\
& =\frac{1}{2} b_{1} \tau+\frac{1}{2}\left(b_{2}-\frac{1}{2} b_{1}^{2}\right) \tau^{2}+\frac{1}{2}\left(b_{3}-b_{1} b_{2}+\frac{1}{4} b_{1}^{3}\right) \tau^{3}+\cdots \tag{13}
\end{align*}
$$

In view of (12) and (13), we obtain the following series

$$
\begin{align*}
& 1+\tanh (q(w(\tau))) \\
= & 1+\frac{q}{2} b_{1} \tau+q\left(\frac{1}{2} b_{2}-\frac{1}{4} b_{1}^{2}\right) \tau^{2} \\
& +q\left(\frac{1}{2} b_{3}-\frac{1}{2} b_{1} b_{2}+\frac{\left(3-q^{2}\right)}{24} b_{1}^{3}\right) \tau^{3}+ \\
& +\left(q\left(\frac{1}{2} b_{4}-\frac{1}{2} b_{1} b_{3}-\frac{1}{4} b_{1}^{2}-\frac{1}{16} b_{1}^{4}+\frac{3}{8} b_{1}^{2} b_{2}\right)-\frac{q^{2}}{4}\left(\frac{b_{1}^{2} b_{2}}{2}-\frac{b_{1}^{4}}{4}\right)\right) \tau^{4}+\ldots \tag{14}
\end{align*}
$$

Similarly

$$
\begin{align*}
& \frac{D_{q}\left(\tau D_{q} \xi(\tau)\right)}{D_{q} \xi(\tau)} \\
= & 1+[2]_{q}\left([2]_{q}-1\right) a_{2} \tau+\left\{[3]_{q}\left([3]_{q}-1\right) a_{3}-[2]_{q}^{2}\left([2]_{q}-1\right) a_{2}^{2}\right\} \tau^{2} \\
& +\left\{[4]_{q}\left([4]_{q}-1\right) a_{4}-[3]_{q}[2]_{q}\left\{[2]_{q}+[3]_{q}-2\right\} a_{2} a_{3}+[2]_{q}^{3}\left([2]_{q}-1\right) a_{2}^{3}\right\} \tau^{3} \\
& +\left\{[5]_{q}\left([5]_{q}-1\right) a_{4}-[4]_{q}[2]_{q}\left\{[4]_{q}+[2]_{q}-2\right\} a_{2} a_{4}-[3]_{q}^{2}\left([3]_{q}-1\right) a_{3}^{2}\right. \\
& \left.+[2]_{q}^{2}[3]_{q}\left\{2[2]_{q}+[3]_{q}-3\right\} a_{3} a_{2}^{2}-[2]_{q}^{4}\left([2]_{q}-1\right) a_{2}^{4}\right\} \tau^{4}+\ldots . \tag{15}
\end{align*}
$$

Equating the corresponding coefficients of (14) and (15), we obtain the following series

$$
\begin{align*}
& a_{2}=\frac{b_{1}}{2[2]_{q}}, \tag{16}\\
& a_{3}=\frac{b_{2}}{2[3]_{q}[2]_{q}}, \tag{17}\\
& a_{4}=\frac{1}{2[4]_{q}[3]_{q}}\left\{b_{3}-\frac{q}{2[2]_{q}} b_{1} b_{2}-\frac{q^{2}}{12} b_{1}^{3}\right\}, \tag{18}\\
& a_{5}=\frac{1}{2[5]_{q}[4]_{q}}\left\{\begin{array}{c}
\frac{-q[2]]_{q}}{2[3]]_{q}} b_{1} b_{3}-\frac{q\left(q^{3}-2 q^{2}-q-3\right)}{24[3]_{q}} b_{1}^{4}-\frac{q}{2[2]_{q}} b_{2}^{2} \\
+b_{4}-\frac{\left(q^{2}+1\right)}{4[3]_{q}} b_{1}^{2} b_{2}
\end{array}\right\} . \tag{19}
\end{align*}
$$

Applying the Lemma 2.1 on (16), yields

$$
\left|a_{2}\right| \leq \frac{1}{[2]_{q}}
$$

Applying the Lemma 2.1 on (17), yields

$$
\left|a_{3}\right| \leq \frac{1}{[2]_{q}[3]_{q}}
$$

Now consider (18), as

$$
\left|a_{4}\right|=\frac{q}{2[4]_{q}[3]_{q}}\left|b_{3}-\frac{q}{2[2]_{q}} b_{1} b_{2}-\frac{q^{2}}{12} b_{1}^{3}\right|
$$

Assuming that, $Q_{q}=\frac{q}{4[2]_{q}}$ and $W_{q}=-\frac{q^{2}}{12}$, then

$$
Q_{q}\left(2 Q_{q}-1\right)-W_{q}=\frac{q\left(2 q^{3}+4 q^{2}-q-6\right)}{24[2]_{q}^{2}}<0, \text { for } q \in(0,1)
$$

and

$$
Q_{q}-W_{q}=\frac{q\left(q^{2}+q+3\right)}{12[2]_{q}}>0, \text { for } q \in(0,1)
$$

Clearly, $Q_{q}\left(2 Q_{q}-1\right) \leq W_{q} \leq Q_{q}$, when $q \in(0,1)$, so by the applications of Lemma 2.2, we obtain

$$
\left|a_{4}\right| \leq \frac{1}{[4]_{q}[3]_{q}}
$$

Now from (19), consider

$$
\left|a_{5}\right|=\frac{1}{2[5]_{q}[4]_{q}}\left|Q_{4} b_{1}^{4}+Q_{1} b_{2}^{2}+2 Q_{2} b_{1} b_{3}-\frac{3}{2} Q_{3} b_{1}^{2} b_{2}-b_{4}\right|
$$

where

$$
\begin{aligned}
& Q_{1}=\frac{q}{2[2]_{q}}, \quad Q_{2}=\frac{q(1+q)}{2[3]_{q}} \\
& Q_{3}=\frac{-\left(q^{2}+1\right)}{6[3]_{q}} \\
& Q_{4}=\frac{q\left(q^{3}-2 q^{2}-q-3\right)}{24[3]_{q}}
\end{aligned}
$$

Clearly, $0<Q_{1}<1,0<Q_{2}<1$, for $q \in(0,1)$ and after simple calculation, we have

$$
\begin{aligned}
& 8 Q_{1}\left(1-Q_{2}\right)\left\{\left(Q_{2} Q_{3}-2 Q_{4}\right)^{2}+\left(Q_{2}\left(Q_{1}+Q_{2}\right)-Q_{3}\right)^{2}\right\} \\
& Q_{2}\left(1-Q_{2}\right)\left(Q_{3}-2 Q_{1} Q_{2}\right)^{2}-4 Q_{2}^{2} Q_{1}\left(1-Q_{2}\right)^{2}\left(1-Q_{1}\right) \\
= & \frac{1}{2[5]_{q}[4]_{q}}\left\{\varphi_{1}(q)-\varphi_{2}(q)\right\} \\
= & \Psi\left(q, Q_{1}, Q_{2}, Q_{3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \varphi_{1}(q)=\frac{q}{144[3]_{q}^{4}[2]_{q}^{2}}\left(\begin{array}{c}
100 q^{15}+784 q^{14}+3022 q^{13}+7634 q^{12}+13940 q^{11} \\
+19342 q^{10}+20864 q^{9}+17666 q^{8}+11714 q^{7}+6024 q^{6} \\
+2349 q^{5}+680 q^{4}+156 q^{3}+34 q^{2}+7 q+2
\end{array}\right) \\
& \varphi_{2}(q)=\frac{q(1+q)\left(q^{2}+q+2\right)^{3}}{16[3]_{q}^{5}}>0, \text { for } q \in(0,1) .
\end{aligned}
$$

Clearly $0<Q_{1}<1,0<Q_{2}<1$ and $\varphi_{1}(q) \leq \varphi_{2}(q)$ for $q \in(0,1)$. Therefore we have $\Psi\left(q, Q_{1}, Q_{2}, Q_{3}\right) \leq 0$, when $0<q<1$.
Now by using the Lemma 2.4, we have

$$
\left|a_{5}\right| \leq \frac{1}{[5]_{q}[4]_{q}}
$$

For sharpness, consider the function $\xi_{n}: U \longrightarrow \mathbb{C}$, defined by

$$
\begin{equation*}
\frac{D_{q}\left(\tau D_{q} \xi_{n}(\tau)\right)}{D_{q} \xi_{n}(\tau)}=1+\tanh \left(q \tau^{n}\right), n=2,3,4,5 \tag{20}
\end{equation*}
$$

The results are sharp, as shown by the following functions

$$
\begin{align*}
& \xi_{2}(\tau)=\tau+\frac{q}{[2]_{q}\left([2]_{q}-1\right)} \tau^{2}+\ldots \tag{21}\\
& \xi_{3}(\tau)=\tau+\frac{q}{[3]_{q}\left([3]_{q}-1\right)} \tau^{3}+\ldots \tag{22}\\
& \xi_{4}(\tau)=\tau+\frac{q}{[4]_{q}\left([4]_{q}-1\right)} \tau^{4}+\ldots \tag{23}\\
& \xi_{5}(\tau)=\tau+\frac{q}{[5]_{q}\left([5]_{q}-1\right)} \tau^{5}+\ldots \tag{24}
\end{align*}
$$

Zalcman and Generalized Zalcman Conjecture

In 1960, Zalcman defined the conjecture for univalent functions. He stated that every $\xi \in \mathcal{S}$ of the form (1) satisfies the inequality:

$$
\begin{equation*}
\left|a_{n}^{2}-a_{2 n-1}\right| \leq(n-1)^{2}, \quad n \geq 2 \tag{25}
\end{equation*}
$$

In 1999, Ma [12] proved generalized version of Zalcman conjecture and stated that every univalent function $\xi \in \mathcal{S}$ satisfies the following inequality:

$$
\begin{equation*}
\left|a_{n} a_{i}-a_{n+i-1}\right| \leq(n-1)(i-1), \quad \forall i, n \in \mathbb{N}, n \geq 2, i \geq 2 \tag{26}
\end{equation*}
$$

Furthermore, we have estimated the bounds of the third-order Hankel determinant for the class $C_{\tanh }(q)$ for different values of n and i. For $n=2$, the inequality (25) has the form

$$
\left|a_{2}^{2}-a_{3}\right| \leq 1
$$

Theorem 3.2. If $\xi \in C_{\tanh }(q)$, where ξ is of the form (1), then

$$
\begin{equation*}
\left|a_{2}^{2}-a_{3}\right| \leq \frac{1}{[2]_{q}[3]_{q}} . \tag{27}
\end{equation*}
$$

The inequality (27) is sharp for the function ξ_{3} given in (22).
Proof. From (16) and (17), consider

$$
\left|a_{3}-a_{2}^{2}\right|=\frac{1}{2[3]_{q}[2]_{q}}\left|b_{2}-v b_{1}^{2}\right|
$$

where

$$
v=\frac{1+q+q^{2}}{2[2]_{q}} .
$$

Since, $0<q<1$, therefore $v \in(0,1)$. Now, using the Lemma 9, for $n=2, i=1$, we obtain (27).
For sharpness, consider the function ξ_{3} given in (22) such that

$$
a_{2}=0, \text { and } a_{3}=\frac{q}{[3]_{q}\left([3]_{q}-1\right)}
$$

Take $n=3, i=2$, in the inequality (26), then we have $\left|a_{4}-a_{2} a_{3}\right| \leq 2$. Now we discuss it as follows:
Theorem 3.3. If $\xi \in \mathcal{C}_{\tanh }(q)$, where ξ is the form (1), then

$$
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{1}{[3]_{q}[4]_{q}}, \quad 0<q<1
$$

The inequality is sharp, for the function ξ_{4} defined in (23).
Proof. From (16), (17), and (18), we have

$$
\left|a_{4}-a_{2} a_{3}\right|=\frac{1}{2[4]_{q}[3]_{q}}\left|b_{3}-2 \beta b_{1} b_{2}+\delta b_{1}^{3}\right|
$$

Assuming the values

$$
\begin{aligned}
& \beta=\frac{q^{3}+2 q^{2}+2 q+1}{4[2]_{q}} \\
& \delta=-\frac{q^{2}}{12} .
\end{aligned}
$$

By using these values, we get

$$
\beta(2 \beta-1)-\delta=\frac{\left(5 q^{4}+4 q^{3}-q^{2}-6 q-3\right)}{24[2]_{q}^{2}}<0, \text { when } 0<q<1 \text {, }
$$

and

$$
\beta-\delta=\frac{\left(q^{5}+3 q^{4}+3 q^{3}+4 q^{2}+3 q+3\right)}{12[2]_{q}^{3}}>0, \text { when } 0<q<1,
$$

which shows that

$$
\beta(2 \beta-1)<\delta<\beta .
$$

Thus, using Lemma 2.2, we get

$$
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{1}{[3]_{q}[4]_{q}} .
$$

The equality holds for the extremal function

$$
\xi_{4}(\tau)=\tau+\frac{q}{[4]_{q}\left([4]_{q}-1\right)} \tau^{4}+\ldots
$$

Theorem 3.4. If $\xi \in C_{\tanh }(q)$, where ξ is the form (1), then

$$
\left|a_{3}^{2}-a_{5}\right| \leq \frac{1}{[5]_{q}[4]_{q}}, \quad 0<q<1 .
$$

The inequality is sharp, for the function ξ_{5} given in (24).
Proof. From (17) and (19), consider

$$
\left|a_{3}^{2}-a_{5}\right|=\frac{1}{2[5]_{q}[4]_{q}}\left|Q_{4} b_{1}^{4}+Q_{1} b_{2}^{2}+2 Q_{2} b_{1} b_{3}-\frac{3}{2} Q_{3} b_{1}^{2} b_{2}-b_{4}\right|,
$$

where

$$
\begin{aligned}
& Q_{1}=\frac{q^{6}+2 q^{5}+4 q^{4}+5 q^{3}+2 q^{2}+2 q+1}{2[3]_{q}^{2}[2]_{q}}, \\
& Q_{2}=\frac{q(1+q)}{[3]_{q}}, \quad Q_{3}=\frac{-q\left(q^{2}+1\right)}{6[3]_{q}} . \\
& Q_{4}=\frac{q^{4}-2 q^{3}-q^{2}-3 q}{24[3]_{q}},
\end{aligned}
$$

Hence, $0<Q_{1}<1,0<Q_{2}<1$, for $q \in(0,1)$. Consider

$$
\begin{aligned}
& 8 Q_{1}\left(1-Q_{2}\right)\left\{\left(Q_{2} Q_{3}-2 Q_{4}\right)^{2}+\left(Q_{2}\left(Q_{1}+Q_{2}\right)-Q_{3}\right)^{2}\right\} \\
& +Q_{2}\left(1-Q_{2}\right)\left(Q_{3}-2 Q_{1} Q_{2}\right)^{2}-4 Q_{2}^{2} Q_{1}\left(1-Q_{2}\right)^{2}\left(1-Q_{1}\right) .
\end{aligned}
$$

$$
=\Psi(q),
$$

where

$$
\Psi(q)=\frac{-1}{72[3]_{q}^{10}[2]_{q}^{2}}\left\{\Psi_{1}(q)+\Psi_{2}(q)+\Psi_{3}(q)+\Psi_{4}(q)+\Psi_{5}(q)\right\}
$$

$$
\begin{aligned}
& \Psi_{1}(q)=q^{26}+6 q^{25}+82 q^{24}+598 q^{23}+2860 q^{22}+9322 q^{21}+20852 q^{20}+26330 q^{19}, \\
& \Psi_{2}(q)=-15588 q^{18}-191242 q^{17}-617479 q^{16}-1379276 q^{15}-2436965 q^{14}-3571256 q^{13}, \\
& \Psi_{3}(q)=-4436315 q^{12}-4722224 q^{11}-4327491 q^{10}-3416210 q^{9}-2316068 q^{8}-1339176 q^{7}, \\
& \Psi_{4}(q)=-652417 q^{6}-262586 q^{5}-84549 q^{4}-20610 q^{3}-3415 q^{2}-294 q-1 .
\end{aligned}
$$

This calculation shows that $\Psi(q)<0$, for $q \in(0,1)$. Now by using Lemma 2.4, we obtain

$$
\left|a_{3}^{2}-a_{5}\right| \leq \frac{1}{[5]_{q}[4]_{q}}, \quad 0<q<1
$$

The equality holds for the extremal function

$$
\xi_{5}(\tau)=\tau+\frac{q}{[5]_{q}\left([5]_{q}-1\right)} \tau^{4}+\ldots
$$

Theorem 3.5. If $\xi \in \mathcal{C}_{\tanh }(q)$, where ξ is the form (1), then

$$
\left|a_{2} a_{4}-a_{5}\right| \leq \frac{1}{[5]_{q}[4]_{q}}, \quad 0<q<1
$$

The inequality is sharp, for the function ξ_{5} given in (24).
Proof. From (16)(18) and (19), consider

$$
\left|a_{2} a_{4}-a_{5}\right|=\frac{1}{2[5]_{q}[4]_{q}}\left|Q_{4} b_{1}^{4}+Q_{1} b_{2}^{2}+2 Q_{2} b_{1} b_{3}-\frac{3}{2} Q_{3} b_{1}^{2} b_{2}-b_{4}\right|
$$

where

$$
\begin{aligned}
& Q_{1}=\frac{q}{2[2]_{q}}, Q_{2}=\frac{1+q+q^{2}}{4(q+1)} \\
& Q_{3}=\frac{q^{2}-1}{6(q+1)}, \\
& Q_{4}=\frac{-q\left(q^{3}-q^{2}+2 q+3\right)}{24[2]_{q}}
\end{aligned}
$$

It is clear that, $0<Q_{1}<1,0<Q_{2}<1$, for $q \in(0,1)$. By taking

$$
\begin{aligned}
8 Q_{1}\left(1-Q_{1}\right) & =\frac{2 q(q+2)}{[2]_{q}^{2}}, \\
\left(Q_{2} Q_{3}-2 Q_{4}\right)^{2} & =\frac{q^{2}\left(q^{5}+q^{4}+3 q^{3}+8 q^{2}+10 q+3\right)^{2}}{144[2]_{q}^{6}}, \\
\left(Q_{2}\left(Q_{1}+Q_{2}\right)-Q_{3}\right)^{2} & =\frac{\left(3 q^{4}+4 q^{3}+7 q^{2}+12 q+3\right)^{2}}{2304[2]_{q}^{4}}, \\
Q_{2}\left(1-Q_{2}\right)\left(Q_{3}-2 Q_{1} Q_{2}\right)^{2} & =\frac{-q^{4}\left(6 q^{2}+5 q+6\right)^{2}\left(1+q+q^{2}\right)}{36[2]_{q}^{6}} \\
4 Q_{2}^{2} Q_{1}\left(1-Q_{2}\right)^{2}\left(1-Q_{1}\right) & =\frac{[3]_{q}^{2} q^{5}(q+2)\left(1+q+q^{2}\right)^{2}}{[2]_{q}^{6}} .
\end{aligned}
$$

By simple calculation it is clear that

$$
\begin{aligned}
& 8 Q_{1}\left(1-Q_{2}\right)\left\{\left(Q_{2} Q_{3}-2 Q_{4}\right)^{2}+\left(Q_{2}\left(Q_{1}+Q_{2}\right)-Q_{3}\right)^{2}\right\}+Q_{2}\left(1-Q_{2}\right)\left(Q_{3}-2 Q_{1} Q_{2}\right)^{2} \\
\leq & 4 Q_{2}^{2} Q_{1}\left(1-Q_{2}\right)^{2}\left(1-Q_{1}\right) .
\end{aligned}
$$

Now by using Lemma 2.4, we obtain the required result

$$
\left|a_{2} a_{4}-a_{5}\right| \leq \frac{1}{[5]_{q}[4]_{q}}, \quad 0<q<1
$$

In the following result, the second Hankel determinant $H_{2,2}(\xi)$ will be proved.
Theorem 3.6. If $\xi \in C_{\tanh }(q)$, where ξ is of the form (1), then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{[3]_{q}^{2}[2]_{q}^{2}}
$$

Proof. By using of (16), (17), and (18), to get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{4[4]_{q}[3]_{q}[2]_{q}}\left|-\frac{q^{2}}{12} b_{1}^{4}-\frac{q}{2[2]_{q}} b_{1}^{2} b_{2}+b_{1} b_{3}-\frac{\left(1+q+q^{2}+q^{3}\right)}{[3]_{q}[2]_{q}} b_{2}^{2}\right|
$$

By using the Lemma 2.3, and assume that $b=b_{1},(0 \leq b \leq 2)$, so that

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{16[4]_{q}[3]_{q}[2]_{q}}\left|\begin{array}{c}
\frac{-q^{2}\left(q^{3}+2 q^{2}+5 q+1\right)}{3[3]_{q}[2]_{q}} b^{4}-\frac{q\left(q^{2}-q-1\right)\left(4-b^{2}\right) b^{2} x}{[3]_{q}[2]_{q}} \tag{28}\\
-\frac{\left(b^{2} q+4 q^{2}+4\right)\left(4-b^{2}\right) x^{2}}{[3]_{q}}+2 b\left(4-b^{2}\right)\left(1-|x|^{2}\right) \tau
\end{array}\right|
$$

Using $|\tau| \leq 1$ and $|x| \leq 1$, and applying the triangle inequality and take $b=2$, we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{q^{2}\left(q^{3}+2 q^{2}+5 q+1\right)}{3[4]_{q}[3]_{q}^{2}[2]_{q}^{2}}<\frac{1}{[4]_{q}[3]_{q}[2]_{q}^{2}}
$$

By taking $b=0$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{4\left(4 q^{2}+4 q\right)|x|^{2}}{[3]_{q}} \leq \frac{1}{[4]_{q}[3]_{q}[2]_{q}^{2}}
$$

Suppose that $b \in(0,1)$, then by applying the triangle inequality, to get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{b\left(4-b^{2}\right)}{16[4]_{q}[3]_{q}[2]_{q}} \Psi\left(X_{q}, Y_{q}, Z_{q}\right)
$$

where

$$
\begin{aligned}
& X_{q}=\frac{-q^{2}\left(q^{3}+2 q^{2}+5 q+1\right)}{3[3]_{q}[2]_{q}} \\
& Y_{q}=\frac{-q\left(q^{2}-q-1\right) b}{[3]_{q}[2]_{q}} \\
& Z_{q}=\frac{-\left(b^{2} q+4 q^{2}+4\right)}{[3]_{q} b}
\end{aligned}
$$

Clearly, $X_{q} Z_{q}>0$ for $q \in(0,1)$, next to show is $\left|Y_{q}\right| \geq 2\left(1-\left|Z_{q}\right|\right)$, or $\left|Y_{q}\right|-2\left(1-\left|Z_{q}\right|\right) \geq 0$.
For this consider the function

$$
\phi(b)=b^{2} q^{3}+b^{2} q^{2}-2 b q^{3}+b^{2} q-4 b q^{2}+8 q^{3}-4 b q+8 q^{2}-2 b+8 q+8
$$

From above we see that ϕ^{\prime} is increasing and

$$
\max \phi^{\prime}(b)=\phi^{\prime}(2)=2 q^{3}-2<0, \text { for } q \in(0,1)
$$

Hence ϕ is decreasing function for $b \in(0,2)$ and

$$
\min \phi(b)=\phi(2)=8 q^{3}+4[3]_{q}>0 \text { for } q \in(0,1)
$$

Thus $|B|-2(1-|C|)>0$, and by using the Lemma 2.5 , we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{b\left(4-b^{2}\right)}{16[4]_{q}[3]_{q}[2]_{q}}\left\{\left|X_{q}\right|+\left|Y_{q}\right|+\left|Z_{q}\right|\right\} .
$$

Or

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq \frac{1}{48[4]_{q}[3]_{q}^{2}[2]_{q}^{2}}\left\{\begin{array}{c}
\left(q^{5}+2 q^{4}+8 q^{3}-5 q^{2}-6 q\right) b^{4} \\
\\
\end{array}\right)=g(b)
\end{aligned}
$$

and

$$
g^{\prime}(b)=\frac{1}{48[4]_{q}[3]_{q}^{2}[2]_{q}^{2}}\binom{4\left(q^{5}+2 q^{4}+8 q^{3}-5 q^{2}-6 q\right) b^{3}}{+2\left(-24 q^{3}+12 q^{2}+12 q-12\right) b} .
$$

Clearly, $g^{\prime}(b)<0$ for $q \in(0,1)$, Therefore $g(b)$ is decreasing and hence

$$
g(b)<g(0) .
$$

Thus

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{[3]_{q}^{2}[2]_{q}^{2}}
$$

The result is sharp for the function ξ_{3} given in (20).
Theorem 3.7. If $\xi \in C_{\tanh }(q)$, where ξ is of the form (1), and $0<q<1$, then

$$
\left|H_{3,1}(\xi)\right| \leq \frac{1}{[2]_{q}[3]_{q}[5]_{q}[4]_{q}}+\frac{1}{[3]_{q}^{2}[4]_{q}^{2}}+\frac{1}{[3]_{q}^{3}[2]_{q}^{3}}
$$

Proof. We know that

$$
\left|H_{3,1}(\xi)\right| \leq\left|a_{5}\right|\left|a_{3}-a_{2}^{2}\right|+\left|a_{4}\right|\left|a_{4}-a_{2} a_{3}\right|+\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right| .
$$

Using the Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.6, we have required result when $0<q<1$,

$$
\left|H_{3,1}(\xi)\right| \leq \frac{1}{[2]_{q}[3]_{q}[5]_{q}[4]_{q}}+\frac{1}{[3]_{q}^{2}[4]_{q}^{2}}+\frac{1}{[3]_{q}^{3}[2]_{q}^{3}} .
$$

4. Conclusion

In the current paper, a subclass of q-convex functions connected to q-analogous of tangent hyperbolic functions was taken into consideration. For this class, in Theorem 3.1, first five sharps coefficients bounds are investigated. We used Zalcman and Generalized Zalcman conjecture with Lemma 2.1 and Lemma 2.2 and then investigated Theorem 3.2 and Theorem 3.3. By using the Lemma 2.4, we determined the sharp results in Theorem 3.4 and Theorem 3.5. In Theorem 3.6, the second Hankel determinant $H_{2,2}(\xi)$ is proved and in Theorem 3.7, third-order Hankel determinant bounds are established. All of the estimates which we have been proved in this study are sharp.

In this article as well as in a remarkably large number of other earlier q-investigations on the subject for $0<q<1$ can easily (and possibly trivially) be translated into the corresponding (p, q)-analogues (with $0<q<p \leq 1$) by applying some obvious parametric and argument variations of the types indicated above, the additional parameter p being redundant, see for example, ([31], pp 340) and ([32]), section 3, pp 1505-1506).

Acknowledgments

This research was supported by the researchers Supporting Project Number (RSP2024R401), King Saud University, Riyadh, Saudi Arabia.

References

[1] M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math. 17 (2019), 1615-1630.
[2] K. O. Babalola, On $\mathrm{H}_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1-7.
[3] K. Bano, M. Raza, Starlike functions associated with cosine function, Bull. Iran. Math. Soc. 47 (2021), 1513-1532.
[4] N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45 (2019), 213-232.
[5] J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. 59. (2007), 707-727.
[6] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften;Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan. Volume 259 (1983).
[7] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory and Applications. 14 (1990), 77-84.
[8] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh. 46 (1908), 253-281.
[9] F. H. Jackson, On q-definite integrals, Pure and Applied Mathematics Quarterly. 41 (1910), 193-203.
[10] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math. 23 (1970), 159-177.
[11] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Li, Z., Ren, F., Yang, L., Zhang, S. (eds.) Proceedings of the Conference on Complex Analysis, Tianjin, People's Republic of China, June 19-22, (1992). Conference Proceedings and Lecture Notes in Analysis, vol. I, pp. 157-169. International Press, Cambridge, 1994.
[12] W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl. 234 (1999), 328-339.
[13] S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry. 11 (2019), Article ID 347, 1-13.
[14] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365-386.
[15] C. Pommerenke, On starlike and close-to-convex functions, Proc. Lond. Math. Soc. 3 (1963), 290-304.
[16] V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math. Acad. Sci. 45 (2015), 505-510.
[17] M. Raza, A. Riaz, Q. Xin, S. N. Malik, Hankel determinants and coefficient estimates for starlike functions related to symmetric booth lemniscate, Symmetry. 14 (2022), Article ID 1366, 1-14.
[18] M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-fibonacci numbers, Symmetry. 12 (2020), Article ID 1043, 1-17.
[19] L. Shi, H. M. Srivastava, A. Rafiq, M. Arif, M. Ihsan, Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function, Mathematics. 10 (2022), Article ID 3429, 1-15.
[20] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in: Univalent Functions, Fractional Calculus, and Their Applications (H.M. Srivastava and S. Owa, Eds.), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[21] H. M. Srivastava, G. Murugusundaramoorthy, T. Bulboca, The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain, Rev. Real Acad. Cienc. Exactas s. Natur. Ser. A Mat. (RACSAM). 116 (2022), Article ID 145, 1-21.
[22] H. M. Srivastava, M. Kamli, A. Urdaletova, A study of the Fekete-Szego functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Math. 7 (2022), 2568-2584.
[23] H. M. Srivastava, S. Kumar, V. Kumar, N. E. Cho, Hermitian-Toeplitz and Hankel determinants for starlike functions associated with a rational function, J. Nonlinear Convex Anal. 23 (2022), 2815-2833.
[24] H. M. Srivastava, T. M. Shaba, G. Murugusundaramoorthy, A. K. Wanas, G. I. Oros, The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator, AIMS Math. 8 (2022), 340-360.
[25] H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal. 22 (2021), 511-526.
[26] H. M. Srivastava, S. Altınkaya, S. Yalcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat. 32 (2018), 503-516.
[27] H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the Lemniscate of Bernoulli, Mathematics. 7 (2019), Article ID 848, 1-10.
[28] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics. 8 (2020), Article ID 842, 1-18.
[29] H. M. Srivastava, Q. Z. Ahmad, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a generalized conic domain, Mathematics. 7 (2019), Article ID 181, 1-15.
[30] H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third hankel determinant for a subclass of q -starlike functions associated with the q-exponential function, Bull. Sci. Math. 167 (2021), Article ID 102942, 1-16.
[31] H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), 327-344.
[32] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functionsand integral transformations, J. Nonlinear Convex Anal. 22 (2021), 1501-1520.
[33] C. Swarup, Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic Tangent function, Symmetry, 15 (2023), Article ID 763 1-18.
[34] H. Y. Zhang, H. Tang, A study of fourth-order Hankel determinants for starlike functions connected with the sine function, J. Funct. Spaces. (2021), Article ID 9991460, 1-8.

[^0]: 2020 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
 Keywords. Univalent functions; q-derivative operator; q-convex functions; Hankel determinants; Zalcman conjecture; subordination.

 Received: 09 June 2023; Revised: 05 October 2023; Accepted: 25 October 2023
 Communicated by Hari M. Srivastava
 This research was supported by the researchers Supporting Project Number (RSP2024R401), King Saud University, Riyadh, Saudi Arabia.

 * Corresponding author: Qazi Zahoor Ahmad

 Email addresses: majidmaths09@gmail.com (Majid Khan), nazarmaths@gmail.com (Nazar Khan), qinx@setur (Qin Xin), ftchier@ksu.edu.sa (Fairouz Tchier), snmalik110@ciitwah.edu.pk, snmalik110@yahoo.com (Sarfraz Nawaz Malik), zahoorqazi5@gmail.com (Qazi Zahoor Ahmad)

