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Abstract. It is known that all convex polytopes admit a triangulation without additional vertices, however
this does not hold in general for non-convex polyhedra. If 3-triangulation of some polyhedron is possible,
then a connection graph is introduced in such a way that convex pieces of that polyhedron are represented
by graph nodes.

A method for constructing a polyhedron P based on a given connected undirected graph is given and
the properties of P are investigated. The algorithms for computing the numbers of vertices, edges, faces
and handles of P are also given.

1. Introduction

By definition a 3-triangulation of a (generally non-convex) polyhedron in the 3-space is its subdivision
into tetrahedra, which uses only the original vertices. It is generalization of classical triangulation where a
polygon with n vertices is divided by n − 3 diagonals into n − 2 triangles. Analogously, it is also possible
to define a d-triangulation in higher (d ≥ 4) dimensions as a partition of a d-dimensional polytope into
d-dimensional simplices.

As in the case of 2-dimensional space, different types of polyhedra decompositions have significant
applications in engineering and other fields of research. For example, [24] is devoted to an application of
3-triangulation, while [22] and [23] shows an application of another polyhedron decomposition and space
modeling.

But, in higher dimensions (d ≥ 3) the triangulation process is more complicated and new problems arise.
Thus, different 3-triangulations of the same polyhedron can have different numbers of tetrahedra [4], [8],
[10], [15], [16].

It is shown (Theorems 2.3 - 2.6 in [4]) that the smallest and largest number of tetrahedra in a 3-
triangulation (the minimal and the maximal 3-triangulation) depend linearly, i.e. squarely on the number
of vertices.

The next problem concerns the possibility of 3-triangulation. Similar to 2-triangulation we can tri-
angulate any convex polyhedron, but, contrary to the 2-dimensional case, there are exceptions for some
non-convex polytopes. The most famous non-triangulable polyhedron is the example of Schönhardt [7].
However, equally well-known Császár non-convex polyhedron [2] is 3-triangulable. That is an example of
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a so-called 1-toroid and is also discussed as a polyhedron without diagonals [2], [17], [18]. This polyhedron
has 7 vertices and it was shown in [21] that it is 3-triangulable with 7 tetrahedra.

Namely, the toroid (here called 1-toroid) defined by Szilassi [19], [20] is a polyhedron topologically
equivalent to a torus. Similarly, the term p-toroid (p ∈ N) is introduced for a polyhedron topologically
equivalent to a p-torus-solid (a ball with p handles). In topology this object is known as a 3-handlebody
of genus p. Here we use the common name ’toroid’ for all p-toroids, independently of p. Minimal 3-
triangulation and other properties of toroids are considered in [11], [12], [13], [14]. A connection graph is
introduced to investigate whether some toroid is 3-triangulable.

In Section 2, the necessary terms from graph theory are given, as well as some cases, definitions and
properties of 3-triangulation of polyhedra, especially p-toroids. Then, in Section 3 we give the construction
of a polyhedron P based on a given connected graph and discuss the properties of P in Theorems 3.1 - 3.4.
Algorithms are given in Section 4, for computing the numbers of vertices, edges, faces and handles of P,
determined in Theorem 3.4.

2. Basic concepts and results

2.1. Preliminaries about graphs

A graph is a couple G = (V,E) where V is a set of nodes (or vertices, rather used in computer science) and
E is a set of edges connecting nodes from V. Degree of a node u is the number of edges with u as one of its
endpoints.

Here, we shall only use undirected graphs, that is, those with edges that have no direction, and shall
call them ’graphs’ for short. A Path, a cycle, a loop are defined as usual in graph theory, while a chain is a
sequence of edges and nodes of order two, with end nodes of order different from two. A cycle with all
nodes of order two can also be considered as a chain.

A graph is connected if for each two distinct nodes u and v there exists at least one path joining them.
Otherwise, graph is disconnected with two or more connected components.

A tree is a graph in which any two nodes are connected by exactly one path, which means that it is
connected and has no cycles. A spanning tree is a subset of connected graph G, which has all the nodes
covered with minimum possible number of edges. Each connected graph has a spanning tree.

For a spanning tree, we have to look for all edges which are present in the graph but not in the
tree. Adding one of the missing edges to the tree will form a cycle which is called fundamental cycle ([6]).
All fundamental cycles form a cycle basis. Note that a graph can have more different spanning trees.
Consequently, each spanning tree constructs its own cycle basis. We can also form a cycle basis for any
disconnected graph, using one spanning tree for each connected component.

However, the number of fundamental cycles is always the same and can be easily calculated: For any
given graph having V nodes, E edges and r connected components, the number of fundamental cycles NFC,
called cycle rank or circuit rank is:

NFC = E − V + r.

A subdivision of a graph G is a graph obtained from G by replacing some edges of G with internally
node-disjoint paths ([9]). In other words, we can make a subdivision of G by dividing the edges of G and
inserting new nodes between the edge-parts.

Before using the graphs in this paper, we have to make their geometric representation, and we shall
consider it realized in 3-space.

2.2. Graph representation

Graphs can be used in different ways to examine properties of polyhedra and 3D modeling [1], [15],
[16], [22]. We use the abstract data type (ADT) to work with graphs. That is a mathematical model of a data
structure that specifies a type of data stored, the operations supported on them, and the types of parameters
of the operations. The ADT specifies what each operation does, but it does not describe the way it is done.
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As an abstract data type, a graph is a positional container whose positions are its vertices and its edges.
Hence, the graph ADT stores elements at either its edges or vertices (or both). A position in the graph is
always defined relatively, that is, in terms of its neighbors.

To make the ways of storing elements abstract and unified, in various implementations of the graph,
we introduce a concept of ’a position’ in the graph, which makes the intuitive notion of the ’place’ element
formal, relative to others in the graph.

A position itself is an abstract data type that supports a simple element() method which returns the
element that is stored at this position. We also use specialized iterators for vertices and edges. An iterator
is an enumeration with traversal order which can be guaranteed in some way.

In order to perform graph algorithms in a computer, we have to decide how to store a graph. There
are several ways to realize the graph ADT with a concrete data structure. In this section, we discuss two
popular approaches, usually referred to as the adjacency list structure and the adjacency matrix [3], [5].

There is a fundamental difference between the adjacency list and the adjacency matrix. The adjacency list
structure only stores the edges actually present in the graph, while the adjacency matrix stores a placeholder
for every pair of vertices (whether there is an edge between them or not). This difference implies that, for
a graph G with n vertices and m edges, the edge list or adjacency list representation uses O(n + m) space,
whereas the adjacency matrix representation uses O(n2) space.

In modern object-oriented program languages, (such as C++, C# and Java) the ADT can be expressed by
an interface, which is simply a list of method declarations. The ADT is realized by a concrete data structure,
which is modeled in object-oriented program languages by a class. A class defines the data stored and
the operations supported by the objects which are instances of the class. Also, unlike interfaces, classes
specify how the operations are performed. A program language class is said to implement an interface if
its methods give life to all of those of the interface.

2.3. Some important cases of 3-triangulation

The smallest number of tetrahedra in a 3-triangulation of a polyhedron with n vertices is n − 3. For
example, such a polyhedron is a pyramid Vn−1 with n− 1 vertices at the basis and the apex, which means a
total of n vertices. We can 3-triangulate it as follows: do any 2-triangulation of the basis into (n−1)−2 = n−3
triangles. The apex together with each of such triangles forms one of the tetrahedra in 3-triangulation (Figure
1). Also, the triangular prism Π with bases A1B1C1 and A2B2C2 has 6 vertices and is 3-triangulable with
3 tetrahedra. Actually, the triangular prism Π can be considered as a ’pyramid’ with the apex A2 and the
spatial pentagon A1B1B2C2C1 as the basis (Figure 2).

Figure 1: Triangulation of the pyramid Vn−1 with n vertices

Here we consider 3-triangulation of p-toroids, a special class of polyhedra. Namely, the term ’polyhe-
dron’ usually means a simple polyhedron solid, topologically equivalent to a ball. On the other hand, there
are classes of polyhedra topologically equivalent to a p-torus-solid (ball with p handles), p ∈N.
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Figure 2: Triangulation of the triangular prism Π

An orientable surface of genus p (we call it a p-torus) is described as the boundary of the solid (p-
handlebody, p-torus-solid) obtained by attaching p handles to a 3-ball. It can be effectively constructed from
a (2p)-polygon by pairing (and gluing together) corresponding sides. Any side s and its pair S are oppositely
directed related to the fixed orientation of the polygon, and then glued together. By standard combinatorial
procedure, the polygon can be divided and glued into the cyclic normal form a1b1A1B1a2b2A2B2...apbpApBp,
as p-torus. This combinatorial procedure is independent of the future spatial placement of the surface.
Thus, we can form a p-torus from any spatial knot, as a topological circle in space. Afterwards, its surface
can be 2-triangulated, to be the surface of a polyhedron.

The term p-toroid was introduced in [13], [14] based on Szilassi’s [19] definition of ’toroid’.

Definition 2.1. A polyhedron as a solid is called p-toroid, p ∈ N, if it is topologically equivalent to a solid p-torus
(ball with p handles), i.e. as a solid, it can be converted to a solid p-torus by continuous deformation.

We use term toroid as a common name for all p-toroids.

2.4. Decomposition of polyhedra to convex pieces
To investigate possible 3-triangulations of non-convex polyhedra, we consider their decomposition into

convex pieces and then form a graph representing such decomposition. For this purpose we need the
following definitions.

Definition 2.2. A polyhedron is piecewise convex if it can be divided into finitely many convex polyhedra Pi,
i = 1, . . . ,m, with disjoint interiors. A pair of above polyhedra Pi, P j is said to be neighbouring if they have a
common face called contact face.

If the above polyhedra Pi and P j are not neighbouring, they may have a common edge e or a common
vertex v. That is possible iff there is a sequence of neighbouring polyhedra Pi,Pi+1, . . . ,Pi+k ≡ P j such that the
edge e, or the vertex v belongs to each contact face fl common to Pl and Pl+1, l ∈ {i, . . . , i+ k − 1}. Otherwise,
polyhedra Pi and P j do not have common points.

Remark 2.3. As convex pieces are 3-triangulable, the same property applies to piecewise convex polyhedra. Namely,
we can first make a common 2-triangulation of the contact faces, and then, taking into account the new triangular
faces, 3-triangulate convex pieces.



N. Mladenović, M. Stojanović / Filomat 38:9 (2024), 3041–3053 3045

We can also notice that every 3-triangulable polyhedron is a collection of connected tetrahedra which means that
it is piecewise convex.

Definition 2.4. If a polyhedron P is piecewise convex, its connection graph (or its graph of connection) is a graph
whose nodes represent convex polyhedra Pi, i = 1, . . . ,m, the pieces of P, and edges represent contact faces between
them.

In order to have the same number of handles for the considered toroid P and number of basic cycles of
the corresponding connection graph G we introduce term optimized graph of connection. If G has some of
the cycles which do not correspond to some handle of P such a cycle is called false. An example of a toroid
P with connection graph that has false cycle is given in [13].

Let us consider a toroid P and its connection graph G that have one or more false cycles. For each of
the false cycles, note all the nodes that belong to it and the corresponding convex pieces of P. The union
of such convex pieces for each false cycle builds a new node of optimized graph Ĝ. The other nodes of the
graph G remain in Ĝ and we call them the old ones. The edges between the old nodes remain in Ĝ. The
edges of G between some old node and some node belonging to a false cycle are converted to the edge of
Ĝ between that old node and the new one.

The optimized graph Ĝ has the same number of basic cycles as the number of handles of the starting
toroid P. Note that it is not necessary that the new nodes of the optimized graph to correspond to convex
polyhedra, they only correspond to simple piecewise convex polyhedra.

In [11], [12] theorems for 1-toroids and 2-toroids about the minimal number of tetrahedra necessary for
their 3-triangulation were proved. The following is the corresponding theorem for p-toroids given in [13].

Theorem 2.5. If a p-toroid with n vertices can be 3-triangulated, then the minimal number of tetrahedra necessary
for its 3-triangulation is Tmin ≥ n + 3(p − 1).

3. Construction of a polyhedron from a given connection graph

In [14], the polyhedron P is constructed based on the subdivided graph G′ of the given graph G which is
the skeleton of some polyhedron. Here, for the more general case of a given arbitrary connected graph G,
the construction of the polyhedron P is given and its properties are examined. In this general case, nodes
of order one and loops can appear, and the generalized graph can be a tree, which was not the case with the
previously considered graphs. Also, there are no nodes of order two in the graphs - skeletons of polyhedra,
which simplifies obtaining a subdivision of such graphs. In the simpler case, in such a process, we need to
add exactly one node to each edge.

Here, for a given arbitrary connected graph G, we shall form a subdivided graph G′, taking into account
the requirements for the number of nodes added to each edge. The number of nodes added to each edge
of G with both endpoints of order different than two must be at least one. Otherwise, we may omit adding
new nodes to an edge. Additionally, the requirement is that the number of added nodes be sufficient to
allow the new edges of G′ to be straight lines. Since the number of added nodes can vary, we prefer to
consider the graph G′ as the original.

In he process of constructing the polyhedron P, we first mark nodes with degree k ≥ 3 in gray, those
with degree 2 in black, and those with degree 1 (leaves) in white. Each of the gray nodes in P represents
subpolyhedra of type Vk, that is, a pyramid with k vertices at the basis (Figure 1). Each of the black nodes
of G′ represents subpolyhedra of type Π, i.e. prism (Figure 2) and each of the white nodes represents
tetrahedron T. If necessary, Π will be slightly deformed to enable contact. So, after deformation, Π will
have skew - non-parallel bases. Neighbours of Vk or T are always polyhedra of type Π. For Π, we use its
two bases as contact faces with neighbours. For Vk with vertices A1,A2, . . . ,Ak in the basis and V as the
apex, its k contact faces are the lateral faces AiAi+1V, i ∈ {1, . . . , k− 1} and AkA1V, while for T one of its faces
is its only contact face.

The graph G′ is visually similar to the polyhedron P, because the prismsΠ looks like strings. Sequences
of such strings give the impression of a sequence of (straight) edges from G′, although in each of the non-
cyclic chains there are one more edge than there are black nodes. Pyramids Vk and tetrahedra T represent
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other nodes of G′. In this construction, the prisms Π allow the pyramids Vk and the tetrahedra T to be far
enough apart to form a handle for each of the basic cycles of G′. This means that G′ is an optimized graph
for P. Moreover, if G′ has p (p ∈ N) basic cycles, it is an optimized connection graph for the p-toroid P,
and if G′ is a tree, P is a simple polyhedron (we can also think of it as an 0-toroid). Since the nodes of the
optimized graph do not have to represent convex polyhedra, but only piecewise convex ones, it follows
that the grouping of prisms originating from the added black nodes with pyramids and tetrahedra gives
the graph G as a optimized graph for P. The only exception to this grouping is in the case of subdividing
loops of G.

Note that Vk has k + 1 vertices and is 3-triangulable with k − 2 tetrahedra, Π has 6 vertices and has 3
tetrahedra in a 3-triangulation. This means that the simple polyhedral pieces of P are 3-triangulable with
the minimal number of tetrahedra guaranteed by Theorem 2.5 (which is also applicable in the case of p = 0),
so this must also be true for the whole polyhedron P. Thus, the next statement holds.

Theorem 3.1. For any connected, undirected graph G there exist a polyhedron P with subdivided graph G′ of G, as
an optimized connection graph. If G has no loops, it is also an optimized graph for P. Moreover, for the polyhedron
P obtained by this construction, the minimal number Tmin of tetrahedra in the subdivision is equal to the minimal
possible number, guaranteed by the Theorem 2.5.

For the special type of graph G, which is the skeleton of some simple polyhedron or h-toroid π, the
corresponding polyhedron P obtained by the described construction is also itself a toroid with p handles,
determined by the following theorem.

Theorem 3.2. If the graph G is the skeleton of some h-toroid π (h ∈ N ∪ {0}) with F faces, then the p-toroid P
constructed as before have p handles, where

p = F + 2h − 1.

Proof. As we mentioned before, the number of handles p of P is equal to the cycle rank of G. Since the graph
G is connected, it holds

p = E − V + 1,

where V and E are the nodes and edges numbers of G. When forming a subdivided graph G′ of G, the
number of nodes will increase by the same amount as the number of edges, so the number p will remain
unchanged.

On the other hand, as G represents the skeleton of some h-toroid π, the numbers of vertices and edges
of π are also V and E. Therefore, according to the Euler-Poincaré Theorem (or according to Euler’s if h = 0)
it follows

V − E + F = 2 − 2h.

Consequently
p = F − 2 + 2h + 1 = F + 2h − 1,

which had to be proved.

For the same type of graph G, besides the number of the handles p of the corresponding toroid P, we
can also calculate the number n of vertices, e of edges and f of faces. These numbers will be expressed by
the numbers V and E of the nodes and edges of G.

Theorem 3.3. If the graph G with V nodes and E edges is the skeleton of some h-toroid π (h ∈ N ∪ {0}), then the
p-toroid P constructed as before has n vertices, e edges and f faces, where

n = 2E + V, e = 7E, f = 3E + V.

Proof. We assume that a subdivided graph G′ of G is obtained by dividing each edge of G into two parts
and adding only one new black node between obtained parts. Then, the graph G′ has 2E edges, V gray
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and E black nodes. Of course, gray nodes lead to pyramids Vki , i ∈ {1, . . . ,V} in P, while black nodes lead
to prisms Π.

When counting the vertices of P, only the vertices of Vki (with ki vertices at the basis and the apex)
should be taken into account, because each vertex of Π belongs to some contact face, and accordingly to
some of the pyramids. So, the number of vertices of P is

n =
V∑

i=1

(ki + 1) =
V∑

i=1

ki + V.

The sum of the degrees for the gray nodes of G is the same as the sum of the the degrees for vertices of π.
It is twice the number of edged E, since every edge of π is incident to two vertices of π. That means

V∑
i=1

ki = 2E

and it holds that
n = 2E + V.

When considering the number e, we take into account that each Vki has 2ki edges (ki at the basis and also
ki connecting the vertices of the basis to the apex). On the other hand, each Π has 9 edges, but 6 of them
belong to contact faces and thus to some of the pyramids. Then we can conclude

e =
V∑

i=1

2ki + 3E = 4E + 3E = 7E.

Note that only the basis of the pyramids Vki and the lateral faces of the prismsΠ are external, not-contact
faces. It means

f = V + 3E.

Of course, applying the Euler-Poincaré theorem to calculate the number of faces will give the same result

f = e − n + 2 − 2p = 7E − (2E + V) + 2 − 2(E − V + 1) = 3E + V.

Thus we prove the Theorem.

In the general case, the number of added vertices in the subdivided graph G′ of G, may vary and it would
not be sufficient to know the numbers V and E of the graph G. In the following Theorem we determine the
numbers n, e, f , p and Tmin based on the numbers of nodes of G′ of the same order. More precisely:

Theorem 3.4. Let G be a connected graph, and let G′ and P be the subdivided graph and corresponding polyhedron
of G, constructed as before. If νk are the numbers of nodes of G′ of order k, then for P the numbers of are equal:

1. The number of vertices n is n =
∑
k≥3

(
1 −

k
2

)
νk + 3ν2 +

5
2
ν1;

2. The number of edges e is e =
1
2

∑
k≥3

kνk + 6ν2 +
9
2
ν1;

3. The number of faces f is f =
∑
k≥3

νk + 3 (ν2 + ν1);

4. The number of handles p is p =
1
2

∑
k≥3

(k − 2) νk −
1
2
ν1 + 1;

5. The number of tetrahedra in the minimal triangulation is Tmin =
∑
k≥3

(k − 2) νk + 3ν2 + ν1.
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Proof. If the graph G′ is a cyclic graph with all black nodes, the statement of the Theorem is obvious.
Namely, there are ν2 nodes in G′, and therefore ν2 pieces ofΠwith ν2 contact faces in P. This means that in
P there are n = 3ν2 vertices, e = 6ν2 edges and f = 3ν2 faces. It is necessary 3ν2 terahedra to triangulate P
and there is one handle in P.

Otherwise, the graph G′ has only the chains of the first type, that is, those with gray and white end
nodes. Moreover, each chain has li (li ≥ 1) black nodes and li + 1 edges. Note that each black node belongs
to one of the chains. Since each chain has two end nodes, the number L of chains can be calculated as the
half sum of orders for all gray and white nodes. Using the notations νk for the node numbers of order k, L
can be expressed as

L =
1
2

∑
k,2

kνk

 = 1
2

∑
k≥3

kνk + ν1

 .
1. When calculating the number of vertices n of the polyhedron P, we shall consider gray, black and

white nodes separately. Since the gray nodes correspond to pyramids Vki with ki + 1 nodes, the number
of vertices of P corresponding to such nodes can be calculated as

∑
k≥3

(k + 1)νk. The number of vertices

corresponding to white nodes is 4ν1 since these nodes lead to tetrahedra. When calculating the number of
vertices corresponding to chains and thus black nodes, it should be taken into account that all the vertices
ofΠ belong to contact faces. Therefore, in this calculation, we do not consider the vertices belonging to the
bases ofΠ neighbouring pyramids or tetrahedra, and for other bases we take half of the sum of the number
of their vertices. This means that for each chain with li black nodes we have 3(li − 1) vertices. For the sum
of all such vertices, we get 3(ν2 − L). So, the whole number n is

n =
∑
k≥3

(k + 1)νk + 3(ν2 − L) + 4ν1 =

=
∑
k≥3

(k + 1)νk + 3ν2 −
3
2

∑
k≥3

kνk + ν1

 + 4ν1 =

=
∑
k≥3

(
1 −

k
2

)
νk + 3ν2 +

5
2
ν1.

2. The number of edges in Vki is 2ki (ki edges are at the basis and ki are ’lateral’) and the number of edges
in the tetrahedron is 6. Each prism Π has 3 ’lateral’ edges and 3 edges in each base. But the bases serve as
contact faces, so in P there are 3ν2 + 3(ν2 − L) edges belonging to all prisms. The total number of edges of P
is

e = 2
∑
k≥3

kνk + 3ν2 + 3(ν2 − L) + 6ν1 =

= 2
∑
k≥3

kνk + 6ν2 −
3
2

∑
k≥3

kνk + ν1

 + 6ν1 =

=
1
2

∑
k≥3

kνk + 6ν2 +
9
2
ν1.

3. Only the bases of pyramids and the lateral faces of prisms and tetrahedra are external, not-contact
faces of P. This means that the number of faces

f =
∑
k≥3

νk + 3 (ν2 + ν1) .

4. Since the numbers of the basic cycles of G′ and of the handles of P are the same, we can calculate p in
two ways. For the number of basic cycles p = E−V + 1 holds, where E and V are the numbers of edges and
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nodes of G′. We can get the number of chains L as E − ν2, therefore

p = L −

∑
k≥3

νk + ν1

 + 1 =

=
1
2

∑
k≥3

kνk + ν1

 −
∑

k≥3

νk + ν1

 + 1

=
1
2

∑
k≥3

(k − 2) νk −
1
2
ν1 + 1.

On the other hand, the Euler-Poincaré Theorem provides us with the possibility to calculate the number of
holes, because f − e+n = 2− 2p. Note that the special case of this Theorem is the Euler’s, when p = 0. Thus,

p =
1
2

(− f + e − n) + 1

=
1
2

−
∑

k≥3

νk + 3(ν2 + ν1)

 +
1

2

∑
k≥3

kνk + 6ν2 +
9
2
ν1

−
−

∑
k≥3

(
1 −

k
2

)
νk + 3ν2 +

5
2
ν1


 + 1

=
1
2

∑
k≥3

(k − 2) νk −
1
2
ν1 + 1.

5. The number of tetrahedra in the triangulation of P is the sum of tetrahedra in the triangulations of its
pieces, i.e. pyramids and prisms Π, taking into account also the separate tetrahedra corresponding to the
white nodes of G′. As we mentioned earlier, these numbers are ki − 2, 3 and 1, therefore the statement is
true.

Note that based on the Theorem 2.5 the minimal number of tetrahedra is the same, as we obtained here:

Tmin = n + 3(p − 1) =

=
∑
k≥3

(
1 −

k
2

)
νk + 3ν2 +

5
2
ν1 +

3
2

∑
k≥3

(k − 2) νk − ν1

 =
=

∑
k≥3

(k − 2) νk + 3ν2 + ν1.

4. The algorithms for determining the properties of the polyhedron P

As in [15], [16] it is possible to create algorithms for calculating the numerical properties of the con-
structed polyhedron P. So, below are the algorithms for determining the numbers νk, n, e, f , p and Tmin.

First, in Algorithm 1 we need to count the number of vertices of the same degree. As input, we use the
adjacency matrix of a given undirected connected graph G with n vertices due to the simplicity of working
with such kind of stored data. Then, when passing through the row of a certain vertex, we find its degree.
Finally, we count the number Ni[i] of vertices of the same degree i (1 ≤ i ≤ n), where i ≥ 1 because the graph
is connected, and i can be equal to n if a vertex is connected by edges to all other vertices and also to itself
by a loop.

The following is the main Algorithm 2 for calculating n, e, f , p and Tmin in which we use the results of
the previous algorithm, that is, the numbers Ni[1],Ni[2]..., Ni[n] of vertices of a certain order.
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Algorithm 1 Finding order for each vertex of a graph G and counting the number of vertices of the same
degree.
INPUT: Adjacency matrix A for undirected graph G with n vertices.
OUTPUT: The array Ni[1],Ni[2], ...,Ni[n]

Let Ni be an array of n elements.

Initially all elements of array be zero.

for (i = 0 to n-1) do

{ int d = 0;

for (j = 0 to n-1) do

{ if (A[i][j] != null) then

d++;

}

Ni[d]++;

}

for (i = 1 to n) do

write ("Ni[{0}] = {1} ", i, Ni[i]);

Algorithm 2 Calculating the numbers of vertices n, edges e, faces f and handles p and Tmin

INPUT: The array Ni[1],Ni[2], ...,Ni[n]
OUTPUT: n, e, f , p and Tmin

ni_1 = Ni[1];

ni_2 = Ni[2];

n = 0;

e = 0;

f = 0;

p = 0;

T_min = 0;

For (i = 3 to n)

{

current = Ni[i]

If (current > 0) then

{

n + = (1-i/2)*current;

e += i*current;

f += current;

p += (i-2)*current;

T_min += (i-2)*current;

}

}

n += 3*ni_2 + 5*ni_1/2;

e = e/2 + 6*ni_2 + 9*ni_1/2;

f += 3*(ni_1 +ni_2);

p = p/2 - ni_1 +1;

T_min += 3*ni_2 + ni_1;

writeLine ("n = {0}; e = {1}; f = {2};", n, e, f, );

writeLine ("p = {0}; T_min = {1}. ", p, T_min);
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Example 4.1. Let us consider a graph G which is a single cycle with 5 nodes (Fig. 3). Since the edges of G can be
straight lines, in this case there is no need to make subdivision of G, and the graph G′ can be the same as G. Therefore,
the polyhedron P is as it is shown on Fig. 3. Note that such P is a special case of the Szilassi’s regular toroid [20].

Figure 3: The graph G and polyhedron P

The input to the Algorithm 1 is: 0, 1, 0, 0, 1; 1, 0, 1, 0, 0; 0, 1, 0, 1, 0; 0, 0, 1, 0, 1; 1, 0, 0, 1, 0. After applying our
Algorithms 1 and 2 the results are the array 0 5 0 0 0 and n = 15; e = 30; f = 15; p = 1; Tmin = 15.

Example 4.2. The graphs G and G′ are given in Fig. 4 while the corresponding polyhedron P is given on Fig. 5. We
note that the graph G with 5 nodes, consists of a loop, a three-node cycle, and a white node. Furthermore, two edges
connect the cycle with the white node and the loop. In G′ we added 0-3 black nodes to each edge, 8 in total. Thus, the
graph G′ have 13 nodes, one of order 1, nine of order 2 and three of order 3.

Here, the input to the Algorithm 1 is:
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0.

The output of the Algorithm 1 is the array 1 9 3 0 0 0 0 0 0 0 0 0 0 which we also use as the input to the
Algorithm 2. The final result of Algorithm 2 is n = 28; e = 63; f = 33; p = 2; Tmin = 31.

5. Conclusions

In previous papers using the concepts of piecewise convex polyhedra and connection graphs, the prop-
erties of 3-triangulation of non-convex polyhedra, if any, were investigated. Here, for further investigation,
based on the given graph as its connection graph, a p-toroid (p ∈ N ∪ {0}) is constructed. Algorithms
for calculating the numbers of vertices, edges, faces and handles of P are then given. Furthermore, two
examples of graphs and corresponding toroids are given, and algorithms are tested on them.
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Figure 4: The graphs G and G′

Figure 5: The polyhedron P
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For p-toroids, the property of the minimal required number of tetrahedra Tmin for 3-triangulation is
important. That was the reason to examine also the number Tmin for the constructed polyhedron. The result
is that the lower limit obtained in previous papers is reached.

The algorithms described here can be implemented to create programs in, for example C++, C# or
Java, so that further investigation of the properties of 3-triangulation of polyhedra would be possible by
computer.

A connection graph can also be used to explore other 3-triangulation properties of non-convex polyhedra,
such as an upper bound of the minimal required number of tetrahedra or the maximal number of tetrahedra.
For these purposes, polyhedra could be constructed in a different way than described here.
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[7] E. Schönhardt, Über die Zerlegung von Dreieckspolyedern in Tetraeder, Math. Ann. 98 (1928) 309–312.
[8] D. D. Sleator, R. E. Tarjan, W. P. Thurston, Rotation distance, triangulations, and hyperbolic geometry, J. of the Am. Math. Soc. 1

(3) (1988) 647–681.
[9] Ch. Sobhan Babu, Ajit A. Diwan, Subdivisions of Graphs: A Generalization of Paths and Cycles, Discrete Mathematics, 308 (2008)

4479–4486.
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[17] S. Szabó, Polyhedra without diagonals, Period. Math. Hung. 15 (1984) 41–49.
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