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Abstract. The widespread dissemination of misinformation through social media poses significant chal-
lenges. With the increasing prevalence of social media, vast amounts of information - both accurate and
inaccurate - can be rapidly shared among a large audience. This information often plays a critical role
in shaping public opinion and influencing significant events, such as elections. This paper addresses the
urgent need for more effective models to combat misinformation. We propose a novel approach based on
the Susceptible-Infective-Removed (SIR) model, traditionally used in studying information diffusion. Our
modified model, termed SIRMIS (SIR-based Misinformation Spreading Model), integrates stochastic differ-
ential equations (SDEs) to account for the inherent randomness and uncertainty in information diffusion
processes on social networks. SIRMIS offers insights into the dynamics of misinformation propagation, the
role of accurate information in counteracting falsehoods, and the estimation of the peak number of misin-
formed users. The stability of the stochastic equations within the SIRMIS model is rigorously proven using
Lyapunov stability theory, ensuring that the model reliably predicts the conditions under which misinfor-
mation can be controlled or eradicated. Our results indicate that systematically increasing the exposure
of accurate, verified information to key segments of the population can slow down or even completely
combat the spread of misinformation. This effect is particularly pronounced when the true information
is disseminated by trusted sources, highlighting the importance of credibility in combating falsehoods.
Furthermore, we discuss the linear and global stability of the proposed model, emphasizing its potential in
effectively mitigating the impact of misinformation on social networks.

1. Introduction

According to the statistics for the year 2024, approximately 4.95 billion individuals are active social
media users, which is approximately 61 percent of the global population. Some well-known social network
platforms include Twitter, LinkedIn, Facebook, and Instagram, with Facebook alone boasting a massive
user base of 3.05 billion individuals [38].

2020 Mathematics Subject Classification. Primary 39A50; Seckndary 39A30, 39A60.
Keywords. SIR model, Lyapunov stability theory, misinformation mitigation, SIRMIS model
Received: 04 September 2024; Revised: 29 January 2025; Accepted: 13 February 2025
Communicated by Ljubiša D. R. Kočinac
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Social networks have become the easiest way to spread information and misinformation. Therefore, re-
vealing the mechanisms of information spread and predicting the spreading process is of huge significance.
Different information spread models [10] have been studied which are most of the time epidemic models
[14, 40, 45, 51]. In addition to epidemic models, there are other models developed like models based on
topological graphs [36, 37], or statistical inference-based models [28], or opinion model [21]. The spread of
information in social networks is comparable to the spread of infectious diseases [13, 31], with epidemic
models being more prominently applied [20, 46, 53].

The typical and very popular model used in epidemiology is the Susceptible - Infected - Removed (or
Susceptible - Infected - Recovered) model, known as the SIR model. [16]. The SIR model in epidemiology
describes the interactions between the three categories: Susceptible, Infected, and Recovered (or Removed).
The desired outcome is that the infected category leads to zero or reaches a stable endemic level. When
applied to the social networks, the SIR model puts users into different categories depending on their states
S, I, and R [29]. S represents the social network user who has not receive the information yet, I represents
the user who knows the information and can spread it. R represents the user who does not spread the
information. Users from group S can transition to group I at rate β per unit of time. Also, they can recover
and come to the R group at the rate γ per unit time. The number of users is denoted for the categories by
S(t), I(t), and R(t). The average degree is denoted by k and the total number of users by N. The modifications
of the SIR model can lead to non-linear differential equations which are based on mean-field theory [48, 58].
Further modifications are proposed by introducing new categories [32, 43] or changes in immune parameter
and information diffusion [44, 52, 55] or developing new models to improve traditional models [5, 27, 42].
Many research papers contributed to improving the basic models and they enhanced understanding of
the spread of information process. However, the differential equations are solved as continuous functions,
while simulations are based on discrete time. By comparing numerical solutions and simulation outputs, it
is clear that there is a significant time deviation between the results [22]. This is mainly because the model
will make a faster diffusion process when it is studied in continuous time. Therefore, the basic SIR models
can not easily be implemented in the simulations and predictions of information propagation. Contribution
to the solutions of the above-mentioned problems is the model SPIR [34] where is added a set of potential
spreaders to the susceptible group that is likely to become infected in the subsequent unit time. The SIR
model is mostly improved in the following aspects: Introducing new categories [32, 43, 56], enhancing
diffusion, the setting of the immune parameter [44, 52, 55] and optimizing diffusion models [5, 27, 42].

Many types of SIR model variables have been studied. For example, the population S (Susceptible) is
categorized into subgroups where the infection rates differ [2, 3, 9, 25, 30]. Infections can be considered when
divided into lethal and sublethal [4, 35] and reproductive rates can be analyzed in the infected or recovered
population [1]. Of course, some of the complicated models can lead to instabilities. The similarity between
epidemics and rumors using mathematical analysis had been proposed by Daley in 1964 [8]. Today we
can find that many various epidemiological models are used to analyze the propagation of misinformation
on social networks [9, 18, 26, 39]. Furthermore, the spreading of rumor was studied in homogeneous
network model 2SIH2R where are considered online users who share the rumor and users who share the
truth. The 2SIH2R model analyzed mechanisms of discernment and conflict in a heterogeneous network
to explain the spread of the rumor and the truth [47]. Considering the control of the rumor diffusion, a
rumor-spreading model called SIDRQ was developed with forgetting, immune, and suspicion mechanisms.
This model guides a uniform network [54]. Furthermore, an investigation was conducted on delayed
rumor propagation in the SEIR model that incorporates saturation on heterogeneous networks[6]. A novel
information propagation Mb-SIR model [41] studied characteristics of the microblog considering the user’s
incomplete reading behavior. It is discovered that the most influential role in information diffusion is the
user’s reading rate. Sometimes, people do not know the authenticity of a rumor. Therefore, they will not
spread the rumor immediately. This is called a hesitation state. The model with hesitation state is discussed
in [49]. The results of forcing silence on users of social networks are studied in a rumor propagation SAIR
model [59].

The dynamic of rumor propagation is studied in so-called small-world networks in [50]. The SIR
model was modified to the Bass-SIR model [11] when propagation of new products is obtained within the
model. Consumers who adopt the product enter the ”recovered group”, and they do not influence further
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adoption of the product. The SIR model dynamical evolution equations are developed in [57] at the moment
of information explosion, which is considered to influence breath, influence strength, relaxation, and pick
time. The extended version of the SIR model, known as the SIHR model, is specifically designed to analyze
the propagation of rumors [56]. This model introduces a category of individuals named Hibernators. Due
to the forgetting mechanism, the Hibenators come from the spreaders and they become spreaders due to
the remembering mechanism, so the spread of rumors can be repeated. Hibernators directly transition from
being uninformed to actively suppressing the spread of rumors. They can postpone the terminal time of a
rumor, and can reduce the maximum influence of a rumor.

The aforementioned citations represent a synthesis of research on the spread of information across
social networks. With the constant growth of social networks platforms there will remain a need to
study diffusion of various information. Research in the field of social network information propagation
is not only significant for science but also plays an important role in protecting the public from threading
misinformation.

2. Materials and methods

We developed the SIR-based Misinformation Spreading model ( SIRMIS model ) by considering the SIR
model. The stability of the SIRMIS model is discussed using the Lyapunov function and LaSalle’s invariance
principle. For a better understanding of the novel SIRMIS model, first we will explain the SIR model and
its properties, and then we will explain the Lyapunov stability, and LaSalle’s invariance principle, which
are used to discuss the stability of the SIRMIS model.

2.1. SIR model

The SIR model was developed by Kermack and McKendrik in 1927 [16]. Today, the SIR model is
well-known and widely used epidemiological model. It calculates the number of infected people with a
contagious disease in a closed population over time. This model detects the dynamics of acute infections
where once recovered individuals have permanent immunity. The model can be applied in the study
of illnesses like measles, mumps, smallpox, chickenpox, typhoid fever, and diphtheria. The following
conditions are applied:

1. The population number is fixed.
2. It is only possible to leave the susceptible group if a person becomes infected. If it is recovered from

the disease, person can leave the infected group. Once recovered, the person has immunity.
3. The probability of a person being infected is not affected by age, race, sex, or social status.
4. There is no inherited immunity.
5. Everyone in the population mixes homogeneously ( or has the same number of interactions with one

another, well-mixed population ).
6. Natural births and deaths are excluded.
7. A short time period is considered.

In the SIR model, there are 3 dependent variables as functions of time. The independent variable is time t.
Time is measured in days. The constant value is N, and it represents the total population, given as N = S +
I + R.

The dependent variables are detailed below (Table 1).

S(t) - Susceptible The number of people susceptible to infection.
I(t) - Infected The number of infected people with the ability to transmit the infection

to other susceptible individuals.
R(t) - Recovered (or Removed) The number of people who have recovered after being infected.

Table 1: Description of terms in the SIR model
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The SIR model equations are:

dS
dt
= −βSI (1)

dI
dt
= βSI − γI (2)

dR
dt
= γI (3)

where β denotes the infection rate, while γ denotes recovery rate. The initial conditions are given by:
S(0) > 0, I(0) ≥ 0 and R(0) ≥ 0.

The most important role is played by the essential reproductive number R0. It is derived from the
equation R0 =

β
γ . The value of R0 signifies the number of secondary infections that occur from one infected

person within a population that is entirely susceptible to the disease. The SIR model provides invaluable
insights into the dynamics of epidemics, encompassing key factors such as the peak rate of infection, the
overall number of infections, and the duration of the epidemic. It is important to highlight that the SIR
model serves as a simplified representation and, as such, more intricate models may be employed to provide
a more precise portrayal of real-world scenarios.

2.2. Lyapunov stability
The stability properties of equilibrium points of linear and non-linear systems are studied using Lya-

punov function. Lyapunov’s study on stability, initially published in 1892, was translated into English
and made available a century later in a March 1992 edition of the International Journal of Control [24].
Lyapunov systematically studied the stability of solutions of nonlinear differential equations, which varies
in time in near equilibrium point.

To ensure the global stability of the disease - free equilibrium point, the Lyapunov function should
satisfy the following: At the disease - free equilibrium point the function should be zero.For all points other
than the disease - free equilibrium point, the function should be positive and definite. The derivative of the
Lyapunov function with respect to time, when multiplied by the derivative of the state variables, should
be negative semi-definite at all points except the disease - free equilibrium point.

Prior to the introduction of non-linear variables, it is necessary to establish the stability of a system. Let
x = 0 be an equilibrium point for x = f (x) , and D ⊂ Rn be a domain which contains x = 0.

1. Lyapunov Stability Theorem:
It states that the origin is stable if, in the domain D that contains the origin, there is a continuously
differentiable positive definite function V(x) so that V̇ is negative semi-definite, and is asymptotically
stable if V̇ is negative definite [17]. When V satisfies the condition for stability then V is known as the
Lyapunov function.

2. Asymptotic Stability Theorem:
If there exists a Lyapunov function V(x) with the derivative dV

dt that is negative definite for all X
in the neighborhood U excluding X = 0, then the equilibrium point of an autonomous system is
asymptotically stable [7]. To ensure the asymptotic stability of the zero solution, the total derivative
must be strictly negative within the neighborhood of the origin.

2.3. LaSalle’s invariance principle
The LaSalle’s invariance principle [12, 19, 33] states that if a system possesses a Lyapunov function, which

either diminishes or remains constant along its trajectories, then the system’s trajectories will ultimately
converge towards the most general invariant set within the region where the Lyapunov function attains
zero.

By combining LaSalle’s Principle with a Lyapunov function, one can not only identify the stability
properties of the system but also determine the exact region in which the trajectories converge. This
information is crucial for understanding the behavior and control of dynamical systems, especially in
complex and non-linear systems where stability analysis can be challenging.
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3. SIRMIS model

We present the SIR-based misinformation spreading model, SIRMIS model, in which we have false and
true information sharing, and the suggested model is as follows:

dn
dt = (1 − p)µ − βmn − µn

dm
dt = βmn − γm − µm

dr
dt = γm − µr

d1
dt = pµ − µ1

(4)

The variables for the SIRMIS model are defined as follows (Table 2):

t Represents time.
n Represents the social network users that have no information (for instance, about some particular

event).
m Represents the social network users that received the misinformation, and they are sharing it.
r Represents the social network users that (received misinformation but later accepted the true

information) stopped sharing the misinformation.
g Represents the social network users that received the true information (despite they have true

information, some of them will still share the misinformation after receiving it. This depends on
the true information success sharing rate).

µ Represents the rate of withdrawn social network users within the n group.
β Represents the sharing rate of the misinformation.
γ Represents the stop sharing rate of the misinformation.
p Represents the sharing rate of the true information.

Table 2: Description of terms in the SIRMIS model

The equations given by Eq.(4) are system of differential equations that describes the dynamics of
misinformation in a population with true information received. The equation describes how users with
no information, misinformation, and true information accepted, change over time. The true information
rate, p, affects the misinformation dynamics by reducing the no information population and the user
reproduction number, which is the average number of misinformed users caused by one user who shares
the misinformation.

The number of new misinformed users initiated by single user who shared the misinformation is given
by

R0 =
β(1 − p)
γ + µ

< 1 (5)

The number of new misinformed users after the true information share parameter is p is introduced is
given by

Rv = Ro(1 − p) (6)

The misinformation-free equilibrium is globally asymptotically stable, and sharing the misinformation
eventually stops. When R0 > 1, there is misinformation spread stable level equilibrium (endemic equilib-
rium). The system can be analyzed using linear stability analysis and Lyapunov functions to determine the
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stability of the misinformation-free equilibrium and endemic equilibrium.

n(t) +m(t) + r(t) + 1(t) = 1 (7)

r(t) = 1 − n(t) −m(t) − 1(t) (8)

We will obtain:

dn
dt
= (1 − p)µ − βmn − µn (9)

dm
dt
= βmn − γm − µm (10)

d1
dt
= pµ − µ1 (11)

The feasible region is given as:

Ω1 = {(n(t),m(t), 1(t)) ∈ R3
+ |n(t) +m(t) + 1(t) ≤ 1}. (12)

There are two equilibrium points:

1. Misinformation-free equilibrium point: E0(n = 1 − p,m = 0, 1 = p).

2. Misinformation spread stable level (endemic) equilibrium point:

Ee

(
n = γ+µβ ,m =

µ(β(1−p)−γ−µ)
β(γ+µ) , 1 = p

)
To show that Ee exist it is required to find the value of m from equation 9, and substitute it in equation

10, which results in

n2
− n(1 − p +

γ

β
+
µ

β
) +

(
(1 − p)γ
β

+
(1 − p)µ
β

)
= 0 (13)

The discriminant is given as:

∆ =

(
1 − p +

γ

β
+
µ

β

)2

− 4
(

(1 − p)γ
β

+
(1 − p)µ
β

)
(14)

For ∆ ≥ 0 we have:

(
1 − p + γβ +

µ
q uadβ

)2
≥ 4

( (1−p)γ
β +

(1−p)µ
β

)
(
β(1−p)+(γ+µ)

β

)2
≥ 4

( (1−p)(γ+µ)
β

)
(
γ+µ
β

)2 (
1 + β(1−p)

γ+µ

)2
≥ 4 (1−p)(γ+µ)

β

(1 + Rv)2
≥ 4Rv

(Rv − 1)2
≥ 0

(15)

which implies Rv ≥ 1.
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To show the linear stability of the misinformation-free equilibrium point and the misinformation spread
stable level (endemic) equilibrium point, it is required to find the characteristic equation what corresponds
to the misinformation-free equilibrium points as follows:∣∣∣∣∣∣∣∣

−µ − λ −β(1 − p) 0
0 β(1 − p) − γ − µ − λ 0
0 0 −µ − λ

∣∣∣∣∣∣∣∣ = 0 (16)

There are three eigenvalues:

λ1 = −µ

λ2 = −µ

λ3 = β(1 − p) − γ − µ
(17)

The eigenvalues λ1 and λ2 are negative.
If λ3 > 0 then β(1 − p) > γ + µ . Hence, R0(1 − p) > 1 or Rv > 1. This means that the misinformation-free
equilibrium point is not locally asymptotically stable.
If λ3 < 0 then β(1 − p) < γ + µ. Hence, R0(1 − p) < 1 or Rv < 1.

The model is linearly stable as all the eigenvalues are negative. There is no wide spread of misinformation
and the trajectories will approach a misinformation-free equilibrium point.

To get a characteristic equation, the following determinant is obtained:∣∣∣∣∣∣∣∣∣
−
µβ(1−p)
γ+µ − λ −(γ + µ) 0

µ(β(1−p)−γ−µ)
γ+µ −λ 0
0 0 −µ − λ

∣∣∣∣∣∣∣∣∣ = 0 (18)

and we get:

(µ + λ)
(
λ2 +

µβ(1 − p)
γ + µ

λ + µ[β(1 − p) − γ − µ]
)
= 0 (19)

The coefficients µβ(1−p)
γ+µ and µ[β(1 − p) − γ − µ] are positive.

The eigenvalues are:

λ1 = −µ

λ2 = −
µβ(1−p)
γ+µ ±

√
µ2β2(1−p)2

(γ+µ)2 − 4µ[β(1 − p) − γ − µ]

λ3 = −µRv ±

√
µ2R2

v − 4µ(γ + µ)(Rv − 1)

(20)

Since µ[β(1−p)−γ−µ] is positive, the value under the square root is either less than µ2R2
v or it is greater.

If it is greater, the solutions are complex with negative real part µβ(1−p)
γ+µ .

Otherwise, the absolute value of the root must be less than µ2 R2
v, but the real part of the eigenvalue is

negative. In both cases the conclusion is that the misinformation spread stable level (endemic) equilibrium
is stable because the real parts of both eigenvalues are negative and λ1 is negative as well. Conclusion is
that the endemic equilibrium point is locally stable. The misinformation sharing rate has reduced because
of the true information sharing parameter.
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Next, we will study the global stability of the misinformation-free equilibrium point and the endemic
equilibrium point. To prove that the misinformation-free equilibrium point of the system is globally
asymptotically stable on Ω1 we will construct the Lyapunov function.

The Lyapunov function is:

V : Ω1 → R
(
V(n,m, 1) = n(t) +m(t)

)
(21)

The time derivative of V is given as:

V̇(n,m, 1) = n(t) +m(t)
= (1 − p)µ − µn − (γ + µ)m

= (γ + µ)
[

(1 − p)µ
γ + µ

−
µn
γ + µ

−m
]

= (γ + µ)
[
µRv

β
−
µR0n
β
−m

]
=
γ + µ

β
[µRv − µR0n − βm] (22)

Thus, if Rv < 1 =⇒ V̇(n,m, 1) < 0. Moreover, at
(
1 − p, 0, 1

)
, V̇(n,m, 1) = 0

By LaSalle’s invariance principle, the misinformation-free equilibrium point is globally asymptotically
stable. To prove that the endemic equilibrium point E∗(n∗,m∗, 1∗) of the system is globally asymptotically
stable on Ω1 we use a Lyapunov function.
L : Ω+ → R, where Ω+ = {n(t),m(t) ∈ Ω |n(t) > 0,m(t) > 0, 1(t) > 0} given by

L1(n,m, 1) =W1

[
n − n∗ ln

( n
n∗

)]
+W2

[
m −m∗ ln

( m
m∗

)]
+W3

[
1 − 1∗ ln

(
1

1∗

)]
(23)

where W1,W2,W3 are positive constants. The time derivative of the Lyapunov function is:

dL1

dt
=W1(n − n∗)

[
(1 − p)µ

n
− βm − µ

]
+W2(m −m∗)

[
βn − γ − µ

]
+W3(1 − 1∗)

[
pµ
1
− µ

]
(24)

From considering equilibrium points, we get µ = (1−p)µ
n∗ − β

∗m∗, βn∗ = γ + µ, and 1∗ = p and after
substituting the values in the above equation, we get the following:

dL1

dt
= −µW1(1 − p)

(n − n∗)2

nn∗
+ β(W2 −W1)(m −m∗)(n − n∗) −W3µ(1 − 1∗)2 (25)

If W1 =W2 =W3 = 1, then

dL1

dt
≤ −µW1(1 − p)

(n − n∗)2

nn∗
−W3µ(1 − 1∗)2

≤ 0 (26)

and if n = n∗ and 1 = 1∗ then dL1
dt = 0.

Therefore, by the LaSalle invariance principle, the endemic equilibrium point (the spread level of
misinformation) is globally asymptotically stable [33].

4. Discussion

The SIRMIS Model can be used to estimate the peak number of misinformed users, the duration of the
sudden increase in the number of misinformed users, and the impacts of sharing the true information. The
model simulates the transition of social network users between different categories over time.
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The SIRMIS Model outline the rate of change of users in each category based on the misinformation
sharing rate, true information acceptance rate, and non-informed social network users number where
users can move between no-information, misinformation, true information accepted, and true information
shared categories. The parameters µ, β, γ, and p represent the new users or stop sharing users rate, the
misinformation sharing rate from misinformed user in a time period, true information acceptance rate, and
true information sharing rate, respectively. The variables n, m, r and g represent the population sizes of
non-informed, misinformed, truth accepted, and truth received users, respectively.

By understanding the dynamics of misinformation share researchers and social networks policymakers
can assess the effectiveness of different control measures, predict the future course of the sudden increase
in the number of misinformed users, and develop strategies to reduce the spread of misinformation within
social networks.

We will discuss Figure 1. which is a graphical representation of the SIRMIS model.
The parameters in the model are µ = 0.5, β = 1.98, γ = 0.5, and p = 0.6. The Rv = 0.79 < 1 point is

stable.The eigenvalues corresponding to misinformation free equilibrium point are -0.5, -0.5 and -0.208.
Therefore, it is linearly stable. After sharing true information, the users with misinformation decreased
from 0.247 to 0.005 at the misinformation share rate β = 1.98 due to the effect of true information share. The
results show that the group of users with no information decreased to a lower level due to share of true
information and misinformation. Further, the number of misinformation-sharing users declined drastically
because of the sharing of true information, and the number of users who accepted the true information
increased. As we induce the true information on social network users with no information, the number of
misinformed users suddenly decreases to a very low level. Furthermore, we can notice that the spread of
misinformation is very fast, and for a particular example, it has a peak where it reaches around 8000 users,
but with true information sharing it progressively decreases.

Therefore, we can conclude that the misinformation share rate and R0 have a very important role in
misinformation spreading and this can be controlled by true information impact.

Figure 2 illustrates the spread of misinformation without sharing the true information. We can conclude
that the number of users n (with no information) decreases to a lower level because of effect of the
misinformation sharing rate.

Figure 1: The spread of misinformation after sharing the true information
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Figure 2: The spread of misinformation without sharing the true information

5. Conclusion

We have introduced a novel SIRMIS model based on SIR epidemic equations which can be effectively
applied in the field of social networks misinformation spread control. The model detects the dynamics of
misinformation sharing when users receive the true information. The system of equations is shown to be
stable and allows one to predict the misinformation spread and potential prevention by sharing the true
information. This system allows many predictions in time and outcomes of particular information sharing
result in one closed group of social media users.

According to our SIRMIS model, the feasibility of controlling the misinformation spread on social
networks critically depends on the values of R0 and Rv. The more severe misinformation spreading (the
greater value of R0 or Rv), the more intensive must be the true information share in order to significantly
reduce the misinformation spread on social networks.

In the next phase of this study, we intend to enhance our SIRMIS model by adopting an approach that
involves the identification and engagement of targeted influential users, to whom will be shared the true
information so that we can see the effect on the misinformation spreading control. These users will be
meticulously selected based on their potential to effectively disseminate accurate information within their
networks. By ensuring that true information is shared with these key individuals, we aim to observe and
analyze its impact on controlling and mitigating the spread of misinformation. This extension of the model
addresses the essential role of influential users in the dissemination of information and directly confronting
the challenges posed by misinformation in today’s digital landscape.

Our approach emphasizes the importance of targeted interventions in combating the proliferation of
false information and underscores the critical potential of influential users in shaping the dynamics of
information flow within online communities. The outcomes of this research are expected to make a
contribution to the field of misinformation control, offering insights that can be applied across various
contexts to strengthen the integrity of information ecosystems. In our future publication we will perform
and present the additional evaluations for other network types, like small-word networks.
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