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Rough ideal convergence in G2NS
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Abstract. In this paper, we demonstrate that the generalized 2-norm space (G2NS) cannot be metrized,
even if it is not a regular space. Additionally, we introduce and explore some issues related to the sets
of rough I-limit points and I-cluster points over G2NS, and we show how these sets can differ from the
established fundamental results.

1. Introduction

Gähler [15] introduced the concept of distance between three points in space, calling it a 2-metric.
He later developed the idea of 2-normed spaces [16] and explored the geometry of these spaces [17].
Afterward, Chaipunya et al. [9] introduced a new concept of a general distance between three arbitrary
points, presenting 1− 3ps. They also studied various fixed point theorems in 1− 3ps spaces and proved that
the topology of a 1 − 3ps space is T1-separable but not T2-separable. Recently, Kundu et al. [20] proposed a
general version of a normed linear space called a generalized 2-normed space (G2NS). They discussed the
topology and demonstrated that the space G2NS is T2-separable. Additionally, they defined a generalized
2-norm (G2NS) on R2 and proved that the topology of G2NS on R2 differs from its standard topology.

Definition 1.1. ([20]) Let X be a vector space over R or C. A function N : X × X → R+ ∪ {0} is called a
generalized 2-norm or G2N if the following conditions are met:

(GN1) N(x, y) = 0 iff x = y = θ.

(GN2) N(λx, λy) = |λ|N(x, y) for every x, y ∈ X and λ ∈ R or C.

(GN3) There exist r, s > 0 such that N(x − z, y − z) < s for all x, y, z ∈ X and N(x, x),N(y, y),N(z, z) < r.

The pair (X,N) is called a generalized 2-normed space or G2NS.
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Definition 1.2. ([20]) Let (X,N) be a G2NS and consider the family BN of all open balls of (X,N) where,

BN = {BN(x, r) : x ∈ X, r > 0} and BN(x, r) = {y ∈ X : N(x − y, x − y) < r}.

The topology of (X,N), denoted by τN, is the topology with BN as subbase which is T2-separable. Further-
more, a subset A ⊆ X is bounded if M(A) < ∞,where

M(A) = sup{N(x − z, y − z) : x, y, z ∈ A}

is the maximal perimeter of A and for all x ∈ X and r > 0,we have

M(BN(x, r)) = rM(BN(0, 1)) < ∞.

Proposition 1.3 (([20])). Supposeλ : [0, 2π)→ R is periodic with periodπ such thatλ([0, 2π)) ⊆ [m∗,m∗] for some m∗,m∗ >
0. Consider N : R2

×R2
→ R defined as follows:

N(r1eiα1 , r2eiα2 ) =
r1 + r2

2
λ
(
α1 + α2

2

)
.

Then, (R2,N) is a G2NS. Following a specific selection of the function λ : [0, 2π)→ R defined by

λ(α) =


1 if α ∈ Q ∩ [0, π)
1
2 if α ∈ Qc

∩ [0, π)
1 if α ∈ π +Q ∩ [0, π)
1
2 if α ∈ π +Qc

∩ [0, π)

in the aforementioned observation, Kundu et. al. [20, Example 4.17] demonstrated that the topology onR2 caused by
that G2NS is distinct from the usual topology on R2. For this particular G2N N one can obtain:

BN(0, 1) = {reiα : rλ(α) < 1} = {reiα : r < 1, α ∈ Q ∩ [0, π)}

∪ {reiα : r < 2, α ∈ Qc
∩ [0, π)}

∪ {reiα : r < 1, α ∈ π +Q ∩ [0, π)}

∪ {reiα : r < 2, α ∈ π +Qc
∩ [0, π)}.

Kundu et al. [20] have shown that the space G2NS is T2-separable, and the topology of G2NS on R2

differs from its usual topology. This leads to several important questions: Is the generalized 2-normed
space metrizable? Under which conditions can any norm be induced from a generalized 2-norm? Is the
convergence in the topology induced by a generalized 2-norm onR2 the same as the ordinary convergence
in R2? To address these questions, we will provide some relevant examples. In conclusion, we declare that
the questions do not hold.

On the other hand, we will briefly discuss an important concept in set theory called the ideal of subsets
of N. A family I ⊆ P(N) is termed an ideal on N if it satisfies the following conditions: (i) A ∪ B ∈ I
whenever A,B ∈ I, (ii) B ∈ I whenever A ∈ I and B ⊆ A. An ideal I is considered non-trivial if it is not
empty and not equal to P(N) [19]. The concept of rough convergence was first introduced in the works of
Phu [23, 24] and has since gained significant attention from mathematicians. Over time, this particular area
has drawn noticeably more attention to numerous mathematicians [2, 5–7, 21, 25–27]. Now, let’s review the
concept of rough I-convergence in normed spaces.

Definition 1.4. ([11, 22]) A sequence {xn}n∈N in a normed space X is said to be rough I-convergent to x∗
with degree of roughness r (≥ 0), if for each ε > 0, {n ∈ N : ∥xn − x∗∥ ≥ r + ε} ∈ I. Observe that r = 0
in the aforementioned definition corresponds to the definition of I-convergence of sequences [19]. In this
scenario, the definition of (classical) rough convergence is obtained when one set I =Fin (the set of finite
subsets ofN).
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We could follow references [1, 3, 4, 12–14, 18] related to rough convergence, rough statistical convergence
and rough ideal convergence.

Our main goal is to explore the concept of a rough version of ideal convergence in G2NS. This concept
naturally encompasses rough ideal convergence in normed spaces by considering the generalized 2-norm
N appropriately. Additionally, we aim to provide a more general characterization of the rough limit set
I-LIMr

Nxi for any G2NS. Furthermore, the article thoroughly examines some related findings from [6, 7, 22–
24]. Due to certain properties of G2NS, the results we have obtained differ from those presented in previous
literature.

2. Main results

To address the previous question, we present an example that demonstrates the difference between
convergence in the topology induced by the G2NS on R2 and the standard convergence in R2.

Example 2.1. First, we define a real-valued function f : R→ R by f (x) =

 1
2 , x ∈ Q,
1
4 , x ∈ R \Q.

Next, we define the generalized 2-norm N : R2
×R2

→ R+ ∪ {0} in the following manner:

N((x1, x2), (y1, y2)) =

(|x1| + |x2| + |y1| + |y2|) · 1
2 , if x1 = 0

(|x1| + |x2| + |y1| + |y2|) · f ( x2
x1

), if x1 , 0.

(GN1) Let N(x,y) = 0 where x = (x1, x2),y = (y1, y2). This ensures that x1 = 0, otherwise N(x,y) would never
zero. Therefore, we have

N((x1, x2), (y1, y2)) = 0⇔ (|x2| + |y1| + |y2) ·
1
2
= 0⇔ x = y = 0.

(GN2) Let x = (x1, x2),y = (y1, y2) ∈ R2. Then, it is evident that

N(λx, λy) = |λ|N(x,y), for every λ ∈ R.

(GN3) Let x = (x1, x2),y = (y1, y2), z = (z1, z2) ∈ R2 and let r be a positive real number such that

N(x,x),N(y,y),N(z,z) < r and s = 8r.

Then, it follows that

N(x-z,y-z) =

(|x1 − z1| + |x2 − z2| + |y1 − z1| + |y2 − z2|) · f ( x2−z2
x1−z1

) when x1 , z1

(|x2 − z2| + |y1 − z1| + |y2 − z2|) · 1
2 when x1 = z1

≤
1
2

(|x1 − z1| + |x2 − z2| + |y1 − z1| + |y2 − z2|)

≤
1
2
{(|x1| + |x2|) + (|y1| + |y2|) + 2(|z1| + |z2|)} < s

Thus, we can conclude that (R2,N) is a generalized 2-normed space.

Observe now that we can write BN(0, 1) = A ∪ B, where A = {(x, y) ∈ R2 : |x| + |y| < 1} and
B = {(x, y) ∈ R2 : 1 ≤ |x| + |y| < 2 and y/x ∈ R −Q}.
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Consider the topological space (R2, τN) induced by the G2NS (R2,N). The sequences {xn}n∈N, {un}n∈N in
R are set up as follows: for each n ∈N,we have

xn =
(
1 +

1
2n

)n
and un =

1
2(4n − 1)(4n − 3)

.

Let us set yn =
∑n

k=1 uk. Then, it is obvious that both {xn}n∈N, {yn}n∈N are increasing and (
√

e, π16 ) is the
usual limit of {(xn, yn)}n∈N. Now observe that(

√
e,
π
16

)
∈ {(x, y) ∈ R2 : 1 ≤ |x| + |y| < 2 and y/x ∈ R −Q} ⊆ BN(0, 1)

=⇒
(
√

e,
π
16

)
∈ BN(0, 1), whereas (xn, yn) < BN(0, 1) for any n ∈N.

This assures that (xn, yn)↛
(√

e, π16

)
in (R2, τN). We assert that {(xn, yn)}n∈N has no limit in (R2, τN).Assume,

on the contrary, {(xn, yn)}n∈N converges to (x∗, y∗) in the topological space (R2, τN). Since τN is finer than
the usual topology on R2, it follows that (x∗, y∗) = (

√
e, π16 ).Which is a contradiction, as we already obtain

(xn, yn)↛
(√

e, π16

)
in (R2, τN). The assertion therefore meets.

The subsequent example depicts that the topological space (R2, τN) defined in Example 2.1 is not regular.

Example 2.2. Consider the closed set K = R2
\ BN(0, 1) in (R2, τN) and p = (

√
e, π16 ) < K. Consider an open

set V∗ in (R2, τN) such that p ∈ V∗ ⊆ BN(0, 1). Then, for sufficiently small ε > 0,we can write(x, y) ∈ R2 :

√
(x −

√
e)2 +

(
y −
π
16

)2
< ε

 ∩ {(x, y) ∈ R2 :
y
x
∈ R \Q

}
⊆ V∗.

We set pn = (xn, yn), where xn =
(
1 + 1

2n

)n
and yn =

n∑
k=1

1
2(4k − 1)(4k − 3)

, for each n ∈ N. Note that {pn}n∈N

converges to p usually. So there exists nε ∈N such that for each n ≥ nε,

pn ∈ Bε(p), where Br(p) denotes the usual-open ball with center p and radius r.

For each n ∈ N, let us choose Vn ∈ τN such that pn = (xn, yn) ∈ Vn. Since { yn

xn
}n∈N ⊆ Q, therefore pn must

belong to the concentrate part of Vn, for each n ∈ N. This ensures that for each n ∈ N, there exists δn > 0
such that Bδn (pn) ⊆ Vn. Thus, for each n ≥ nε,we have

Bδn (pn) ∩ Bε(p) , ∅
=⇒ Bδn (pn) ∩ (Bε(p) ∩ {(x, y) : y/x ∈ R \Q}) , ∅,
=⇒ Vn ∩ (Bε(p) ∩ {(x, y) : y/x ∈ R \Q}) , ∅⇒ Vn ∩ V∗ , ∅.

Therefore, it follows that every open cover of K is also an open cover of {pn : n ∈ N} and every open cover
of {pn : n ∈ N} intersects every open set V∗ containing p. This ensures that the point p and the closed set K
cannot be strongly separated by open sets. Thus, the topological space (R2, τN) is not regular. Consequently,
it is not metrizable.

Remark 2.3. Does every generalized 2-norm (G2N) on a vector space X be obtained from a norm ∥.∥ on X?
The answer is yes. Setting N(x,y) = ∥x∥ + ∥y∥, for all x,y ∈ X.

A generalized 2-norm (G2N) on a vector space X defines a norm ∥.∥ on X which is given by ∥x∥ = N(x, 0),
for all x ∈ X, provided G2N satisfies the following property

N(x + y, 0) ≤ N(x, 0) +N(y, 0) for all x,y ∈ X.
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The following example shows that any norm cannot be directly induced from the G2N by placing one
coordinate 0, i.e., ∥x∥ = N(x, 0).

Example 2.4. Let us consider X = ℓ
1
2 the space of sequences of complex numbers {ξn}n∈N satisfying

∞∑
n=1

|ξn|
1
2 <

∞.

Let us define N : ℓ
1
2 ×ℓ

1
2 → R≥0 by N(x,y) =

 ∞∑
j=1

|ξ j|
1
2


2

+

 ∞∑
j=1

|η j|
1
2


2

,where x = {ξn, }n∈N,y = {ηn}n∈N ∈ ℓ
1
2 .

(GN1) Now N(x,y) = 0 ⇐⇒

 ∞∑
j=1

|ξ j|
1
2


2

+

 ∞∑
j=1

|η j|
1
2


2

= 0 ⇐⇒ ξ j = 0 = η j for all j ∈N ⇐⇒ x = 0 = y.

(GN2) Let α ∈ C and x = {ξn, }n∈N,y = {ηn}n∈N ∈ ℓ
1
2 . Then, we have

N(αx, αy) =

 ∞∑
j=1

|αξ j|
1
2


2

+

 ∞∑
j=1

|αη j|
1
2


2

= |α|N(x,y).

(GN3) Finally, assume that x = {ξn}n∈N,y = {ηn}n∈N, z = {ζn}n∈N ∈ ℓ
1
2 and r be a positive number such that

N(x, x),N(y,y),N(z, z) < r, and set s = 4r. Observe that

N(x, x) < r⇒
∞∑
j=1

|ξ j|
1
2 <

√
r
2
.

Similarly, we obtain
∞∑
j=1

|η j|
1
2 <

√
r
2

and
∞∑
j=1

|ζ j|
1
2 <

√
r
2
.

Note that for any a, b ∈ C,we have |a − b|
1
2 ≤ |a|

1
2 + |b|

1
2 . So we obtain

∞∑
i=1

|ξi − ζi|
1
2 ≤

∞∑
i=1

|ξi|
1
2 +

∞∑
i=1

|ζi|
1
2 =
√

2r and
∞∑

i=1

|ηi − ζi|
1
2 <
√

2r .

Therefore, it follows that

N(x − z,y − z) =

 ∞∑
j=1

|ξ j − ζ j|
1
2


2

+

 ∞∑
j=1

|η j − ζ j|
1
2


2

≤ 4r = s.

Thus, N is a generalized 2-norm on ℓ
1
2 . Since ℓp is not a normed space for 0 < p < 1,we conclude that

N(x, 0) or N(0, x) cannot be a norm on X.

In our study of G2NS, we have introduced the concepts of rough I-convergence and I-cluster points
for a sequence. To illustrate this, we offer a significant example (see Example 2.6) demonstrating that the
set of rough ideal convergent sequences is distinct from the set of ideal convergent sequences in G2NS.
Additionally, we have defined the rough ideal limit set and established a connection between ideal cluster
points and rough ideal limit points of a G2NS-valued sequence.
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Definition 2.5. A sequence {xn}n∈N in a G2NS, (X,N) is considered rough I-convergent to x∗ with a rough-

ness degree r ≥ 0, denoted by xn
(I,r)
−−−→

N
x∗, if for every ε > 0,

{n ∈N : N(xn − x∗, xn − x∗) ≥ r + ε} ∈ I.

The non-negative real number r is referred to as the degree of roughness. The collection

I − LIMr
Nxi =

{
x∗ ∈ X : xn

(I,r)
−−−→

N
x∗
}

is designated as the r-limit set of {xn}n∈N. We say that a sequence {xn}n∈N is rough I-convergent if there
exists r ≥ 0 for which I − LIMr

Nxi , ∅. In this case, the convergence associated with the ideal Fin is known
as rough convergence.

Let us demonstrate the novelty of the concept with a non-trivial example. Consider a sequence {xn}n∈N
with values in G2NS that does not I-converge to any point, but

I − LIMr
Nxi , ∅, for some r > 0.

Example 2.6. Let us consider the G2NS as in Example 1.3 andG = {1 :N→ [0,∞) : 1(n)→∞ and n/1(n)↛
0}.We also consider an ideal [8] of the form

Z1( f ) = {A ⊂N : d f
1(A) = 0}, where d f

1(A) = lim
n→∞

f (|A ∩ {1, 2, ...,n}|)
f (1(n))

,

where f is an unbounded modulus function and 1 ∈ G such that f (n)/ f (1(n))↛ 0 as n→∞.

Consider the unbounded modulus funtion f (x) =
√

x, x ∈ [0,∞), and the weight 1(n) = 4
√

n,n ∈N. Since

lim
n→∞

√

n1/5
√

n1/4
= 0, it follows that A ∈ Z1( f ), where A = {n5 : n ∈ N}. The sequence {xn}n∈N in R2 is now set up

as follows:

xn =

rn exp(iθn) if n ∈N \ A
((−1)n,n!) if n ∈ A

where the sequences {θn}n∈N\A, {rn}n∈N\A in R are defined, respectively, as follows:

θn =

π2 + 1
n if n ∈ {2t : t ∈N} \ A

π − 1
n if n ∈ {2t − 1 : t ∈N} \ A

and rn = 3 −
1
n

for n ∈N \ A.

It is evident that the sequence {xn}n∈N is notZ1( f )-convergent to any point in (R2,N), since

{2t : t ∈N} \ A, {2t − 1 : t ∈N} \ A < Z1( f ).

Let us now show that xn
(Z1( f ),r)
−−−−−−→

N
x∗,where r = 1.5 and x∗ = 0. Observe that for each ε > 0,we can write

BN(0, 1.5 + ε) ⊇ {reiθ : r < 1.5 + ε, θ ∈ Q ∩ [0, π)} ∪ {reiθ : r < 3 + 2ε, θ ∈ Qc
∩ [0, π)}.

Therefore, we have
{n ∈N : N(xn − x∗, xn − x∗) ≥ r + ε} ⊆ A.

Since A ∈ Z1( f ),we have
{n ∈N : N(xn − x∗, xn − x∗) ≥ r + ε} ∈ Z1( f ).

Thus, we can conclude that xn
(Z1( f ),1.5)
−−−−−−−→

N
0 in (R2,N).
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Definition 2.7. A sequence {xn}n∈N in a G2NS is called I-bounded if there exists M > 0 such that

{n ∈N : N(xn, xn) ≥M} ∈ I.

Our initial finding indicates that a G2NS-valued sequence is rough I-convergent if and only if it is
I-bounded.

Theorem 2.8. A sequence {xn}n∈N in a G2NS is rough I-convergent if and only if it is I-bounded.

Proof. First assume that {xn}n∈N is I-bounded. Then, there exists a positive M > 0 such that

{n ∈N : N(xn, xn) ≥M} ∈ I.

Therefore, it follows that xn
(I,M)
−−−−→

N
0.

Conversely, suppose that xn
(I,r)
−−−→

N
x∗. Then,

A = {n ∈N : N(xn − x∗, xn − x∗) > r + 1} ∈ I.

Let us pick arbitrary j ∈ N \ A. Then, we have N(x j − x∗, x j − x∗) ≤ r + 1.We set t = N(−x∗,−x∗). By (GN3),
there exists s > 0 such that N(x j, x j) ≤ s. This ensures that

{n ∈N : N(xn, xn) > s} ⊆ A.

Consequently, we have
{n ∈N : N(xn, xn) > s} ∈ I.

Hence, we deduce that {xn}n∈N is I-bounded.

The following result shows that the maximum perimeter of the set I − LIMr
Nxi is finite.

Theorem 2.9. Suppose {xn}n∈N is a I-bounded sequence in a G2NS (X,N). Then, the limit set I − LIMr
Nxi is

bounded.

Proof. Let us fix x∗ ∈ I − LIMr
Nxi. Now consider arbitrary y∗ ∈ I − LIMr

Nxi. Then, we have A,B ∈ I,where

A = {n ∈N : N(xn − x∗, xn − x∗) > r + 1},

B = {n ∈N : N(xn − y∗, xn − y∗) > r + 1}.

Note thatN \ (A ∪ B) , ∅, sinceN \ (A ∪ B) ∈ F (I) (where F (I) is the filter associated to the ideal I). Let
us choose any j ∈N \ (A ∪ B). Then, we have

N(x j − x∗, x j − x∗) ≤ r + 1 and N(x j − y∗, x j − y∗) ≤ r + 1.

Now from (GN3), it follows that there exists s > 0 such that

N(y∗ − x∗, y∗ − x∗) < s.

This implies that y∗ ∈ BN(x∗, s). Since y∗ was arbitrary, we have I − LIMr
Nxi ⊆ BN(x∗, s). Therefore, we have

M(I − LIMr
Nxi) ≤M(BN(x∗, s))
= sM(BN(0, 1)) < ∞.

Thus, we can conclude that I − LIMr
Nxi is bounded in (X,N).
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Theorem 2.10. Suppose {xn}n∈N and {yn}n∈N are sequences in (X,N) such that xn
(I,r1)
−−−→

N
x∗ and for each n ∈ N, we

have yn ∈ BN(xn, r2), where r1, r2 ≥ 0. Then, there exists s > 0 such that yn
(I,s)
−−−→

N
x∗.

Proof. Let us fix ε∗ > 0 and set t = max{r1 + ε∗, r2}. Since xn
(I,r1)
−−−→

N
x∗, it follows that

A = {n ∈N : N(xn − x∗, xn − x∗) > r1 + ε∗} ∈ I.

Then, for any j ∈N \ A,we have

N(x j − x∗, x j − x∗) ≤ r1 + ε∗ ≤ t and N(x j − y j, x j − y j) < r2 ≤ t (since y j ∈ BN(x j, r2)).

By (GN3), there exists s = s(t) > 0 such that N(y j − x∗, y j − x∗) < s. Pick ε > 0 be arbitrary. Then, we have

{n ∈N : N(yn − x∗, yn − x∗) ≥ s + ε} ⊆ A.

Thus, for any ε > 0,we have
{n ∈N : N(yn − x∗, yn − x∗) ≥ s + ε} ∈ I.

Therefore, we can deduce that yn
(I,s)
−−−→

N
x∗.

Theorem 2.11. If the sequences {xn}n∈N and {yn}n∈N are rough ideal convergent to the same point x∗ in (X,N), then
there exists A ⊆ N such thatN \ A ∈ I and the maximal perimeter of the set {xn − yn : n ∈ A} is bounded by some
constant multiple of M(BN(0, 1)).

Proof. Note that the given hypothesis ensures that there exist r1, r2 ≥ 0 such that M1,M2 ∈ I, and for each
j ∈N \ (M1 ∪M2) we have

N(x j − x∗, x j − x∗) ≤ r1 + ε0 and N(y j − x∗, y j − x∗) ≤ r2 + ε0,

where ε0 is a fixed positive number. Let us take A = N \ (M1 ∪ M2). Then, it is easy to observe that
N \ A = M1 ∪M2 ∈ I. Let us now set t = max{r1 + ε0, r2 + ε0}. Thus, from (GN3), there exists s = s(t) > 0
such that N(x j − y j, x j − y j) < s i.e., x j ∈ BN(y j, s) for each j ∈ A. This ensures that {xn − yn : n ∈ A} ⊆ sBN(0, 1).
Consequently we have M({xn − yn : n ∈ A}) ≤ sM(BN(0, 1)).

A connection between ideal convergence and rough ideal convergence is illustrated in the following
result.

Theorem 2.12. If {xn}n∈N isI-convergent to x in (X,N), then for any r ≥ 0, there exists s > 0 such thatI−LIMr
Nxi ⊆

BN(x, s) and x ∈
⋃
s>0

⋂
x∗∈I−LIMr

Nxi

BN(x∗, s).

Proof. Since {xn}n∈N is I-convergent to x, for any r ≥ 0, we have xn
(I,r)
−−−→

N
x. Therefore, Theorem 2.9 entails

that there exists s > 0 such that for any y∗ ∈ I − LIMr
Nxi,we have

x ∈ BN(y∗, s). (1)

This gives y∗ ∈ BN(x, s) for every y∗ ∈ I−LIMr
Nxi i.e., I−LIMr

Nxi ⊆ BN(x, s).Now from Equation 1, it follows
that

x ∈ BN(x∗, s) for all x∗ ∈ I − LIMr
Nxi and for some s > 0

⇒ x ∈
⋂

x∗∈I−LIMr
Nxi

BN(x∗, s) for some s > 0

⇒ x ∈
⋃
s>0

⋂
x∗∈I−LIMr

Nxi

BN(x∗, s).

Hence, our assertion follows.
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Theorem 2.13. For any r, σ ≥ 0, there exists s = s(r, σ) > 0 such that

I − LIMr
Nxi + BN(0, σ) ⊆ I − LIMs

Nxi.

Proof. We set t = max{r + 1, σ}. Let x∗ = y + z,where y ∈ I − LIMr
Nxi and z ∈ BN(0, σ). Therefore, we have

A = {n ∈N : N(xn − y, xn − y) > t} ∈ I and N(z, z) < σ < t.

Now by (GN3), there exists s > 0 such that

{n ∈N : N(xn − y − z, xn − y − z) > s + ε} ⊆ A, for each ε > 0.

This implies x∗ ∈ I − LIMs
Nxi. Consequently, I − LIMr

Nxi + BN(0, σ) ⊆ I − LIMs
Nxi.

Theorem 2.14. Suppose {xn}n∈N is a sequence taking values in a G2NS (X,N). Then, for any r ≥ 0, there exists
s = s(r) > 0 such that I − LIMr

Nxi ⊆ int(I − LIMs
Nxi).

Proof. If I − LIMr
Nxi = ∅, then we are done. So we assume that I − LIMr

Nxi , ∅ and take arbitrary
x∗ ∈ I − LIMr

Nxi. Therefore, we have

A = {n ∈N : N(xn − x∗, xn − x∗) > r + 1} ∈ I.

Pick arbitrary y ∈ BN(x∗, r).Again using (GN3), we can find an s = s(r) > 0 such that for each ε > 0,we have

{n ∈N : N(xn − y, xn − y) > s + ε} ⊆ A.

This ensures that y ∈ I − LIMs
Nxi. Therefore, we have

BN(x∗, r) ⊆ I − LIMs
Nxi.

Since x∗ was arbitrary, therefore we deduce that I − LIMr
Nxi ⊆ int(I − LIMs

Nxi).

Definition 2.15. Let x = {xn}n∈N be a sequence G2NS (X,N). Then, γ ∈ X is an I-cluster point of x, if for
each ε > 0,

{k ∈N : N(xk − γ, xk − γ) < ε} < I.

The set ΓIx,N denotes the assortment of I-cluster points of x in (X,N).

Example 2.16. Consider the sequence as in Example 2.6. Since d f
1({2t : t ∈ N} \ A) , 0 and d f

1({2t − 1 : t ∈
N} \ A) , 0, for each ε > 0, it follows that{

n ∈N : xn ∈ BN((3,
π
2

), ε)
}
, {n ∈N : xn ∈ BN((3, π), ε)} < Z1( f ).

It is easy to realize that the sequence {xn}n∈N has no other I-cluster point. Thus, we have

ΓIx,N = {(3,
π
2

), (3, π)}.

The subsequent results are pertained with I-cluster points and the rough I-limit set of a G2NS valued
sequence.

Theorem 2.17. For any sequence x = {xn}n∈N in (X,N), we have

I − LIMr
Nxi ⊆

⋂
γ∈ΓIx,N

BN(γ, s), for some s = s(r) > 0.
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Proof. Let x∗ ∈ I − LIMr
Nxi be arbitrary. Let us fix t > r. Then,

A = {n ∈N : N(xn − x∗, xn − x∗) ≥ t} ∈ I.

Now for any γ ∈ ΓIx,N,we have

B = {n ∈N : N(xn − x∗, xn − x∗) < t} < I.

Note that (N \ A) ∩ B , ∅, since (N \ A) ∩ B < I. Let us pick any j ∈ (N \ A) ∩ B. Thus, we have

N(x j − x∗, x j − x∗) < t and N(x j − γ, x j − γ) < t.

Therefore, (GN3) entails that there exists s > 0 such that N(x∗−γ, x∗−γ) < s. Since x∗ ∈ I-LIMr
Nxi was chosen

arbitrarily, we have
I − LIMr

Nxi ⊆ BN(γ, s)

for each γ ∈ ΓIx,N. Thus, we can conclude that

I − LIMr
Nxi ⊆

⋂
γ∈ΓIx,N

BN(γ, s).

Hence the results.

Definition 2.18. A G2NS (X,N) is said to have property P if for each x ∈ X there exists δ > 0 such that
BN(x, δ) ⊆ BN(y, s) whenever x ∈ BN(y, s) for some y ∈ X and s > 0.

Theorem 2.19. If the G2NS (X,N) has the property P, then ΓIx,N is a closed set.

Proof. Assume y ∈ cl(ΓIx,N) (cl(A) denotes closure of A) and pick ε > 0. Evidently, we have

ΓIx,N ∩ BN(y, ε) , ∅,

so choose z ∈ ΓIx,N ∩ BN(y, ε). By virtue of property P, there exists δ > 0 such that BN(z, δ) ⊆ BN(y, ε).
Therefore, we have

{n ∈N : N(xn − z, xn − z) < δ} ⊆ {n ∈N : N(xn − y, xn − y) < ε}.

Since {n ∈N : N(xn − z, xn − z) < δ} < I,we deduce that y ∈ ΓIx,N.

3. Concluding remarks

In any normed space (X, ∥.∥), the space (X,N∥.∥) is a G2NS, where N∥.∥(x, y) = ∥x∥+ ∥y∥, for all x, y ∈ X.We
refer to this as the induced G2N on X by the norm ∥.∥. It’s easy to understand that (X,N∥.∥) has the property
P, but the G2NS given in Example 2.1 doesn’t have the property P. This is because for each (x, y) ∈ BN(0, 1)
with y

x ∈ R \ Q and 1 ≤ |x| + |y| < 2, there doesn’t exist any t > 0 such that BN((x, y), t) ⊆ BN(0, 1). For this
induced G2NS, we can assign carefully chosen values of ’s’ in terms of the degree of roughness ’r’ (e.g. s = r
or 2r) in the results obtained in the last section of this article. Several studies have already examined the
cases when the specific G2NS (X,N∥.∥) is taken into consideration (visit [5–7, 10, 23, 24]).
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[15] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148.
[16] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1964), 1–43.
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