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Abstract. In this paper, we define and introduce deferred logarithmic transformations, which are more
general and effective than well-known transformations. Additionally, we provide several inclusion the-
orems and illustrative examples. We investigate the limiting behavior of deferred logarithmic moving
averages of numerical sequences. We also present necessary and sufficient Tauberian conditions under
which convergence of a sequence or its certain subsequences follows from its deferred logarithmic summa-
bility. As a result, the method and theory developed in this paper may contribute to obtaining more
interesting and useful results concerning other advanced summability methods and to extending these
findings to additional areas of research.

1. Introduction

In summability theory, despite the significant progress made with existing methods, there remains a
persistent need for continued research and refinement. While the current transformations exhibit many ad-
vantageous properties, it has been observed that nearly all of them also present undesirable characteristics.
For instance, the Cesàro transformation of any positive order increases ultimate bounds and oscillations
of certain sequences of functions and does not always preserve some convergence types for sequences of
functions such as continuous, uniform or mean-square. To overcome these limitations, Agnew [1] intro-
duced the deferred Cesàro mean as a generalization of the Cesàro mean, which possesses useful properties
not present in Cesàro’s and other well-known transformations. In this pioneering study, Agnew also
introduced a necessary and sufficient condition so that the deferred Cesàro transformation may include
the Cesàro transformation. Since then, this topic has been extensively investigated by researchers from
various perspectives. Moreover, deferred Cesàro means have been studied in various contexts, including
paranormed spaces [9], sequence spaces of random variables [12] and fuzzy numbers [33]. The integration
of deferred Cesàro means with the concept of statistical convergence has significantly expanded the scope
of research, paving the way for further studies [8, 11, 13, 20]. In recent years, deferred Cesàro means have
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become a highly active area of research, due to their applications in summability and approximation theory.
For more details, we refer to [3–5, 7, 10, 14–18, 25–27, 29, 32, 34].

In this paper, inspired by the above-mentioned studies, the logarithmic method will form the basis of
our research. In the literature, there has been a surge of studies on Tauberian conditions for logarithmic
summability methods, both in the classical sense and in the statistical sense. Additionally, researchers have
expanded these studies to various sequence spaces. Here, we reference only a few of them [2, 6, 19, 21–
24, 28, 31, 36].

Although the aforementioned studies are milestones in this field, our primary motivation for conducting
this research is our shared goal with Agnew [1]. In this study, we introduce the deferred logarithmic trans-
formation by modifying the logarithmic method, resulting in a more general and effective transformation
compared to the logarithmic and other well-known methods in terms of its features.

We consider a sequence (un) of real or complex numbers. The deferred logarithmic means Dp,q
ℓn

(u) of (un)
is defined by

Dp,q
ℓn

(u) =
1
ℓp,qn

qn∑
k=pn+1

uk

k
, where ℓp,qn =

qn∑
k=pn+1

1
k
∼ log

qn

pn
, (1)

where (pn) and (qn) are the sequences of non-negative integers satisfying

pn < qn, n = 1, 2, . . . , (2)

and

lim
n→∞

qn = ∞. (3)

It is important to observe that when pn = n− 1 and qn = n, we obtain the identity transformation, and when
pn = 0 and qn = n, the corresponding deferred logarithmic mean reduces to the logarithmic mean.

Since

lim
n→∞

ℓp,qn

log
qn

pn

= 1,

the sequences {Dℓn } and {∗Dℓn } are equiconvergent with the same limit, where

∗Dp,q
ℓn

(u) =
1

log
qn

pn

qn∑
k=pn+1

uk

k
,

in which case the logarithm is to the natural base e.

We say that (un) is deferred logarithmic summable of first order, briefly: summable (Dℓn , 1), if there exists
some L ∈ C such that

lim
n→∞

Dp,q
ℓn

(u) = L. (4)

In this paper, innovating the definition of a properly deferred sequence given by [1], we provide several
inclusion theorems and illustrative examples. Additionally, we investigate the limiting behavior of deferred
logarithmic moving averages of numerical sequences. In the main result of this paper, we present converse
conclusions, namely Tauberian theorems, for the deferred logarithmic method, whose regularity we have
established. Motivated by the definitions of slowly decreasing and slowly oscillating sequences with respect
to logarithmic summability [24], we define the concepts of slow decrease and slow oscillation for a sequence
of real and complex numbers with respect to deferred logarithmic summability, respectively. As a result,
we obtain necessary and/or sufficient conditions under which convergence of a sequence (un) or its certain
subsequences follows from summability by deferred logarithmic means.
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2. Inclusions

Throughout this paper, we shall proceed under the assumption that conditions (2) and (3) hold. Any
additional restrictions on the sequences of non-negative integers (pn) and (qn), if necessary, will be specified
in the relevant theorems.

Remark 2.1. We recall that for the sequence (un) of real or complex numbers, the sequence (σn) of its
arithmetic (also called (C, 1)) averages is defined by

σn(u) =
1
n

n∑
k=1

uk, n = 1, 2 . . . , (5)

while the sequence (τn) of its logarithmic (also called (ℓ, 1)) averages is defined by

τn(u) =
1
ℓn

n∑
k=1

uk

k
, where ℓn =

n∑
k=1

1
k
∼ log n, n = 1, 2 . . . . (6)

Moreover, if a sequence is (C, 1) summable to L, then it is (ℓ, 1) summable to L (see, e.g., [35]). However, the
converse of this statement is not true in general.

Theorem 2.2. Every sequence that is (C, 1) summable to a finite limit L is also (Dℓn , 1) summable to the same value.

Proof. For the reader’s convenience, we provide a sketch of the proof of this claim. To begin with, we
express un in terms of σn as follows:

un = nσn − (n − 1)σn−1.

Accordingly, we can state the following,

Dp,q
ℓn

(u) =
1
ℓp,qn

qn∑
k=pn+1

1
k

(kσk − (k − 1)σk−1) =
1
ℓp,qn

qn∑
k=pn+1

(
σk − σk−1 +

1
k
σk−1

)

=
σqn − σpn

ℓp,qn
+

1
ℓp,qn

qn∑
k=pn+1

σk−1

k
→ 0 + L, n→∞.

So, un → L (C, 1) =⇒ un → L (Dℓn , 1), n→∞.

The converse of Theorem 2.2 is not always true, as shown in the following example.

Example 2.3. Let pn = 2n − 1 and qn = 4n − 1. The sequence (un) = ((−1)nn) is (Dℓn , 1) summable, but not
(C, 1) summable.

Indeed, one can check easily that

Dp,q
ℓn

(u) =
1
ℓp,qn

qn∑
k=pn+1

uk

k

=
1
ℓp,qn

4n−1∑
k=2n

(−1)k
→ 0, n→∞.

So, we say that (un) is deferred logarithmic summable to 0.
On the other hand, we know that if limn→∞ σn exists, then un = o(n),n → ∞. From this fact, since
limn→∞

un
n = limn→∞(−1)n does not exist, we can conclude that the limit of (σn) does not exist. Hence, (un)

is not (C, 1) summable.
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As is well-known, the (C, 1) summability method is regular, meaning that every convergent sequence is
Cesàro summable to the same limit.

Corollary 2.4. The deferred logarithmic summability method is regular under conditions (2) and (3), meaning that
if conditions (2) and (3) are satisfied and a sequence (un) of real or complex numbers converges to a finite limit L, then
(Dℓn , 1) also converges to the same limit L.

However, it is shown by the following example that convergence does not follow from deferred loga-
rithmic summability in general.

Example 2.5. Consider the divergent sequence (un) = ((−1)n).
It is clear that σn → 0, n→∞. Hence, Dp,q

ℓn
→ 0, n→∞.

The converse cases hold only under a suitable condition. Such a condition is called a Tauberian condition,
and the resulting theorem is called a Tauberian theorem. It is important to note that these theorems are
referred to as ’Tauberian’ in honor of A. Tauber, who was the first to prove one of the simplest theorems of
this kind. Next, in the main result of this paper, we present Tauberian theorems for the deferred logarithmic
summability of sequences.

Motivated by the definition of a properly deferred sequence [1], we say that (Dℓn , 1) is properly deferred

if
(
ℓpn

ℓp,qn

)
is bounded.

Theorem 2.6. If (Dℓn , 1) is proper, then a complex sequence that is (ℓ, 1) summable to a finite limit L is also (Dℓn , 1)
summable to the same value.

Proof. We outline the proof of this claim. First, using (6), we obtain

ℓnτn =

n∑
k=1

uk

k
. (7)

Accordingly, based on (1) and (7), we can state

Dp,q
ℓn

(u) =
1
ℓp,qn

(
ℓqnτqn − ℓpnτpn

)
= τqn +

(
ℓqn

ℓp,qn
− 1

)
τqn −

ℓpn

ℓp,qn
τpn

= τqn +
ℓpn

ℓp,qn
(τqn − τpn )→ L + 0, n→∞.

Since (Dℓn , 1) is proper, then un → L (ℓ, 1) =⇒ un → L (Dℓn , 1), n→∞.

However, the converse of Theorem 2.6 is not true in general as the following example shows.

Example 2.7. Let pn = 2n and qn = 4n2. Consider the sequence (un) defined by

un =

 n(n+1)
2 , n is odd,
−

n2

2 , n is even.

It is easy to verify that un → 0 (Dℓn , 1), n→∞.
On the other hand, we have

τn(u) =

 n+1
2ℓn
, n is odd,

0, n is even.

Clearly, (un) is not (ℓ, 1) summable.
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When examining the implication relations among the aforementioned summability methods, we obtain
the following corollary.

Corollary 2.8. If (Dℓn , 1) is proper, then summability (Dℓn , 1) is more effective than summability (ℓ, 1). Consequently,
it is also more effective than summability (C, 1).

3. Auxiliary results

rWe need the following lemma which is essential in the proofs of our main results.

Lemma 3.1. (i) If λ > 1 and n is large enough in the sense that [qλn] > qn, then,

uqn −Dp,q
ℓn

(u) =
ℓp,[q

λ]
n

ℓq,[q
λ]

n

(
Dp,[qλ]
ℓn

(u) −Dp,q
ℓn

(u)
)
−

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)
. (8)

(ii) If 0 < λ < 1 and n is large enough in the sense that qn > [qλn] , then,

uqn −D[pλ],[qλ]
ℓn

(u) =
ℓ[p

λ],q
n

ℓ[q
λ],q

n

(
D[pλ],q
ℓn

(u) −D[pλ],[qλ]
ℓn

(u)
)
+

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

(uqn − uk

k

)
, (9)

where [qλn] denotes the integer part of qλn .

Proof. (i) By definition,

Dp,[qλ]
ℓn

(u) =
1

ℓp,[q
λ]

n

[qλn ]∑
k=pn+1

uk

k

=
1

ℓp,[q
λ]

n

qn∑
k=pn+1

uk

k
+

1

ℓp,[q
λ]

n

[qλn ]∑
k=qn+1

uk

k

=
ℓp,qn

ℓp,[q
λ]

n

Dp,q
ℓn

(u) +
1

ℓp,[q
λ]

n

[qλn ]∑
k=qn+1

uk

k
.

Therefore,

ℓp,[q
λ]

n

ℓq,[q
λ]

n

(
Dp,[qλ]
ℓn

(u) −Dp,q
ℓn

(u)
)
−

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

uk

k
= −Dp,q

ℓn
(u),

that is equivalent to (8).
(ii) The proof of (9) is similar.

Furthermore, we determine the limiting behavior of deferred logarithmic moving averages of a sequence
real or complex numbers.

Theorem 3.2. If a sequence (un) of real or complex numbers is deferred logarithmic summable to a finite limit L, then

lim
n→∞

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

uk

k
= L, (10)
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for each λ > 1, and

lim
n→∞

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

uk

k
= L, (11)

for each 0 < λ < 1.

Proof. If λ > 1 and n is large enough such that [qλn] > qn, then from Lemma 3.1, we have

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

uk

k
= Dp,q

ℓn
(u) +

ℓp,[q
λ]

n

ℓq,[q
λ]

n

(
Dp,[qλ]
ℓn

(u) −Dp,q
ℓn

(u)
)
.

It is obvious that for all λ > 1 and sufficiently large n,

1 <
ℓp,[q

λ]
n

ℓq,[q
λ]

n

<
3λ − 1
λ − 1

. (12)

Thus (10) is obtained from (12) and the assumed convergence of (Dp,q
ℓn

(u)).

If 0 < λ < 1 and n is large enough such that qn > [qλn], then from Lemma 3.1, we have

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

uk

k
= D[pλ],[qλ]

ℓn
(u) +

ℓ[p
λ],q

n

ℓ[q
λ],q

n

(
D[pλ],q
ℓn

(u) −D[pλ],[qλ]
ℓn

(u)
)
.

It is clear that for all 0 < λ < 1 and sufficiently large n,

1 <
ℓ[p

λ],q
n

ℓ[q
λ],q

n

<
3 − λ
1 − λ

. (13)

Thus (11) is obtained from (13) and the assumed convergence of (Dp,q
ℓn

(u)).

4. Main results

For real sequences, we prove the following one-sided theorems. First, we give necessary and sufficient
Tauberian conditions under which convergence of a certain subsequence of a sequence of real numbers
follows from its deferred logarithmic summability.

Theorem 4.1. If a sequence (un) of real numbers is deferred logarithmic summable to a finite limit L, then

lim
n→∞

uqn = L (14)

if and only if

lim sup
λ↓1

lim inf
n→∞

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)
≥ 0 (15)

and

lim sup
λ↑1

lim inf
n→∞

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

(uqn − uk

k

)
≥ 0, (16)
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in which case we necessarily have

lim
n→∞

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)
= 0 (17)

for all λ > 1, and

lim
n→∞

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

(uqn − uk

k

)
= 0 (18)

for all 0 < λ < 1.

We can reformulate conditions (15) and (16) as follows: To every ϵ > 0 and λ1 > 1, there exist n1 =
n1(ϵ) > 0 and λ = λ(ϵ) with 1 < λ < λ1 such that for every n ≥ n1 we have

lim
n→∞

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)
≥ −ϵ,

and for another 1 < λ < λ1 we have

lim
n→∞

1

ℓ[q
λ−1 ],q

n

qn∑
k=[qλ−1

n ]+1

(uqn − uk

k

)
≥ −ϵ.

Remark 4.2. The symmetric counterparts of conditions (15) and (16) are the following:

lim inf
λ↓1

lim sup
n→∞

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)
≤ 0 (19)

and

lim inf
λ↑1

lim sup
n→∞

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

(uqn − uk

k

)
≤ 0, (20)

respectively.
One can modify the proof of Theorem 4.1 so that the conclusion is valid if conditions (15) and (16) are

replaced by (19) and (20), respectively.

The concept of slow decrease with respect to logarithmic summability for a sequence was defined by
Kwee [21], similarly to Schmidt’s concept of slow decrease in the case of Cesàro summability [30]. Kwee’s
definition is equivalent to Móricz’s definition of slow decrease with respect to logarithmic summability
(see, e.g., [24]).

Motivated by the definition of slow decrease with respect to logarithmic summability (see, e.g., [24]),
we say that a real sequence (un) is slowly decreasing with respect to summability (Dℓn , 1) if

lim
λ↓1

lim inf
n→∞

min
qn<k≤[qλn ]

(uk − uqn ) ≥ 0. (21)

Expressed in terms of ϵ and λ, this can be formulated as: For given ϵ > 0, there exist n1 = n1(ϵ) > 0 and
λ = λ(ϵ) > 1 such that

uk − uqn ≥ −ϵ whenever n ≥ n1 and qn < k ≤ [qλn].
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An equivalent reformulation of (21) is the following:

lim
λ↑1

lim inf
n→∞

min
[qλn ]<k≤qn

(uqn − uk) ≥ 0. (22)

Note that conditions (15) and (16) follow from conditions (21) and (22), respectively.
Next, we show that condition of being slowly decreasing with respect to summability (Dℓn , 1) is sufficient

for a deferred logarithmic summable sequence to be convergent.

Theorem 4.3. If a sequence (un) of real numbers is deferred logarithmic summable to a finite limit L and slowly
decreasing with respect to summability (Dℓn , 1), then (un) converges to L.

It is obvious that if the one-sided sided Tauberian condition with respect to logarithmic summability [24],

n log n (un − un−1) ≥ −H, n = 1, 2, . . . ,

is satisfied for some H > 0, then (un) is slowly decreasing with respect to summability (Dℓn , 1).
Indeed, in this case we have

uk − uqn =

k∑
j=qn+1

(u j − u j−1) ≥ −H
k∑

j=qn+1

1
j log j

≥ −H
∫ k

qn

dx
x log x

. (23)

It follows from (23) that

min
qn<k≤[qλn ]

(uk − uqn ) ≥ −H
∫ [qλn ]

qn

dx
x log x

and then,

lim inf
n→∞

min
qn<k≤[qλn ]

(uk − uqn ) ≥ −H logλ.

Since λ can be chosen arbitrarily close to 1, (21) easily follows.
For complex sequences, we prove the following two-sided theorems. First, we give necessary and sufficient

Tauberian conditions under which convergence of a certain subsequence of a sequence of complex numbers follows
from its deferred logarithmic summability.

Theorem 4.4. If a sequence (un) of complex numbers is deferred logarithmic summable to a finite limit L, then (uqn )
converges to L if and only if one of the following two conditions is satisfied:

lim inf
λ↓1

lim sup
n→∞

∣∣∣∣∣∣∣∣ 1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)∣∣∣∣∣∣∣∣ = 0 (24)

and

lim inf
λ↑1

lim sup
n→∞

∣∣∣∣∣∣∣∣ 1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

(uqn − uk

k

)∣∣∣∣∣∣∣∣ = 0, (25)

in which case we necessarily have (17) for all λ > 1, and (18) for all 0 < λ < 1.

We can reformulate conditions (24) and (25) as follows: To every ϵ > 0 and λ1 > 1, there exist n1 =
n1(ϵ) > 0 and λ = λ(ϵ) with 1 < λ < λ1 such that for every n ≥ n1 we have∣∣∣∣∣∣∣∣ 1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)∣∣∣∣∣∣∣∣ ≤ ϵ
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and for another 1 < λ < λ1 we have∣∣∣∣∣∣∣∣∣
1

ℓ[q
λ−1 ],q

n

qn∑
k=[qλ−1

n ]+1

(uqn − uk

k

)∣∣∣∣∣∣∣∣∣ ≤ ϵ.
Motivated by the definition of slow oscillation with respect to logarithmic summability (see, e.g., [24]),

we say that a complex sequence (un) is slowly oscillating with respect to summability (Dℓn , 1) if

lim
λ↓1

lim sup
n→∞

max
qn<k≤[qλn ]

|uk − uqn | = 0. (26)

Expressed in terms of ϵ and λ, this can be formulated as: For given ϵ > 0, there exist n1 = n1(ϵ) > 0 and
λ = λ(ϵ) > 1 such that

|uk − uqn | ≤ ϵ whenever n ≥ n1 and qn < k ≤ [qλn].

An equivalent reformulation of (26) is the following:

lim
λ↑1

lim sup
n→∞

max
[qλn ]<k≤qn

|uqn − uk| = 0. (27)

Note that conditions (24) and (25) follow from conditions (26) and (27), respectively.
Next, we show that condition of being slowly oscillating with respect to summability (Dℓn , 1) is sufficient

for a deferred logarithmic summable sequence to be convergent.

Theorem 4.5. If a sequence (un) of complex numbers is deferred logarithmic summable to a finite limit L and slowly
oscillating with respect to summability (Dℓn , 1), then (un) converges to Lt

If the classical two-sided Tauberian condition with respect to logarithmic summability [24]

n log n|un − un−1| ≤ H, n = 1, 2, . . . ,

is satisfied for some H > 0, then (un) is slowly oscillating with respect to summability (Dℓn , 1).
Indeed, in this case we have

|uk − uqn | ≤

k∑
j=qn+1

|u j − u j−1| ≤ H
k∑

j=qn+1

1
j log j

≤ H
∫ k

qn

dx
x log x

. (28)

It follows from (28) that

max
qn<k≤[qλn ]

|uk − uqn | ≤ H
∫ [qλn ]

qn

dx
x log x

and then

lim sup
n→∞

max
qn<k≤[qλn ]

|uk − uqn | ≤ H logλ.

Since λ can be chosen arbitrarily close to 1, it is easy to verify that (26) holds.

5. Proofs of theorems

Proof of Theorem 4.1. Necessity. It follows from (4) and (14) that

lim
n→∞

(uqn −Dp,q
ℓn

(u)) = 0. (29)
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Case λ > 1.By (4) and (12),we have

lim
n→∞

ℓp,[q
λ]

n

ℓq,[q
λ]

n

(
Dp,[qλ]
ℓn

(u) −Dp,q
ℓn

(u)
)
= 0. (30)

Case 0 < λ < 1. By (4) and (13),

lim
n→∞

ℓ[p
λ],q

n

ℓ[q
λ],q

n

(
D[pλ],q
ℓn

(u) −D[pλ],[qλ]
ℓn

(u)
)
= 0. (31)

Then, (17) (respectively (18)) is obtained from (8) (respectively (9)), (29) and (30) (respectively (31)).
Sufficiency. ssume that (4), (15) and (16) are satisfied. In the case λ > 1, by (8), we have

uqn −Dp,q
ℓn

(u) =
ℓp,[q

λ]
n

ℓq,[q
λ]

n

(
Dp,[qλ]
ℓn

(u) −Dp,q
ℓn

(u)
)
−

1

ℓq,[q
λ]

n

[qλn ]∑
k=qn+1

(uk − uqn

k

)
. (32)

From (15) it follows that there exists a sequence λ ȷ ↓ 1 such that

lim
ȷ→∞

lim inf
n→∞

1

ℓq,[q
λȷ ]

n

[q
λȷ
n ]∑

k=qn+1

(uk − uqn

k

)
≥ 0, (33)

where λ ȷ := [λȷ].
By (32), we have

lim sup
n→∞

(
uqn −Dp,q

ℓn
(u)

)
≤ lim
ȷ→∞

lim sup
n→∞

ℓp,[q
λȷ ]

n

ℓq,[q
λȷ ]

n

(
Dp,[qλȷ ]
ℓn

(u) −Dp,q
ℓn

(u)
)
+ lim
ȷ→∞

lim sup
n→∞

− 1

ℓq,[q
λȷ ]

n

[q
λȷ
n ]∑

k=qn+1

(uk − uqn

k

) .
Considering (4), (30) and (33), we conclude that

lim sup
n→∞

(
uqn −Dp,q

ℓn
(u)

)
≤ − lim

ȷ→∞
lim inf

n→∞

 1

ℓq,[q
λȷ ]

n

[q
λȷ
n ]∑

k=qn+1

(uk − uqn

k

) ≤ 0. (34)

In the case 0 < λ < 1, by (9), we obtain

uqn −Dp,q
ℓn

(u) =
(
D[pλ],[qλ]
ℓn

(u) −Dp,q
ℓn

(u)
)
+
ℓ[p

λ],q
n

ℓ[q
λ],q

n

(
D[pλ],q
ℓn

(u) −D[pλ],[qλ]
ℓn

(u)
)
+

1

ℓ[q
λ],q

n

qn∑
k=[qλn ]+1

(uqn − uk

k

)
.

From (16) it follows that for some sequence λ ȷ ↑ 1, we have

lim
ȷ→∞

lim inf
n→∞

1

ℓ[q
λȷ ],q

n

qn∑
k=[q

λȷ
n ]+1

(uqn − uk

k

)
≥ 0.

Consequently, in a similar way as above,

lim inf
n→∞

(
uqn −Dp,q

n (u)
)
≥ lim
ȷ→∞

lim inf
n→∞

(
D[pλȷ ],[qλȷ ]
ℓn

(u) −Dp,q
ℓn

(u)
)
+ lim
ȷ→∞

lim inf
n→∞

ℓ[p
λȷ ],q

n

ℓ[q
λȷ ],q

n

(
D[pλȷ ],q
ℓn

(u) −D[pλȷ ],[qλȷ ]
ℓn

(u)
)

+ lim
ȷ→∞

lim inf
n→∞

1

ℓ[q
λȷ ],q

n

qn∑
k=[q

λȷ
n ]+1

(uqn − uk

k

)
≥ 0.

(35)
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Combining (34) and (35) yields (29), which implies (14) since (4).

Proof of Theorem 4.3. Assume (21) is satisfied, then so is (22). It is clear that conditions (21) and (22) imply
(15) and (16), respectively. Then, from Theorem 4.1, we have convergence of (uqn ) to L: For given ϵ > 0,
there exists N = N(ϵ) > 0 such that

−
ϵ
2
≤ uqn − L ≤

ϵ
2

(36)

whenever n ≥ N
It follows from the equivalent form of (21) that for given ϵ > 0, there exist n1 = n1(ϵ) > 0 and λ = λ(ϵ) > 1

such that

uk − uqn ≥ −
ϵ
2

(37)

whenever n ≥ n1 and qn < k ≤ [qλn].
It follows from the equivalent form of (22) that for given ϵ > 0, there exist n2 = n2(ϵ) > 0 and 0 < λ =

λ(ϵ) < 1 such that

uqn − uk ≥ −
ϵ
2

(38)

whenever n ≥ n2 and [qλn] < k ≤ qn.
Taking (36) and (37) into account, we have

uk − L = uk − uqn + uqn − L ≥ −
ϵ
2
−
ϵ
2
= −ϵ (39)

whenever k ≥ n ≥ N1 = max {n1,N}.
Taking (36) and (38) into account, we have

uk − L = uk − uqn + uqn − L ≤
ϵ
2
+
ϵ
2
= ϵ (40)

whenever k ≥ n ≥ N2 = max {n2,N}.
By (39) and (40), we have for given ϵ > 0 there exists N3 = max {N1,N2} such that

−ϵ ≤ un − L ≤ ϵ

whenever n ≥ N3. This completes the proof.

Proof of Theorem 4.4. Necessity. The proof runs along similar lines to the proof of the necessity part in
Theorem 4.1.

Sufficiency. Assume that (4) and (24) are satisfied. It follows from (24) that there exists a sequence λ j ↓ 1
satisfying

lim
ȷ→∞

lim sup
n→∞

∣∣∣∣∣∣∣∣∣
1

ℓq,[q
λȷ ]

n

[q
λȷ
n ]∑

k=qn+1

(uk − uqn

k

)∣∣∣∣∣∣∣∣∣ = 0. (41)

By (8), we have

lim sup
n→∞

∣∣∣∣uqn −Dp,q
ℓn

(u)
∣∣∣∣ ≤ lim

ȷ→∞
lim sup

n→∞

ℓp,[q
λȷ ]

n

ℓq,[q
λȷ ]

n

∣∣∣∣Dp,[qλȷ ]
ℓn

(u) −Dp,q
ℓn

(u)
∣∣∣∣ + lim

ȷ→∞
lim sup

n→∞

∣∣∣∣∣∣∣∣∣
1

ℓq,[q
λȷ ]

n

[q
λȷ
n ]∑

k=qn+1

(uk − uqn

k

)∣∣∣∣∣∣∣∣∣ .
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Taking (4), (30) and (41) into account, we obtain

lim sup
n→∞

∣∣∣∣uqn −Dp,q
ℓn

(u)
∣∣∣∣ ≤ lim

j→∞
lim sup

n→∞

∣∣∣∣∣∣∣∣∣
1

ℓq,[q
λȷ ]

n

[q
λȷ
n ]∑

k=qn+1

(uk − uqn

k

)∣∣∣∣∣∣∣∣∣ = 0,

which concludes the proof of convergence of (uqn ) to L.
A similar proof can be given if (25) is satisfied.

Proof of Theorem 4.5. Assume that (un) is deferred logarithmic summable to L and condition (26) is
satisfied. By Theorem 4.4, we have convergence of (uqn ) to L : For given ϵ > 0 there exists N = N(ϵ) > 0 such
that

|uqn − L| ≤
ϵ
2

(42)

whenever n ≥ N.
It follows from the equivalent form of (26) that for given ϵ > 0, there exist n1 = n1(ϵ) > 0 and λ = λ(ϵ) > 1

such that

|uk − uqn | ≤
ϵ
2

(43)

whenever n ≥ n1 and qn < k ≤ [qλn].
Taking (42) and (43) into account, we have

|uk − L| ≤ |uk − uqn | + |uqn − L| ≤
ϵ
2
+
ϵ
2
= ϵ

whenever k ≥ n ≥ N1 = max {n1,N}.
A similar proof can be given if (27) is satisfied.

6. Conclusion

The concept of summability has been extensively studied over the years, with various transformations
being proposed to address different challenges. Although established summability methods serve as
important milestones within the field, there remains a persistent need for further exploration and refinement.
Recently, numerous studies have focused on the generalization of classical summability methods, resulting
in new approaches such as the deferred Cesàro mean. In this study, we introduced the deferred logarithmic
transformation by modifying the logarithmic method, aiming to achieve a more general and effective
transformation compared to logarithmic and other well-known methods in terms of its properties. In line
with this aim, upon examining the implication relations between the summability methods discussed, we
established that if (Dℓn , 1) is proper, then the (Dℓn , 1) summability method is more effective than both the
(ℓ, 1) and (C, 1) summability methods. Additionally, for the deferred logarithmic method, for which we
demonstrated regularity under conditions (2) and (3), we presented the converse results, namely Tauberian
theorems. We provided necessary and sufficient Tauberian conditions under which convergence of a
sequence and convergence of its certain subsequences follows from deferred logarithmic summability. The
results obtained in this paper anticipated to be beneficial for deriving more interesting and useful results
concerning other advanced summability methods and for extending these findings to additional areas of
research.
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