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Global existence, extinction, and non-extinction of solutions to a fast
diffusion p-Laplace evolution equation with logarithmic nonlinearity
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Abstract. In this paper, we study a class of fast diffusion p-Laplace equation with logarithmic nonlinearity.
Under appropriate conditions, by applying energy estimates in combination with the Galerkin method and
Sobolev inequality, we establish the global existence of solutions. Moreover, we obtain the extinction and
non-extinction properties of these solutions.

1. Introduction

The study of such systems is of significant interest due to their relevance in various physical applications.
When a compressible fluid passes through a porous medium, its motion is influenced by the interaction
between the fluid and the structure of the medium. These dynamics are captured by a system of partial
differential equations that describe the conservation of mass, momentum, and energy. In the case of a
compressible fluid, the macroscopic velocity V⃗, the volumetric moisture content θ(x) and the density of the
fluid ρ are related through the following conservation equation

θ(x)
∂ρ

∂t
+ div(ρV⃗) − f (ρ) = 0 (1)

where f (u) is a source term that accounts for the generation or depletion of fluid in the medium (see [28, 29]).
The velocity of the fluid flow is given by Darcy’s law generalized for nonlinear diffusion:

ρV⃗ = −λ|∇ρ|α−2
∇ρ, (2)

the quantity α is a characteristic of the medium. The media with α > 2 are called dilatant fluids, and those
with 1 < α < 2 are called pseudo-plastics; if α = 2, they are called Newtonian fluid.
By substituting the velocity relation in (2) into the conservation equation in (1), we obtain the following
diffusion equation for the fluid density ρ

θ(x)
∂ρ

∂t
= λdiv(|∇ρ|α−2

∇ρ) + f (ρ). (3)
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In this paper, we consider (3) with θ(x) = |x|−r, r = 0, λ = 1 and f (ρ) = |ρ|p−2ρ log(|ρ|). Then, we focus on
the study of the following initial boundary value problem involving logarithmic nonlinearity:

∂u
∂t − ∆pu = |u|q−2u log(|u|) in Ω ×R+,
u = 0 in ∂Ω ×R+,
u(x, 0) = u0(x) in Ω,

(4)

whereΩ is a bounded open domain of Rn with smooth boundary ∂Ω, ∆p = div(|∇u|p−2
∇u) and 1 < p, q < 2.

We first give the definition of weak solutions for problem (4).

Definition 1.1. Fix T > 0 and assume that u0 ∈W0. A function u ∈ L∞(0,T; W0) is called a weak solution of (4), if
∂u
∂t ∈ L2(0,T,L2(Ω)) and∫

Ω

∂u
∂t
ϕdxdt +

∫
Ω

|∇u|p−2
∇u∇ϕdx =

∫
Ω

|u|q−2u log(|u|)ϕdx, (5)

holds fo a.e t ∈ (0,T) and for all ϕ ∈W0.

Problem (4) belongs to the class of quasilinear diffusion problems which have garnered increasing
interest in recent years due to their applications in various scientific fields. Moreover, as already mentioned
in [10]. In the diffusion theory, the function u(x, t) represents the population density at time t and spatial
position x, div(|∇u|p−2

∇u) accounts for the diffusion of the population density and |u|q−2u log(|u|) is the
source.

There are also several studies concerning global solutions for problems similar to (4). In [12], Han et
al. studied the existence of global solution and extinction and Non-extinction of solutions for (4) with a
nonlocal source and an absorption term by using the energy estimates. We refer also to [1–3, 8, 9, 11, 14, 15,
17, 18, 26, 30] for further studies in this case. When f (u) = λur

−βuq in (4) where λ, β, r are positive constants,
the authors in [22] investigate the extinction properties and decay estimates of solutions, we refer also to
[16] and other references therein.

The research with logarithmic nonlinearity can be found in many physical applications, including the
theory of superfluidity, diffusion and transport phenomena, and nuclear physics. We refer the readers
to [34] for more information. Within the framework of partial differential equations (see [21, 23, 27]),
especially in the classical case, the authors [6] studied the existence of global solution to the following
semilinear pseudo-parabolic problem

ut − ∆ut − ∆u = u log |u|, (6)

with Dirichlet boundary condition by applying the logarithmic Sobolev inequality. The authors in [19]
studied the global existence or nonexistence of the problem (4) by applying the potential well method and
a logarithmic Sobolev inequality. We refer the reader to see [7, 13, 20, 31] where the theory of logarithmic
nonlinearity find its applications for the same evolution equations. In [24, 25, 32, 33], the authors have
studied the existence results to p-Kirchhoff problems with logarithmic nonlinearity.

In the present work, we aim to study the combined effects of the p-Laplacian and logarithmic nonlinearity
to discuss the global existence and extinction properties of solutions. Our approach relies on energy
estimates and Sobolev inequalities to establish the global existence of weak solutions for the problem (4).
To the best of our knowledge, this is the first study to explore both the global existence and extinction
properties of solutions for evolution equations involving the p-Laplacian and logarithmic nonlinearity.

Next, we will introduce the energy functional E : W1,p
0 (Ω)→ R associated with problem (4) defined by

E(u) =
1
p
∥u∥p

W1,p
0 (Ω)

−
1
q

∫
Ω

|u|q log(|u|)dx +
1
q2

∫
Ω

|u|qdx (7)

For simplicity reasons, throughout this paper, we adopt the following abbreviations:

∥u∥p = ∥u∥Lp(Ω), ∥u∥2 = ∥u∥L2(Ω).
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2. Preliminaries

In this section, we give some lemmas and definitions which will be needed in our proofs of the main
results.
In the first instance, for 1 ≤ p < ∞, we introduce the Hilbert space

W1,p(Ω) =
{

u ∈ Lp(Ω) :
∂u
∂xi
∈ Lp(Ω), i = 1, 2, . . . ,n

}
endowed with the norm

∥u∥p
W1,p(Ω)

= ∥u∥pp + ∥∇u∥pp.

Denote
W0 :=W1,p

0 (Ω) =
{
u ∈W1,p(Ω) : u|∂Ω = 0

}
.

Due to Poincaré’s inequality, one can know that ∥∇u∥p is an equivalent norm to ∥u∥W1,p(Ω) in W0.
Secondly, we denote the maximal existence time of a solution u = u(t) to problem (4) by Tm, which is defined
as follows:

Definition 2.1. (1) If there exists a t̂ ∈ (0,+∞) such that u exists for 0 ≤ t < t̂, but u blows up in W0 as t→ t̂− i.e

lim
t→t̂−
∥u(t)∥W0 = +∞, (8)

then Tm = t̂.

(2) If (8) does not happen at any finite time, then Tm = +∞ and we say u exists globally.

Definition 2.2. Let u be a solution to the problem (4). We say u = u(t) vanishes in finite time if there exists a T∗ > 0
such that

u(x, t) ≡ 0 on Ω, t ≥ T∗. (9)

Lemma 2.3. [5] Let 1 ≤ p ≤ ∞, we have

∥u∥
L

np
n−p
≤ Cp∥u∥W0 ∀u ∈W0. (10)

Lemma 2.4. [16] Suppose that l, m and s are the positive constants, andφ(t) is absolutely continuous and nonnegative
function such that φ′(t) +mφl(t) ≥ s, t > 0. Then

φ(t) ≥ min
{
φ(0),

( s
m

) 1
l
}
.

Lemma 2.5. [22] If 0 < r < s ≤ 1 and h(t) solve dh
dt + γ1hr

≤ γ2hs, t > 0
h(0) = h0 > 0

(11)

with γ1 > 0, 0 < γ2 < 1
2γ1hr−s

0 . Then, there exists q1, q2 > 0 such that

0 ≤ h(t) ≤ q2e−q1t for all t ≥ 0.

Lemma 2.6. [4] Let σ be a positive constant. Then for all r ⩾ 1, we have:

| log(r)| ≤
1
σ

rσ,

for all r ∈ [1,+∞).
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3. Main results

We are now in a position to present the main results given by the following two theorems.

Theorem 3.1. Let u0 ∈ W0. The problem (4) admits a global weak solution u = u(t) if there exists a constant σ > 0
such that 1 < q + σ ≤ 2.

Proof. Assume that u is a weak solution of (4). As in Theorem 3.2 of [19], the local existence of weak solutions
to problem (4) is established using the Galerkin method. Moreover, we establish the global existence of
the weak solution. For this reason, let assume that the weak solution of (4) blows up in finite time as in
definition 2.1.
We let ϕ = u in (5), we obtain

1
2

d
dt
∥u(t)∥22 + ∥u(t)∥pW0

=

∫
Ω

|u(t)|q log |u(t)|dx. (12)

According to Lemma 2.6, we have∫
Ω

|u(t)|q log |u(t)|dx ≤
1
σ

∫
Ω

|u(t)|q+σdx =
1
σ
∥u(t)∥q+σq+σ. (13)

Combining (12), (13) and the Hölder inequality, we obtain

∥u(t)∥2
d
dt
∥u(t)∥2 + ∥u(t)∥pW0

≤
1
σ
∥u(t)∥q+σq+σ ≤

|Ω|
2−(q+σ)

2

σ
∥u(t)∥q+σ2 .

Therefore

d
dt
∥u(t)∥2 ≤

|Ω|
2−(q+σ)

2

σ
∥u(t)∥q+σ−1

2 . (14)

Next, by choosing ϕ = du
dt in (5) and by using the Hölder inequality and the Young inequality, we get∥∥∥∥∥du(t)

dt

∥∥∥∥∥2

2
+

1
p

d
dt
∥u(t)∥pW0

≤

∫
Ω

|u(t)|q−2u(t) log |u(t)|
du(t)

dt
dx

≤

∫
Ω

1
σ
|u(t)|q+σ−1

∣∣∣∣∣du(t)
dt

∣∣∣∣∣ dx

≤
1

2σ

∫
Ω

|u(t)|2(q+σ−1)dx +
1
2

∫
Ω

∣∣∣∣∣du(t)
dt

∣∣∣∣∣2 dx

≤
|Ω|1−

2(q+σ−1)
p

2σ
∥u(t)∥

2(q+σ−1)
p +

1
2

∥∥∥∥∥du(t)
dt

∥∥∥∥∥2

2
.

(15)

Case 1: If 1 < q + σ < 2, after a simple calculation on (14), we obtain

∥u(t)∥2 ≤

 (2 − q − σ
)
|Ω|1−

q+σ
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

∀t ∈ (0,T) (16)

for sufficiently large T.
Since p < 2, combining (16) with Hölder inequality, we conclude that

∥u(t)∥p ≤ |Ω|
2−p
2p ∥u(t)∥2 ≤

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

|Ω|
2−p
2p (17)
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Substituting the inequality (17) into (15), we get

d
dt
∥u∥pW0

≤

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


2(q+σ−1)

2−q−σ p|Ω|2−q−σ

2σ
. (18)

Since the right-hand sides of (17) and (18) is defined on t ∈ [0,+∞) and (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

|Ω|
2−p
2p ∈ [0,+∞) ∀t ≥ 0,

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


2(q+σ−1)

2−q−σ p|Ω|2−q−σ

2σ
∈ [0,+∞) ∀t ≥ 0.

Moreover, for t̂ ∈ (0,+∞),

lim
t→t̂

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

|Ω|
2−p
2p < +∞,

lim
t→t̂

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


2(q+σ−1)

2−q−σ p|Ω|2−q−σ

2σ
< +∞,

this contradicts (8). As a result, the problem (4) has a weak solution u that exists globally.
Case 2: If q + σ = 2, according to inequality (14) that

d
dt
∥u(t)∥2 ≤

1
σ
∥u(t)∥2,

we obtain

∥u(t)∥2 ≤ ∥u0∥2 e
t
σ . (19)

According to the Hölder inequality combined with (19) with p < 2, we have

∥u(t)∥p ≤ |Ω|
2−p
2p ∥u(t)∥2 ≤ |Ω|

2−p
2p ∥u0∥2 e

t
σ . (20)

Substituting (20) into (15) with q + σ = 2, we obtain that

d
dt
∥u∥pW0

≤
p|Ω|1−

2
p

2σ
∥u(t)∥2p ≤

p ∥u0∥
2
2

2σ2 e
2t
σ . (21)

Since the right hand sides in (20) and (21) is defined on t ∈ [0,+∞) and

|Ω|
2−p
2p ∥u0∥2 e

t
σ ∈ [0,+∞) t ≥ 0,

p ∥u0∥
2
2

2σ2 e
2t
σ ∈ [0,+∞) t ≥ 0.

Moreover, for t̂ ∈ (0,+∞),

lim
t→t̂
|Ω|

2−p
2p ∥u0∥2 e

t
σ < +∞,

lim
t→t̂

p ∥u0∥
2
2

2σ2 e
2t
σ < +∞

this contradicts (8). Consequently, the global solution is obtained.
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Theorem 3.2. Let u0 ∈W0 ∩ L2(Ω). Assume that problem (4) admits a global weak solution. Then

i) if 2n
n+2 < p < min

{
n, q + σ

}
and

∥u0∥
q+σ−p
2 <

σ
2Cp
|Ω|

n(q+σ−p)−2p
2n (22)

with some 0 < σ ≤ 2 − q, then u vanishes in finite time.
ii) Suppose that:

∥u0∥2 , 0 and E (u0) ≤ 0, when q = p

or
∥u0∥2 , 0 and E (u0) < 0, when q < p.

Then u cannot vanish in finite time.

Proof. Theorem 3.1 leads to the conclusion that the problem (4) has a global weak solution u. First, we
prove conclusion i). From (5), we deduced that

1
2

d
dt
∥u(t)∥22 + ∥u(t)∥pW0

≤

∫
Ω

|u(t)|q log |u(t)|dx (23)

Plugging (13) into (23) and using Lemma 2.3, we get

∥u(t)∥2
d
dt
∥u(t)∥2 +

1
Cp
∥u(t)∥p

L
np

n−p (Ω)
≤

1
σ
∥u(t)∥q+σLq+σ(Ω). (24)

Using again the Hölder inequality to (24), it follows that

d
dt
∥u(t)∥2 +

|Ω|1−
p(n+2)

2n

Cp
∥u(t)∥p−1

2 ≤
|Ω|

2−(q+σ)
2

σ
∥u(t)∥q+σ−1

2 .

Let z(t) = ∥u(t)∥2, the inequality mentioned above can be reduced to

dz
dt
+
|Ω|1−

p(n+2)
2n

Cp
zp−1(t) ≤

|Ω|
2−(q+σ)

2

σ
zq+σ−1(t). (25)

Furthermore, from inequality (22) and 1 ≤ 2n
n+2 < p < min

{
n, q + σ

}
, we ensures that p − 1 < q + σ − 1 and

0 <
|Ω|

2−(q+σ)
2

σ
<
|Ω|

2n−p(n+2)
2n

2Cp
∥u0∥

p−q−σ
2 .

Thus, it follows from Lemma 2.5 that constants q1 > 0 and q2 > 0 exist such that

0 ≤ z(t) ≤ q2e−q1t, t ≥ 0. (26)

We take the constant T∗ > 0 such that(
q2e−q1t

)q+σ−p
≤
σ

2Cp
|Ω|

n(q+σ−p)−2p
2n , t ≥ T∗. (27)

Combining inequalities (26) and (27), it is concluded that

zq+σ−1(t) =
(
zq+σ−pzp−1

)
(t) ≤

σ
2Cp
|Ω|

n(q+σ−p)−2p
2n zp−1(t), t ≥ T∗. (28)
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Plugging (28) into (25), we get
dz
dt
+
|Ω|1−

p(n+2)
2n

2Cp
zp−1(t) ≤ 0, t ≥ T∗.

After a simple calculation, we obtain ∥u(t)∥2 ≤
(
z2−p (T∗) − (2−p)|Ω|1−

p(n+2)
2n

2Cp
(t − T∗)

) 1
2−p

, T∗ ≤ t < T∗v

∥u(t)∥2 ≡ 0 t ≥ T∗v

where T∗v =
2Cp

(2−p)|Ω|1−
p(n+2)

2n
z2−p (T∗) + T∗. Then, u vanishes in finite time.

Secondly, we prove conclusion ii). Choosing ϕ = du
dt in (5), we have∫

Ω

(
du(t)

dt

)2

dx +
1
p

d
dt
∥u(t)∥pW0

=

∫
Ω

|u(t)|q−2u(t) log |u(t)|
du(t)

dt
dx. (29)

We can see that (29) simplifies as follows:∫
Ω

(
du(t)

dt

)2

dx +
1
p

d
dt
∥u(t)∥pW0

=
1
q

d
dt

∫
Ω

|u(t)|q log |u(t)|dx −
1
q2

d
dt

∫
Ω

|u(t)|qdx. (30)

Differentiating (7) with respect to t, we get

d
dt

E(u(t)) =
1
p

d
dt
∥u(t)∥pW0

−
1
q

d
dt

∫
Ω

|u|q log |u|dx +
1
q2

d
dt

∫
Ω

|u|qdx (31)

According to (30) and (31), we can conclude that

d
dt

E(u(t)) = −
∫
Ω

(
du(t)

dt

)2

dx ≤ 0. (32)

Thus, E(u) is non-increasing with respect to t. Consequently, by integrating (32) from 0 to t, we have

E(u(t)) = E (u0) −
∫ t

0

∫
Ω

(
du(s)

ds

)2

dxds (33)

Let 1(t) = 1
2∥u(t)∥22. Then, by (7), (12) and (33), we can get

1′(t) = −∥u(t)∥pW0
+

∫
Ω

|u(t)|q log |u(t)|dx

= −pE(u(t)) +
q − p

q

∫
Ω

|u(x, t)|q log |u(t)|dx +
p
q2

∫
Ω

|u(t)|qdx

= −pE (u0) + p
∫ t

0

∫
Ω

(
d
ds

u(t)
)2

dxds +
q − p

q

∫
Ω

|u(t)|q log |u(t)|dx

+
p
q2

∫
Ω

|u(t)|qdx

≥ −pE (u0) +
q − p

q

∫
Ω

|u(t)|q log |u(t)|dx.

(34)

Case 1: If q = p, hence, (34) can be reduced to 1′(t) ≥ −pE (u0), which gives

1(t) ≥ 1(0) − pE (u0) > 0, ∀t > 0
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therefore, u cannot vanish in finite time.
Case 2: If q < p. Thanks to 1 < q < 2, there exists a constant σ > 0 such that q + σ < 2. Consequently,
inequality (34) can be simplified as follows

1′(t) ≥ −pE (u0) +
q − p

qσ

∫
Ω

|u(t)|q+σdx

≥ −pE (u0) +
|Ω|

2−q−σ
2 (q − p)
qσ

(∫
Ω

|u(t)|2 dx
) q+σ

2

= −pE (u0) −
(p − q)(

√
2)q+σ

|Ω|
2−q−σ

2

qσ
1

q+σ
2 (t).

Consequently, using Lemma 2.4 allow us to get

1(t) ≥ min

1(0),
−pqσE (u0)

(p − q)(
√

2)q+σ|Ω|
2−q−σ

2

 > 0, ∀t > 0

As a results, u cannot vanish in finite time. This completes the proof of theorem 3.2.

References

[1] Alharbi A., Choucha A., Boulaaras S., Blow-up of solutions for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, delay
and Balakrishnan-Taylor damp- ing terms, Filomat, 38(2024), no 26, 9237–9247.

[2] Azroul E., Kamali N., Ragusa M.A., Shimi M., Variational methods for a p(x, )−fractional bi-nonlocal problem of elliptic type, Rendiconti
del Circolo Matematico di Palermo, 74(2025), no. 1, 1-21.

[3] Benchira H., Matallah A., El Mokhtar, M.E.O., Sabri K., The existence result for a p-Kirchhoff-type problem involving critical Sobolev
exponent, Journal of Function Spaces, 2023(2023), no. 1, 3247421.

[4] Boudjeriou T., Global Existence and Blow-Up for the Fractional p-Laplacian with Logarithmic, Nonlinearity, Mediterr. J. Math., 17(2020),
no. 5, 162.
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