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Abstract. In this paper, we study the B-Riesz transformation R(k)
γ generated by a generalized translation

operator Ty (y ∈ Rn
+). We prove that the Cotlar-type inequality holds for these operators. In particular,

we prove results related to the Cotlar inequality for the even and odd cases of the kernel of the B-Riesz
transform. Thus, new estimates for the B-Riesz transform in weighted Lebesgue spaces Lp,γ,w are obtained.

1. Introduction

In this study, we establish new estimates for the higher-order Riesz-Bessel transform associated with
the generalized translation operator Ty (where y ∈ Rn

+). A detailed discussion of these concepts will be
provided in Section 2. For the sake of simplicity, we will refer to the higher-order Riesz-Bessel transform as
the ”B-Riesz transform” throughout this text. Our focus is on a problem derived from the classical Cotlar’s
inequality:

T∗( f )(x) ≤ C(M(T f )(x) +M( f )(x)), (1)

where T denotes a Calderon-Zygmund singular operator which may not be of convolution type and M
stands for the Hardy-Littlewood maximal function defined by

M f (x) =
(

sup
Q∋x

1
|Q|

∫
Q
| f (y)| dy

)
. (2)

In (1) the classical Riesz transform (Riesz transform of order one) can replace T. The authors have
presented this result in [23]. It is important to note that the classical Riesz transform is a key operator of
Calderon-Zygmund type. In their paper, the Riesz transform is denoted by

R j( f )(x) = C
∫
|y|<1

x j − y j

|x − y|n+1 f (y) dy.
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Hence the definition of classic the Riesz transform for a function f within the Schwartz space is given as

R j( f )(x) = C p.v.
∫
Rn

y j

|y|n+1 f (x − y) dy. (3)

In (3), the kernel as K j(y) = C y j

|y|n+1 . The operator defined in (3) is of convolution type, which means that
f (x − y) can be considered as an ordinary translate.

We can also understand that the classical Riesz transform is based on this ordinary translate operator.
Instead of using the ordinary translate, which is a specific case of a generalized translation, we can consider
the generalized translation Ty. This translation is known as the B.M. Levitan type (see [19]) and corresponds
to the solution of the Laplace-Bessel equation∆γ. This approach leads to the introduction of a new transform
called the B-Riesz transform, which we will denote R(k)

γ . We remark that the representation of the k-th Riesz
transform R(k)

γ as a principal value integral operator for every k ∈ N. Thus, we extend the results in [23]
where the result is shown for k = 1. Our primary objective is to determine whether this transformation
satisfies the Cotlar-type inequality criteria and, if so, to identify the necessary conditions. This leads to the
following result

R(k)∗
γ ( f )(x) ≤ Cγ(Mγ(R

(k)
γ f )(x) +Mγ( f )(x)), (4)

called the Cotlar inequality, where the B-maximum operator Mγ and the B-Riesz transform R(k)
γ are generated

by the generalized translation operator Ty. Note that if this inequality is satisfied, the kernel of the B-Riesz
transform is odd. Also, the inequality

R(k)∗
γ f ≤ CγMγ(R

(k)
γ f ) (5)

is satisfied if the kernel of the B-Riesz transform is even.
This article is structured as follows: Section 2 gives a brief overview of the general notations, focusing

on the context of the B-maximal operator Mγ and the B-Riesz transform R(k)
γ derived from the generalized

translation operator Ty in weighted Lebesgue spaces Lp,γ. In section 3, we will study the concept of the
B-Riesz transform generated by the generalized translation operator Ty and the B-maximum operator Mγ.
We then study the characterization of the Cotlar’s inequality for the B-Riesz transform R(k)

γ .

2. Preliminaries

LetRn be the n-dimensional Euclidean space, andRn
+ := {x = (x1, . . . , xn) : xi > 0, i = 1, . . . ,n}. For x ∈ Rn

and r > 0, let B(x, r) = {x0 ∈ Rn : |x−x0| < r} denotes the open ball centred at x0 with radius r, B(x, r)c denotes
its complement and Q = Q(x, r) stands for the positive part of the cubes centred at x ∈ Rn

+, and |B(x, r)| is the
Lebesgue measure of the ball B(x, r).

A weight w is a non-negative locally integrable function on Rn
+ that takes values in (0,+∞) almost

everywhere. A weight w is said to belong to Muckenhoupt’s class Ap,γ for 1 < p < ∞ if there exists a
constant C > 0 such that(

1
|B|

∫
B

w(x)(xn)γ dx
)1/p (

1
|B|

∫
B

w(x)−q/p (xn)γdx
)1/q

≤ C

for every ball B ⊂ Rn
+, where q is the dual of p such that 1/p + 1/q = 1. The class A1 is defined by replacing

the above inequality by

1
|B|

∫
B

w(x) (xn)γdx ≤ Cess inf
x∈B

w(x)

for each ball B ⊂ Rn
+. We also define A∞ =

⋃
1≤p<∞ Ap.
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Given a Lebesgue measurable set E and a weight function w, we denote the characteristic function of E
by χE, and the weighted measure of E by w(E), where w(E) =

∫
E w(x) dx. It is well known that if w ∈ Ap with

1 ≤ p < ∞(or w ∈ A∞), then w satisfies the doubling condition; that is, for any ball B, there exists a positive
constant C such that (see [7])

w(2B) ≤ C w(B). (6)

However, if w ∈ A∞, then for any ball B and any measurable subset E of the ball B, there exists a number
δ > 0 independent of E and B such that (see [7])

w(E)
w(B)

≤ C
(
|E|
|B|

)δ
. (7)

Let w be a weight function on Rn
+. For 1 ≤ p < ∞, the weighted Lebesgue space Lp,γ,w(Rn

+) is defined as the
set of all functions f such that∥∥∥ f

∥∥∥
Lp,γ,w

:=
( ∫
Rn
+

∣∣∣ f (x)
∣∣∣pw(x) (xn)γdx

)1/p

< ∞.

Furthermore, for 1 ≤ p < ∞, we denote by WLp,γ,w(Rn) the weighted weak Lebesgue space of all measurable
functions f such that∥∥∥ f

∥∥∥
WLp,γ,w

:= sup
λ>0
λ ·

[
w
({

x ∈ Rn : | f (x)| > λ
})]1/p

< ∞.

It is known that Lp,γ,w is a Banach space, and it is also known that the following equality holds for the norms
of the spaces Lp,γ,w and L∞,γ,w.

∥ f ∥∞,γ,w = lim
p→∞
∥ f ∥p,γ,w.

The Laplace-Bessel operator is defined by

∆γ =

n−1∑
i=1

∂2

∂x2
i

+ Bxn ,

where Bxn =
∂2

∂x2
n
+
γ

xn

∂
∂xn

and γ > 0.

The generalized shift operator Ty is defined by

(
Ty f

)
(x) =

Γ
(
γ+1

2

)
√
πΓ

(
γ
2

) ∫ π

0
f
(
x′ − y′,

√
x2

n + y2
n − 2xnyn cosφ

)
sinγ−1 φdφ,

where, x′, y′ ∈ Rn−1, γ > 0 and C(γ) = π−
1
2
Γ
(
γ+1

2

)
Γ( γ2 ) .

Note that the generalized shift operator is related to the ∆γ Laplace-Bessel differential operator [5, 14,
15, 20].

( f ∗ 1)γ(x) = ( f ∗ 1)γ =
∫
Rn
+

f (y)
(
Ty1

)
(x)(yn)γdy. (8)

is defined as a generalized convolution.
Let Jγ be a Bessel function of the first kind, and let jγ(x) = 2γγ(γ+1)

xγ Jγ(x) is the normalized function of the
first kind jγ. Then the Fourier-Bessel (Hankel) transform of the function f ∈ L1,γ

(
Rn
+

)
is

Fγ[ f (x)](ξ) = Fγ[ f (x)](ξ) = f̂ (ξ) =
∫
Rn
+

f (x) j γ−1
2

(xn; ξn)xγndx.
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The Fourier-Bessel transform of function f ∈ L1,γ is

FB[ f (x)](ξ) =
∫
Rn
+

j γ−1
2

(xn, ξn) exp−ix′.ξ′ f (x)xγndx,

where x′.ξ′ = x1ξ1 + · · · + xn−1ξn−1 [19, 20].
The main aim of this paper is first to investigate the B-Riesz transform using the B-maximal operator

related to the generalized translation operator with weight Lp,w,γ spaces to obtain new estimates.
First, let us start by defining the B-maximal operator Mγ

Mγ,r f (x) =Mγ(| f |r)
1
r (x) =

(
sup
Q∋x

1
|Q|

∫
Q

Ty
| f (x)|r(yn)γdy

) 1
r

,

for r > 0 as well as its usual sharp B-maximal function M♯, ([10, 11, 24, 28, 29]), is defined by

M♯
γ f (x) = sup

Q∋x
inf

c

1
|Q|

∫
Q
|Ty f (x) − c|(yn)γdy ≈ sup

Q∋x

1
|Q|

∫
Q
|Ty f (x) − fQ|(yn)γdy ,

where

fQ =
1
|Q|

∫
Q

f (y)dy

by f is the average of f over Q. Note also the equality,

M#
γ,r f (x) =M#

γ(| f |
r)(x)

1
r .

which is useful for the sharp B-maximal operator above.
It is well known that the B-maximum function controls the mean value of a function with respect to any

radially decreasing function L1,γ.
Recall that a function f on Rn

+ is called radial if f (x) = f (y) for |x| = |y|. Note that a radial function f on
Rn
+ has the form f (x) = k(|x|) for some function k on Rn

+.
We will now introduce some properties of the B-maximal operator. Let’s start with a lemma that we

plan to use in this paper.

Lemma 2.1. Let k ≥ 0 be a continuous function on [0,∞) except at a finite number of points. Suppose that the
function K(x) = k(|x|) is integrable function on Rn

+ and satisfies K(x) ≥ K(y) whenever |x| ≤ |y| (i.e., k is a decreasing
function). Then, we have

sup(| f | ∗ K)(x) ≤ ||K||L1,γMγ( f )(x) (9)

for all locally integrable functions f on Rn
+.

The proof of this lemma can be conducted in a manner similar to that described (see detail [8], Theorem
2.1.10, p.82). However, it is important to note that the inequality is confirmed when K is radial, compactly
supported, and continuous. Under these conditions, observe that as |y| → ∞, the kernel K behaves as a
radial, compactly supported, and continuous function, increasing. Next, we note that when y = 0, it suffices
to prove the inequality. Once this is established, replacing f with Ty f implies that the inequality holds for
all values of y.

Theorem 2.2. Let 0 < p < ∞, γ > 0 and let ω ∈ A∞ be a weight functin.

i) There exists a constant C > 0 such that∫
Rn
+

(Mγ,r f (x))pω(x)dx ≤ C
∫
Rn
+

(M♯
γ,r f (x))pω(x)dx, f ∈ Lp,γ(Rn

+).

Here, r > 0, positive constant C depending only on ω and p.
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ii) Let φ : (0,∞)→ (0,∞) be a function that satisfies the doubling condition. Then, there exists a constant C such
that

sup
t>0
φ(t)ω

(
{x ∈ Rn

+ : Mγ,r f (x) > t}
)
≤ C sup

t>0
φ(t)ω

(
{x ∈ Rn

+ : M♯
γ,r f (x) > t}

)
for f ∈ Lp,γ(Rn

+) Here, r > 0, positive constant C depending only on ω and φ.

Let R(k)
γ be the B-Riesz transform on Rn

+ with a smooth homogeneous kernel

K(y) =
Ωk(y)
|y|n+γ

, y ∈ Rn
+ \ {0}, (10)

whereΩ(y) = Pk(y)|y|−k is a homogeneous function of order 0. Let Sn−1 is a unit sphere andΩ belong to the
class C∞(Sn−1). It satisfies the cancellation property∫

|y|=1
Ωk(y) dτ(y) = 0,

where τ denotes the normalized surface measure on Sn−1.
Let Pk be a homogeneous harmonic polynomial of degree k ≥ 1. Recall that R(k)

γ f is defined as the
principal value convolution operator

R(k)
γ f (x) = p.v.

∫
Rn
+

K(y) Ty f (x) (yn)γdy ≡ lim
ϵ→0

R(k)
γ,ϵ f (x), (11)

where 1 ≤ k ≤ n and R(k)
γ,ϵ is that defined by

R(k)
γ,ϵ f (x) =

∫
|y−x|>ϵ

K(y) Ty f (x) (yn)γdy.

It is essential to note that the limit in (11) applies to all x ∈ Rn
+ for functions f ∈ Lp,γ(Rn

+) with 1 ≤ p < ∞.
The B-Riesz transform R(k)

γ is classified as odd or even depending on the nature of the kernel. In particular,
for all y ∈ Rn

+ \ {0}, the transform is considered odd if the kernel is odd and even if it is even.
Let R(k)∗

γ be the B-maximal Riesz transform

R(k)∗
γ f (x) = sup

ϵ>0
|R(k)
γ,ϵ f (x)|

for x ∈ Rn
+. Consider the inequality R(k)

γ f associated with R(k)∗
γ f . The first thing that comes to mind is the

basic estimate

∥R(k)∗
γ f ∥2,γ ≤ C∥R(k)

γ f ∥2,γ, f ∈ L2,γ(Rn
+). (12)

in L2,γ.
The transform R(k)∗

γ f dominated by R(k)
γ f satisfies the inequality (5). Although weaker than (5), the

condition (12) still holds the inequality

R(k)∗
γ f (x) ≤ C M2

γ(R
(k)
γ f )(x), x ∈ Rn

+, (13)

in the space L2,γ, where M2
γ = Mγ ◦Mγ ◦Mγ represents the iterated B-maximal operator. Therefore, the

problem with this operator when working with a single kernel is inherent in the problem of multiple
kernels. As a result, condition (13) implies the inequality

∥R(k)∗
γ f ∥p,γ ≤ C ∥R(k)

γ f ∥p,γ, f ∈ Lp,γ(Rn
+), 1 < p ≤ ∞ (14)
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in the Lp,γ.
Finally, we showed that if the kernel of the B-Riesz transformation R(k)

γ is even, then (4) holds, and the
stronger (13) inequality holds when the kernel of the B-Riesz transformation is odd. Recall that R(k)

γ is a
B-Riesz transform with a kernel represented by the function Ωk, which has the form given in (10), where
Pk is a homogeneous harmonic polynomial of degree k ≥ 1. If Pk(x) = xk, then the B-Riesz transformation
R(k)
γ corresponds to a classical Riesz transformation Rγ. If the homogeneous polynomial Pk need not be

harmonic but still has a zero integral on the unit sphere, then we call R(k)
γ a polynomial operator. Recall that

Pk must be harmonic such that it satisfies the Laplace-Bessel equation.
Let us present our results, starting with the case of the odd kernel for the operator.

Theorem 2.3. Let R(k)
γ be B-Riesz transforms with odd smooth homogeneous kernel (10). Then the following

statements are equivalent.

i)

R(k)∗
γ f (x) ≤ C M2(R(k)

γ f )(x), x ∈ Rn
+.

ii)

∥R(k)∗
γ f ∥2,γ ≤ C ∥R(k)

γ f ∥2,γ, f ∈ L2(Rn
+).

Clearly, in Theorem 2.3, the condition (i) implies (ii) is a consequence of the bounded-ness of the Hardy-
Littlewood maximal operator on weighted Lp,w,γ spaces when p = 2. The proof of (ii) implies (i) in Theorem
2.3 is proved in [21, 23].

We extend the results in [23],by considering higher order higher order Riesz Bessel transform.

Theorem 2.4. Let R(k)
γ1

and R(k)
γ2

be two the B-Riesz transforms. If f ∈ Lp,γ , 0 < p < ∞ and ω ∈ A∞,

i) Then there exists a constant C such that∫
Rn
+

(R(k)∗
γ1
◦ R(k)

γ2
)( f )(x)pω(x)dx ≤ C

∫
Rn
+

(M2
γ( f )(x))pω(x)dx, (15)

where the constant C depends on ω, and

sup
t>0

1
Φ( 1

t )
ω({x ∈ Rn

+ : (R(k)∗
γ1
◦ R(k)

γ2
)( f )(x) > t}) ≤ C sup

t>0

1
Φ( 1

t )
ω({x ∈ Rn

+ : M2
γ( f )(x) > t}), (16)

where Φ : [0, 1)→ [0, 1) a Young function and Φ(t) = t(1 + log+t) ≈ t log(e + t).
ii) The estimates (15) and (16) still hold if R(k)∗

γ1
◦ R(k)

γ2
is replaced by R(k)

γ1
◦ R(k))∗

γ2
on the left-hand side.

Corollary 2.5. Let R(k)
γ1

and R(k)
γ2

be two the B-Riesz transforms and let ω ∈ A1. Then there is a constant C such that

ω({x ∈ R : (R(k)∗
γ1
◦ R(k)

γ2
)( f )(x) > t}) ≤ C

∫
Rn
+

Φ
(Ty
| f (x)|
t

)
ω(y)dy, t > 0, (17)

where Φ(t) = t log(e + t) and the constant C depends on ω, The estimate (17) holds with R(k)∗
γ1
◦ R(k)

γ2
replaced by

R(k)
γ1
◦ R(k)∗

γ2
in the left hand side.

As previously mentioned, the composition of the B-Riesz transforms R(k)
γ1

and R(k)
γ2

, referred to as R(k)
γ1
◦R(k)
γ2
=

R(k)
γ1γ2

, is not of the weak type (1, 1). This is in contrast to the case of Fourier-Bessel multipliers of R(k)
γ , where

the multiplier γ satisfies the classical Mihlin condition. In fact, according to well-established classical
results, if R(k)

γ1
and R(k)

γ2
are two valid multipliers, then their composition operator Rγ1 ◦ Rγ2 is also classified
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as being of weak type (1, 1). In fact, Rγ1 and Rγ2 are two multiplier operators. Each multiplier γ j, j = 1, 2 is
bounded, belongs to C|γ|+[ n

2 ]+k in the complement of the origin, and satisfies the classical Mihlin condition,

(∆αγγ j)(ξ) ≤ C|ξ|γ+
n
2−α, ξ , 0

for every α such that |α| ≤ γ + [ n
2 ] + k.

The Riesz transformation is a smooth Calderón-Zygmund operator that possesses an additional cancella-
tion property, which is essential for developing Theorem 2.4. Since R(k)∗

γ is precisely the adjoint of R(k)
γ , the

pointwise inequality (5) directly implies that R(k)∗
γ ◦ R(k)

γ is of weak type (1, 1).
Riesz transforms are not bounded on L1(Rn). Instead, we consider the weak type (1, 1) property for Riesz

maps. Riesz transformations have the weak type (1, 1) property. We think that the operator R(k)∗
γ ◦ R(k)

γ is
also of weak type (1, 1). This is not easy to prove, but from the following pointwise inequality

R(k)∗
γ (R(k)

γ ( f ))(x) ≤ Cγ((R
(k)
γ )2)∗( f )(x) +Mγ( f )(x), x ∈ Rn

+ (18)

can be shown. Here (R(k)
γ )2 = R(k)

γ ◦ R(k)
γ = −I is a smooth singular integral operator and the B-maximal

operator (1, 1) is of weak type.
Now we specify the case of even operators.

Theorem 2.6. Let R(k)
γ be an even B-Riesz transform. Then there exists a smooth homogeneous B-Riesz transform

such that

R(k)∗
γ (R(k)

γ ( f ))(x) ≤ C(R(k)∗
γ )2( f )(x) +Mγ( f )(x)), x ∈ Rn

+,

where Cγ is a constant that depends on γ. The operator R(k)
γ is defined by the identity R(k)∗

γ ◦ R(k)
γ = CγI , and the

operator R(k)∗
γ ◦ R(k)

γ is of the weak type (1, 1).

3. Cotlar’s pointwise inequality for B-Riesz transforms

The B-Riesz transform R(k)
γ we consider here is a continuous linear operator on Lp,γ(Rn

+) and its kernel K
satisfies the following inequalities:

|K(x)| ≤
|Pk(x)|
|x|n+k+γ

≤
C

|x|n+k+γ

and the regularity condition

|K(x) − K(y)| ≲
|x|ϵ

|y|n+k+γ+ϵ
, (19)

for some ϵ > 0 and whenever |y| < 1
2 |x|. Here Pk is a homogeneous polynomial of order k and sup |Pk(x)| =

M < ∞ [5].
For the results of the Calderon-Zygmund operators, see [9]. Considering the higher order Riesz Bessel

transform R(k)
γ as an operator of Calderon-Zygmund type, it is natural to show that the Cotlar’s inequality (4)

is satisfied. We can find a useful improvement of the Cotlar’s inequality in [9] Then, it led to the following
main result, which is a source of inspiration for us.

Theorem 3.1. Let R(k)
γ and R(k)∗

γ as before and let 0 < γ < 1. Then there is a positive constant Cγ such that

R(k)∗
γ ( f )(x) ≤ CγMγ(R

(k)
γ f )(x) + CγMγ f (x), x ∈ Rn. (20)
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Proof. Let f ∈ Lp,γ(Rn
+) be a function such that 1 ≤ p < ∞ and γ > 0. To prove (20), we also fix ε > 0 and we

set f1 = fχBε(x) and f2 = fχBc
ε(x). Since x < supp f2 whenever |y| ≥ ε, we have

(R(k)
γ f2)(x) =

∫
Rn
+

K(y) Ty f2(x)(yn)γdy =
∫
|y|≥ε

K(y) Ty f (x)(yn)γdy = R(k),ε
γ f (x).

Considering (19), for z ∈ B ε
2
(x) we get 2|z| ≤ |y|, whenever |y| ≥ ε and thus

|R(k),ε
γ f2(x) − R(k)

γ f2(z)| =
∣∣∣∣∣ ∫
|y|≥ε

[K(z) − K(y)]Ty f (x) (yn)γ dy
∣∣∣∣∣ ≤ |z|γ ∫

|y|≥ε

Ty f (x)
|y|n+k+γ+ε

(yn)γ dy

≤

(ε
2

)γ ∫
|y|≥ε

Ty f (x)
|y|n+k+γ+ε

(yn)γ dy ≤ Cγ,εMγ f (x),

where the last estimate is a consequence of Lemma 2.1. We conclude that for all z ∈ B ε
2
(x), we have

|R(k),ε
γ f (x)| =

∣∣∣R(k)
γ f2(x)

∣∣∣ ≤ ∣∣∣R(k)
γ f2(x) − R(k)

γ f2(z)
∣∣∣ + ∣∣∣R(k)

γ f2(z)
∣∣∣ (21)

≤ Cγ,εMγ f (x) +
∣∣∣R(k)
γ f1(z)

∣∣∣.
Integration over z ∈ B ε

2
(x), dividing by it follows from (21) that for z ∈ B ε

2
(x) we get |B ε

2
(x)|, we have

|R(k),ε
γ f (x)| ≤ Cγ,εMγ f (x) +

( 1
|B ε

2
(x)|

∫
B ε

2
(x)

∣∣∣R(k)
γ f1(z)

∣∣∣dz
)
+Mγ

(∣∣∣R(k)
γ f (x)

∣∣∣).
From the last inequality we obtain the desired result.

Focusing on the problem of the Cotlar inequality in (20), it is essential to derive the inequality for the
B-Riesz transform R(k)

γ and the B-maximal operator Mγ studied by Ekincioglu in [5]. Therefore, the following
inequality for the B-Riesz transform R(k)

γ and the B-maximal operator Mγ can be derived and proved.

Theorem 3.2. Let R(k)
γ be B-Riesz transform. Then

i) If 0 < p < ∞ and ω ∈ A∞, then there exists a positive constant Cγ that depends on ω such that∫
Rn
|R(k)∗
γ f (x)|pω(x)dx ≤ Cγ

∫
Rn

Mγ f (x)pω(x)dx. (22)

ii) Let φ : (0,∞)→ (0,∞) satisfy the doubling condition, then there exists a positive constant Cγ depending on ω
and the doubling condition of φ such that

sup
t>0
φ(t)ω

(
{y ∈ Rn : |R(k)∗

γ f (x)| > t}
)
≤ Cγ sup

t>0
φ(t)ω

(
{y ∈ Rn : Mγ f (x) > t}

)
.

We will use a local version of (22) in the proof of the following Lemma 3.3. If 0 < p < ∞, ω ∈ A∞ and Q is
an arbitrary cube, then there exists a constant ω ∈ A∞ such that∫

2Q
|R(k)∗
γ f (x)|pω(x)dx ≤ Cγ

∫
2Q

Mγ f (x)pω(x)dx, (23)

for any function f that is supported in Q.
The proof of this theorem is similar to the proof in [2]. However, it is worth noting that there is a different

approach to the above theorem, which can be found in [1]. This approach is based on the combination
of the well-known inequality, which is much simpler. Fefferman-Stein theorem 2.2 and is a pointwise
approximation of the next lemma (25) used in the paper.
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Lemma 3.3. If R(k)
γ is a B-Riesz transform, then we have

M♯
γ(R

(k)
γ f )(x) ≤ CγM2

γ( f )(x), (24)

and, for 0 < r < 1,

M♯
γ,r(R

(k)
γ f )(x) ≤ Cγ,r Mγ f (x). (25)

The inequality given in equation (24) is known to hold if we replace the right-hand side with the larger
operatorMγ( f ) for γ > 1 . We will begin by discussing the proof of (24) as presented in Lemma 3.3, which
utilizes standard arguments. Additionally, it is worth noting that an alternative argument can be found in
[16].

It suffices to show that C > 0 for some constants c = cQ such that

1
|Q|

∫
Q
|R(k)
γ f (y) − c| dy ≤ CγMγ f (x). (26)

Let f = f1 + f2 such that f1 = f χ2Q. If we choose c = (R(k)
γ ( f2))Q, we can estimate the left-hand side of the

(26) by a multiple of

1
|Q|

∫
Q
|R(k)
γ ( f1)(y)| dy +

1
|Q|

∫
Q
|R(k)
γ ( f2) − (R(k)

γ ( f2))Q| dy = I + II.

To deal with (II), we use the regularity of the kernel in [9, p. 153]. So we have

II ≤ CγMγ f (x).

We will utilize (23) to verify I. Since f1 is supported on 2Q, we have

I ≤
C
|Q|

∫
4Q
|R(k)
γ ( f1)(y)| dy ≤

C
|Q|

∫
4Q

Mγ( f1)(y) dy ≤ C
C
|4Q|

∫
4Q

Mγ( f )(y) dy

≤ CγM2
γ( f )(x).

Proof. [Proof of Theorem 2.4] According to [[2] Theorem 3.2 and [6] Theorem 2.2] we have∫
Rn
+

(
R(k)∗
γ1
◦ R(k)

γ2
( f )(x)

)p
w ≤

∫
Rn
+

(
Mγ ◦ R(k)

γ2
f (x)

)p
w(x)dx ≤ Cγ

∫
Rn
+

(
M#
γ ◦ R(k)

γ2
f (x)

)p
w(x)dx

≤ Cγ

∫
Rn
+

(M2
γ f )p w,

In our previous estimate, we used (24) from Lemma 3.3, which leads to the equation (15) and concludes the
proof of the first part of the theorem. To establish (16), we will use similar reasoning, but this time we will
refer to part ii) of both Theorems 3.2 and 2.2. Consequently, we obtain

sup
t>0

1
Φ( 1

t )
w({y ∈ Rn

+ : |R(k)∗
γ1
◦ R(k)

γ2
f | > t}) ≤ sup

t>0

1
Φ( 1

t )
w({y ∈ Rn

+ : Mγ(R
(k)
γ2

f )(y) > t})

≤ sup
t>0

1
Φ( 1

t )
w({y ∈ Rn

+ : M#
γ(R

(k)
γ2

f )(y) > t}) ≤ sup
t>0

1
Φ( 1

t )
w({y ∈ Rn

+ : M2
γ( f )(y) > t}),

where Φ : [0, 1)→ [0, 1) a Young function and Φ(t) = t(1 + log+t) ≈ t log(e + t).
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We use a similar argument to prove ii) in Theorem 2.4. The main difference is that we first use Cotlar’s
inequality estimate from Theorem 3.1. Therefore, we have∫

Rn
+

(
R(k)∗
γ1
◦ R(k)∗

γ2
( f )(x)

)p
w ≤

∫
Rn
+

(
Mγ ◦ R(k)∗

γ2
f (x)

)p
w(x)dx

≤

∫
Rn
+

(
Mγ ◦Mδ ◦ R(k)

γ2
f (x)

)p
w(x)dx +

∫
Rn
+

M2
γ f (x)p w(x)dx = I + II.

We only need to check I. So it is sufficient to show that

Mγ ◦Mγ,r f ≤ Cγ,rM f (x). (27)

is satisfied. Thus, by Theorem 2.2, we obtain

I ≤ Cγ,r

∫
Rn
+

(
Mγ ◦ R(k)

γ2
f (x)

)p
w(x)dx ≤ Cγ,r

∫
Rn
+

(
M#
γ ◦ R(k)

γ2
f (x)

)p
w(x)dx ≤ Cγ

∫
Rn
+

(
M2
γ f (x)

)p
w(x)dx.

Here we have used (24) in the lemma 3.3 in the last estimate.
We still need to establish the validity of (27). Let x ∈ Rn

+ and let Q = Q(x, r) denote an arbitrary cube
centered atx with side length r. We need to show that

1
|Q|

∫
Q

Mγ,r f (y) dy ≤ CγMγ f (x).

Then let f = f1 + f2 so that f1 = f χ2Q. We can estimate the left side by a multiple of

1
|Q|

∫
Q

Mγ,r f1(y) dy +
1
|Q|

∫
Q

Mγ,r f2(y) dy = I + II.

To deal with (II), we use that it is roughly constant over Q in [9, p. 299]. Hence, we get

II ≤ CγMγ,r f (x) ≤ CγMγ f (x).

To prove (I), let us take r < 1 and observe that the maximal operator is bounded on L1/r(Rn
+). Therefore, we

conclude that

I ≤
Cγ,r
|Q|

∫
2Q

Ty
| f (x)| dy ≤ CγMγ( f )(x).

This completes the proof of part (i) of Theorem 2.4. The proof of the second part is similar to that of part
(i).

Proof. [Proof of Corollary 2.5] According to homogeneity, it is sufficient to assume t = 1, and therefore we
only have to prove

w({y ∈ Rn : |R(k)∗
γ1
◦ R(k)

γ2
f (y)| > 1}) ≤ Cγ

∫
Rn
+

Φ(| f (y)|)w(y)dy.

Now, Φ = t(log(e + t)) ≈ t(1 + log+ t) is submultiplicative, i.e. Φ(ab) ≤ Φ(a)Φ(b), a, b ≥ 0. Especially, Φ is
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doubling. According to Theorem 2.4 and Corallary 2.5, we get

w({y ∈ Rn : |R(k)∗
γ1
◦ R(k)

γ2
f (y)| > 1}) ≤ C sup

t>0

1
Φ( 1

t )
w({y ∈ Rn : |R(k)∗

γ1
◦ R(k)

γ2
f (y)| > t})

≤ C sup
t>0

1
Φ( 1

t )
w({y ∈ Rn : M2

γ f (y) > t})

≤ C sup
t>0

1
Φ( 1

t )

∫
Rn
Φ(

Ty
| f (x)|
t

)w(y)dy

≤ C sup
t>0

1
Φ( 1

t )

∫
Rn
Φ(Ty

| f (x)|)Φ(
1
t

)w(y)dy

= C
∫
Rn
Φ(Ty

| f (x)|)w(y)dy .

The proof is now complete.

Proof. [Proof of Theorem 2.6] For classic Riesz transforms, for the B-Riesz transforms it is sufficient to prove
that

|Rk,∗
γ (Rk

γ( f ))(0)| ≤ C(|(Rk,∗
γ )2 f (0)| +M f (0)),

where Rk,∗
γ represent the truncations of Rk

γ, and note that(Rk,∗
γ )2 = −I. Define Kγ and K∗γ as the kernels of Rk

γ

and Rk,∗
γ respectively. Let B denote the unit ball in Rn

+. Since Rk
γ is an even B-Riesz transform, its kernel

outside the unit ball lies within the region ofRk
γ ( see [21, 23]). More specifically, there exists a polynomial b

such that
Kγ(y)χBc (y) = Rk

γ(bχB)(y) , y ∈ Rn
+ .

Therefore, if Rk
γ ◦ Rk

γ = − I , we have:

Rk
γ(R

k
γ f (0)) =

∫
|y|≥1

Kγ(y)Ty(Rk
γ f (x))(yn)γdy =

∫
Rk
γ(bχB)(y)Rk

γ f (y)dy

= C
∫

b(y)χB(y)Ty f (x)(yn)γdy.

Obviously this integral is bounded by C∥b∥L∞(B) (Mγ f )(0). So the proof is complete.
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[4] G.P. Curbera, J. Garcia-Cuerva, J.M. Martell and C. Pérez, Extrapolation with weights, Rearrangement Invariant Function Spaces,

modular inequalities and applications to Singular Integrals, Advances in Mathematics, 203 (2006) 256-318.
[5] I. Ekincioglu, The boundedness of high order Riesz-Bessel transformations generated by the generalized shift operator in weighted Lp,w,γ-

spaces with general weights, Acta Appl. Math 109 (2)(2010), 591-598.
[6] C. Fefferman and E.M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137-193.
[7] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[8] L. Grafakos, Classical Fourier Analysis, Springer-Verlag, Graduate Texts in Mathematics 249, Second Edition 2008.
[9] L. Grafakos, Modern Fourier Analysis, Springer-Verlag, Graduate Texts in Mathematics 250, Second Edition 2008.

[10] V. S. Guliyev, On maximal function and fractional integral associated with the Bessel differential operator, Math. Ineq. Appl. 6(2), (2003),
317–330.



I. Ekincioglu et al. / Filomat 39:11 (2025), 3729–3740 3740

[11] V.S. Guliyev and J.J. Hasanov, The Sobolev–Morrey type inequality for Riesz potentials, associated with the Laplace–Bessel differential
operator, Frac. Calc. Appl. Anal. 9(1) (2006), 17–32.
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