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Abstract.
Let K be a complete, non-trivially valued, ultrametric (or non-archimedean) field, and λ = {λn} - a

sequence inK with the property 0 < |λn| ↗ ∞,n→∞, i.e., the speed of convergence. In the present paper,
the concepts of boundedness and convergence with speed and speed-Maddox spaces over K, where the
speed is defined by λ, have been recalled. Let µ be another speed inK. Necessary and sufficient conditions
are found for a matrix A over K to transform all λ-bounded sequences over K into speed-Maddox spaces
overK, where the speed is defined by µ.

1. Introduction

The present paper is the continuation of [17] and [18]. Therefore we use the notations and concepts from
these papers (see also [12] - [14]). To make the paper self-contained, we recall the notations and concepts
from mentioned papers, which we need for this paper.

Let, throughout the paper, K be a complete, non-trivially valued, ultrametric (or non-archimedean)
field. Also sequences, infinite series and infinite matrices have entries in K, and indices and summation
indices run from 0 to∞, unless otherwise stated. Given an infinite matrix A = (ank), and a sequence x = {xk},
by the A-transform of x, we mean the sequence A(x) = {(Ax)n}, where

(Ax)n =

∞∑
k=0

ankxk, n = 0, 1, 2, . . . ,

it being assumed that the series on the right converge. If (Ax)n → s, n → ∞, we say that x is A-summable
or summable A to s.
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If X,Y are sequence spaces, we write A = (ank) ∈ (X,Y) if {(Ax)n} ∈ Y, whenever x = {xk} ∈ X. In
the sequel, m, c, c0 respectively denote the ultrametric Banach spaces of bounded, convergent and null
sequences under the ultrametric norm

∥x∥ = sup
k
|xk|, x = {xk} ∈ m, c, c0.

Let now, and further in the present paper, λ = {λn} is a sequence inK, such that

0 < |λn| ↗ ∞,n→∞.

A convergent sequence {xn} inKwith the limit limn→∞ xn = s is said to be
a) λ-bounded if {λn(xn − s)} ∈ m,
b) λ-convergent if {λn(xn − s)} ∈ c,
c) λ-convergent to zero if {λn(xn − s)} ∈ c0.
We note that in classical case the concepts of λ-boundedness and λ-convergence have been introduced

in [3, 4] by Kangro (see also [1]).
We denote the set of all λ-bounded sequences by mλ, the set of all λ-convergent sequences by cλ, and

the set of all sequences λ-convergent to zero by cλ0 . It is not difficult to see that

cλ0 ⊂ cλ ⊂ mλ ⊂ c.

Moreover, these inclusions are strict.
Let p = {pn} be a sequence of strictly positive real numbers, and let

c0(p) = {x = {xn} : lim
n
|xn|

pn = 0},

c(p) = {x = {xn} : lim
n
|xn − l|pn = 0 for some l ∈ K},

m(p) = {x = {xn} : |xn|
pn = O(1)}.

Earlier the sets c0(p), c(p) and m(p) were defined over the field of complex numbers, and called as Maddox
spaces (see, for example, [5, 6, 19]). In that case, for a bounded sequence p these spaces are also linear spaces.
Under some additional conditions (for example, infn pn > 0) these spaces are also paranormed spaces (see
[5, 6, 19]). Good overview on these spaces, including the Maddox spaces, has been given, for example, in
[2] and [7].

Further, throughout the paper, we assume that p is bounded. Then it is easy to prove (see also Corollary
2.11 of [7]) that

c0(p) ⊂ c0, c(p) ⊂ c, m ⊂ m(p).

If pn ≡ 1, then
c0(p) = c0, c(p) = c, m(p) = m.

We note that in the ultrametric set up the Maddox spaces are studied by Natarajan (see, for example, [9]).
It appears from [9] that for a bounded p, similarly to the classical case, all Maddox spaces are linear, and
under some additional conditions for p these spaces are also paranormed.

Let
(c0(p))λ = {x = {xn} : lim

n→∞
xn = s (say) and {λn(xn − s)} ∈ c0(p)},

(c(p))λ = {x = {xn} : lim
n→∞

xn = s (say) and {λn(xn − s)} ∈ c(p)},

(m(p))λ = {x = {xn} : lim
n→∞

xn = s (say) and {λn(xn − s)} ∈ m(p)}.

We call the sets (c0(p))λ, (c(p))λ and (m(p))λ as speed-Maddox spaces. These spaces over the field of
complex numbers are studied in [15, 16]. The notions of paranormed zero-convergence, paranormed
convergence and paranormed boundedness with speed λ over the field of complex numbers are also
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defined in [15, 16]. Using these definitions we can say that for a bounded sequence p, in classical case (c0(p))λ

consists of all paranormally zero-convergent sequences with speed λ, (c(p))λ consists of all paranormally
λ-convergent sequences, and (m(p))λ consists of all paranormally λ-bounded sequences.

Let µ be another speed. Necessary and sufficient conditions in ultrametric set up for a matrix A would
transform cλ0 into (c0(p))µ, (c(p))µ or (m(p))µ are proved in [17], and from cλ into (c0(p))µ, (c(p))µ or (m(p))µ in
[18]. In the present paper we continue the studies started in [17] and [18]. We give the characterization of
matrix classes (mλ, (c0(p))µ), (mλ, (c(p))µ) and (mλ, (m(p))µ) over the ultrametric fieldK.

2. Auxiliary results

First we present two lemmas, which are important in ultrametric analysis and used for the proof of
next results of this section. Using Theorem 1.1 of [10] or Theorem 2.1 of [11] we can formulate the following
result.

Lemma 2.1. If xn ∈ K, then ∣∣∣∣∣∣∣
∞∑

k=0

xk

∣∣∣∣∣∣∣ ≤ sup
k
|xk|.

Lemma 2.2 ([10], Theorem 1.3, see also [11], Theorem 2.5). A sequence x = (xk) in K is a Cauchy sequence if
and only if

|xk+1 − xk| → ∞; k→∞.

Now we note some results that will be used for the proof of main results of the paper in next section.
Throughout this section we assume that A = (ank) has entries inK.

Proposition 2.3 A matrix A ∈ (m, c) if and only if

lim
k→∞

ank = 0, n = 0, 1, 2, . . . (2.1)

and

lim
n→∞

sup
k
|an+1,k − ank| = 0. (2.2)

In such a case,

lim
n→∞

(Ax)n =

∞∑
k=0

akxk (2.3)

for every x = (xk) ∈ m, where

lim
n→∞

ank = ak uni f ormly with respect to k. (2.4)

Proof. Here we prove (2.3) only. The proof of the rest of the theorem can be found in [8] (see also [10],
Theorem 4.2). First we show that condition (2.4) follows from (2.2). Indeed, using (2.2), we note that for
every ε > 0 there exists a positive integer N, such that

sup
k
|an+1,k − ank| < ε

for all n > N, i.e.,
|an+1,k − ank| < ε, n > N
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for every k = 0, 1, . . . . Hence {(ank}
∞

n=0 is uniformly Cauchy with respect to k = 0, 1, . . . by Lemma 2.2. Since
K is complete, then condition (2.4) holds.

Let x = (xk) be arbitrary sequence in m. Then there exists a positive number H, such that

sup
k
|xk| < H. (2.5)

Moreover, from (2.4) we conclude that for every ε > 0 there exists a positive integer L, such that

sup
k
|ank − ak| <

ε
H

(2.6)

for all n > L. Hence, by Lemma 2.1 and relations (2.5), (2.6) we obtain∣∣∣∣∣∣∣
∞∑

k=0

(ank − ak)xk

∣∣∣∣∣∣∣ ≤ sup
k
|ank − ak||xk| <

ε
H

H = ε

for all n > L. It means

lim
n→∞

∞∑
k=0

(ank − ak)xk = 0. (2.7)

As {(Ax)n} converges, from (2.7) we obtain that the series
∑
∞

k=0 akxk also converges. Therefore

(Ax)n =

∞∑
k=0

(ank − ak)xk +

∞∑
k=0

akxk,

which implies by (2.7) that relation (2.3) holds for every x ∈ m.
For formulating following Propositions 2.4 - 2.6 we assume that p = {pn} is a sequence of strictly positive

real numbers. Using Lemmas 2.1 and 2.2, these propositions can be proved like Statements 17, 21 and 25 of
Theorem 4.13 for pk ≡ 1 in [7] have been proved in classical case (see also [2], p. 232-233).

Proposition 2.4 A matrix A ∈ (m, c(p)) if and only if

sup
n,k
|ank| < ∞, (2.8)

and there exists a sequence (ck) such that

lim
n→∞

(
M sup

k
|ank − ck|

)pn

= 0 f or all M > 0. (2.9)

Proposition 2.5 A matrix A ∈ (m, c0(p)) if and only if

lim
n→∞

(
M sup

k
|ank|

)pn

= 0 f or all M > 0. (2.10)

Proposition 2.6 A matrix A ∈ (m,m(p)) if and only if

sup
n

(
M sup

k
|ank|

)pn

< ∞ f or all M > 0. (2.11)
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3. Main results

Now we are able to prove the main results of the paper. Let further λ = {λn}, µ = {µn} be speeds
of convergence over K, p = {pn} - a bounded sequence of strictly positive real numbers, and B = (bnk) - the
matrix, defined by

bnk :=
µn(ank − ak)
λk

,n, k = 0, 1, 2, . . . ,

provided that

there exists the limit lim
n→∞

ank = ak; k = 0, 1, 2, . . . . (3.1)

Also, for the proof of the main results we need the special sequences

ek = {0, ..., 0, 1, 0, ...},

where 1 is in the k-th position only (k = 0, 1, 2, . . . ), and

e := (1, 1, . . . , 1, . . . ).

We note that ek, e ∈ mλ.

Theorem 3.1. A matrix A = (ank) ∈ (mλ, (c(p))µ) if and only if

A(e),A(ek) ∈ (c(p))µ, k = 0, 1, 2, . . . , (3.2)

lim
k→∞

ank

λk
= 0, n = 0, 1, 2, . . . , (3.3)

lim
n→∞

sup
k

∣∣∣∣∣an+1,k − ank

λk

∣∣∣∣∣ = 0, (3.4)

sup
n,k
|bnk| < ∞, (3.5)

and there exists a sequence (ck) such that

lim
n→∞

sup
k
|(bnk − ck)M|pn = 0 f or all M > 0. (3.6)

Proof. Necessity. Assume that A = (ank) ∈ (mλ, (c(p))µ). Then condition (3.2) holds, since e, ek ∈ mλ. As in
this case also A(ek),A(e) ∈ c, then condition (3.1) holds and

there exists lim
n→∞

∞∑
k=0

ank = a (say). (3.7)

Let, now, x = {xk} be an arbitrary sequence in mλ. Then there exists the limit limk→∞ xk = s (say), since x ∈ c,
and {vk} ∈ m,where

vk = λk (xk − s) , , k = 0, 1, 2, . . . . (3.8)

As it follows from (3.8) that
xk =

vk

λk
+ s, k = 0, 1, 2, . . . ,

then we obtain

(Ax)n =

∞∑
k=0

ankxk =

∞∑
k=0

ank

λk
vk + s

∞∑
k=0

ank. (3.9)
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Since {(Ax)n} ∈ c and (3.7) holds, then the matrix

Aλ :=
(ank

λk

)
transforms this sequence {vk} ∈ m into c.Moreover, it is not difficult to show that for every sequence {vk} ∈ m
there exists a sequence {xk} ∈ mλ, such that (3.8) holds. Hence, Aλ ∈ (m, c). Therefore, using Proposition 2.3
and conditions (3.1), (3.7), we can conclude that conditions (3.3) and (3.4) hold, and

η := lim
n→∞

(Ax)n =

∞∑
k=0

ak

λk
vk + sa (3.10)

for every x = {xk} ∈ mλ, where v := limk→∞ vk. From (3.9) and (3.10) we have

(Ax)n − η =
∞∑

k=0

(ank − ak)
λk

vk + s

 ∞∑
k=0

ank − a

 ,
and so

µn
(
(Ax)n − η

)
=

∞∑
k=0

bnkvk + sµn

 ∞∑
k=0

ank − a

 (3.11)

for every x ∈ mλ. By assumption, {(Ax)n} ∈ (c(p))µ for every x ∈ mλ, hence{
µn

(
(Ax)n − η

)}
∈ c(p) (3.12)

for every x ∈ mλ. In addition, since A(e) ∈ (c(p))µ, thenµn

 ∞∑
k=0

ank − a


 ∈ c(p). (3.13)

Thus, from (3.11) we can conclude that B = (bnk) ∈ (m, c(p)). Therefore conditions (3.5) and (3.6) are satisfied
by Proposition 2.4, completing the proof of the necessity part.
Sufficiency. Assume that conditions (3.2) - (3.6) hold. Then conditions (3.1) and (3.7) are satisfied by (3.2),
and relation (3.9) holds for every x ∈ mλ, where limk→∞ xk = s and vk is defined by (3.8). We note that

lim
n→∞

ank

λk
=

ak

λk
, k = 0, 1, 2, . . .

by (3.1). Hence, with the help of Proposition 2.3 we have by (3.3) and (3.4) that Aλ ∈ (m, c) and (3.10) holds
for every x ∈ mλ. Then also (3.11) is satisfied for every x ∈ mλ by (3.9) and (3.10). Now, relation (3.13) holds
by 3.2, and, using Proposition 2.4, we can conclude that B ∈ (m, c(p)) by (3.5) - (3.6). Therefore, from (3.11)
we obtain that (3.12) is also satisfied for every x ∈ mλ, completing the proof of the theorem.

Theorem 3.2. A matrix A = (ank) ∈
(
mλ, (c0(p))µ

)
if and only if conditions (3.3), (3.4) hold, and

A(e),A(ek) ∈ (c0(p))µ, k = 0, 1, 2, . . . , (3.14)

lim
n→∞

(
M sup

k
|bnk|

)pn

= 0 f or all M > 0. (3.15)

Theorem 3.3. A matrix A = (ank) ∈
(
mλ, (m(p))µ

)
if and only if conditions (3.3), (3.4) hold, and

A(e),A(ek) ∈ (m(p))µ, k = 0, 1, 2, . . . , (3.16)
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sup
n

(
M sup

k
|ank|

)pn

< ∞ f or all M > 0. (3.17)

The proofs of Theorems 3.2 and 3.3 are similar to the proof of Theorem 3.1. Therefore we omit them.
We note only that for the proof of Theorem 3.2, instead of Proposition 2.4 we need to use Proposition 2.5,
and (3.2) it is necessary to replace by (3.14), and in the proof of Theorem 3.3, instead of Proposition 2.4 we
need to use Proposition 2.6, and (3.2) it is necessary to replace by (3.16).
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