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Abstract. The focus of this paper, is to establish the existence of a weak solution for a problem that
involves p(x)-Laplacian. We achieve this by utilizing the topological degree theory, which is based on a
class of demi-continuous operators of generalized (S+) type, as presented in [6], in conjunction with the
theory of variable-exponent Sobolev spaces. Additionally, we provide a numerical example to verify and
validate the theoretical results.

1. Introduction

A device constructed from materials whose electrical conductivity is strongly influenced by temperature
is called a Thermistor. There are two types of Thermistors, which are PTC and NTC thermistors (Positive and
Negative Temperature Coefficient thermistors, respectively) [30]. Both have been employed for temperature
sensing, self-resetting overcurrent protection, and inrush speed control since the 1830s, at the end of the
industrial revolution. Michael Faraday, a British chemist, is known to be the first scientist who created the
first NTC thermistor.

Thermistors offer several advantages as temperature measurement devices, including their affordability,
high precision, and ability to be easily customized in terms of size and shape, while the following is a
summary of their applications: control and temperature sensing, it is owing to their potential to provide
economic and precise temperature sensors for a wide temperature range; thermal relay and switch: due to
their voltage regulation, surge protection; indirect measurement of other parameters. In fact, a thermistor’s
rate of temperature change during heating is influenced by its surroundings [22]. The following system
shows how a thermistor, a device for regulating electric current in a circuit, works

∂v
∂s
− ∆p(z)v =

λ f (v)

(
∫
Ω

f (v)dx)2
, in Q

v(x, s) = 0, on ∂Ω×]0,T[,
v(x, 0) = v0(x), in Ω,

(1)
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The first equation in (1) contains two key terms. The first one, denoted by f (v), represents the electrical

resistance of the conductor. The second term, given by
f (v)

(
∫
Ω

f (v)dx)2
, represents the non-local aspect of the

equation. Moving on, the notation Q is defined as the Cartesian product of the open bounded regionΩ ⊂ Rm

(where m ≥ 1) and the positive constant T, i.e., Q := Ω× [0,T]. The ”Thermistor Problem” typically consists
of two equations. The first one is an elliptic equation that elucidates the quasistatic evolution of the electric
potential, while the second one is a non-linear parabolic equation that characterizes the temperature [4].
In reality, the coupling which is in part impacted by the electrical conductivity’s substantial temperature
dependence is what is responsible for the problem’s high nonlinearity. Mathematically, the thermistor
problem is formulated as follows.

∂v
∂s
= ∇ · (κ(v)∇v) + ρ(v)|∇θ|2,

∇ · (ρ(v)∇θ) = 0,
(2)

where v represent the temperature produced by an electric current passing through a conductor, k(v) and
ρ(v) are the electric and thermal conductivities, respectively. While θ is the electric potential (see [3, 18, 21]).
The coupling (2) is, partially transformed into a parabolic system, taking into account the boundary and
initial conditions. For more details, we refer to [8, 9, 11, 23, 25, 27]. In this work, we shall deal with the
non-local model (1) which is the extension of the one appearing in several papers [2, 14–16, 19, 28].

The presence of several applications stimulates our motivation. Furthermore, each layer’s non-Ohmic
behaviour is described by the exponent p(x), which abruptly changes from one material to another. On
the other hand, from a mathematical point of view, this operator poses fascinating problems since it lacks
homogeneity, when the exponent p(x) is not a constant. The aim of this study is to utilize topological degree
theory to prove the existence of solutions to system (1) for a specific class of demi-continuous operators
of generalized (S+) type introduced in [6], along with the theory of variable-exponent Sobolev spaces.
Additionally, we provide a numerical example to demonstrate the effectiveness of our proposed approach.

The remainder of this work is structured as follows. We introduce some preliminaries in Section 2, that
are used in the sequel. In Section 3, we develop the proof of the existence of a weak solution. While in
Section 4, we perform some numerical simulations to validate the theoretical results. Finally, in Section 5,
we state a conclusion and some perspectives.

2. Preliminaries

Throughout this paper, we assume that
(H1) v0 ∈ L2(Ω).
(H2) f is a function and there exists a positive constant σ, C1 and a function β in L1(Ω) such that

σ ≤ f (v) ≤ C1(|v|q(z)−1 + β(z)), (3)

where
1 < q− ≤ q(x) ≤ q+ < p−.

We specific the rest parameters of problem (1). Ω will denote an open bounded set of Rm, m ≥ 2 with
smooth boundary and ∆p(z)v := div

(
|∇v|p(z)−2

∇v
)

where ∆p(z) is defined from

U :=
{
v ∈ Lp−

(
0,T; W1,p(·)

0 (Ω)
)

: |∇v| ∈ Lp(·)(Q)
}
. (4)

where p : Ω̄ −→ R is measurable such that:

+∞ > p+ ≥ p(z) ≥ p− > 1, (5)
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where p+ = ess sup
z∈Ω

p(z), p− = ess inf
z∈Ω

p(z). We endow the space U by the following norm ∥v∥U :=

∥v∥Lp−
(
0,T;W1,p(·)

0 (Ω)
) + ∥∇v∥Lp(·)(Q). U is a separable reflexive Banach space [5], and we denote by ⟨., .⟩ the

duality between W1,p(z)
0 (Ω) and W−1,p′(z)

0 (Ω) where 1/p(z) + 1/p′(z) = 1. Lp(z)(Ω) = {v : Ω→ R is measurable,
such that

∫
Ω
|(v(z))|p(z)dz < +∞

}
endowed with

∥v∥Lp(z) := inf
{
C > 0;ρp(z)

( v
C

)
≤ 1

}
,

where

ρp(z)(v) =
∫
Ω

|v(z)|p(z)dz, ∀v ∈ Lp(z)(Ω).

We also define the Sobolev space with variable exponent as follows

W1,p(·)(Ω) =
{
v ∈ Lp(·)(Ω) : |∇v| ∈ Lp(·)(Ω)

}
.

W1,p(·)(Ω) is endow by

∥v∥W1,p(·)(Ω) = ∥v∥Lp(·)(Ω) + ∥∇v∥Lp(·)(Ω),

or

∥v∥W1,p(·)(Ω) = inf
{

C > 0 :
∫
Ω

(∣∣∣∣∣∇v(x)
C

∣∣∣∣∣p(z)

+

∣∣∣∣∣v(z)
C

∣∣∣∣∣p(z))
dz ⩽ 1

}
.

We define also C∞c (Ω)
W1,p(·)(Ω)

=: W1,p(·)
0 (Ω). We suppose that p− > 1, then the spaces

(
W1,p(·)(Ω), ∥ · ∥W1,p(·)(Ω)

)
and

(
W1,p(·)

0 (Ω), ∥ · ∥W1,p(·)(Ω)

)
are two Banach reflexive separable spaces [20, 26]. The space

(
W1,p(·)

0 (Ω)
)⋆

is the

dual of W1,p(·)
0 (Ω). For more details on variable exponent spaces we refer the reader to [17].

Proposition 2.1. (See [20]) Let us (vn)n∈N a sequence and v ∈ Lp(·)(Ω). Then

∥v∥p(z) ≤ 1 equivalent to ρp(z)(v) ≤ 1, (6)

if ∥v∥p(z) > 1 implies ∥v∥p
−

p(z) ≤ ρp(z)(v) ≤ ∥v∥p
+

p(z), (7)

∥v∥p(z) < 1⇒ ∥v∥p
+

p(z) ≤ ρp(z)(v) ≤ ∥v∥p
−

p(z), (8)

lim
n→∞
∥vn − v∥p(z) = 0⇔ lim

n→∞
ρp(z) (vn − v) = 0. (9)

Remark 2.2. If we combine (7) with (8), we get the following inequalities

∥v∥p(z) ≤ ρp(z)(v) + 1, (10)

ρp(z)(v) ≤ ∥v∥p
−

p(z) + ∥v∥
p+

p(z). (11)

Keeping this in mind and using (5), to obtain the following inequalities

∥v∥p
−

Lp(·)(Q)
− 1 ≤

∫
Q
|v|p(z)dxds ≤ ∥v∥p

+

Lp(·)(Q)
+ 1. (12)
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We make essential use of the following Definition 2.3.

Definition 2.3. v ∈W1,p(z)
0 (Ω) is a weak solution of system (1), if the following identity

−

∫
Q

v
∂w
∂s

dzds +
∫

Q
|∇v|p(z)−2

∇v∇wdzds =
∫

Q

λ f (v)

(
∫
Ω

f (v)dz)2
wdzdt,

holds for all w ∈W1,p(z)
0 (Ω).

Now, Let us introduce some classes of operators and the notation of topological degree. Let us consider Y
and X be two real separable reflexive Banach spaces with dual X∗ and Y∗ respectively. LetΩ be a non-empty
subset of X. The definition of the graph of R, a mapping from X to X∗, is as follows:

G(R) := {(v,w) ∈ X × X∗/ w ∈ R(v)} .

R is called to be monotone, if for all (v1,u1) and (v2,u2) in G(R), we get

⟨u1 − u2, v1 − v2⟩ ≥ 0,

holds. If R is maximal in the sense that it is included in the graph of a monotone multi-valued mapping
from X to X∗, then R is considered maximally monotone [12].

Definition 2.4. (See [7]) Let us Y be real reflexive Banach space. A mapping R : Ω ⊂ X→ Y is called to be

1. a bounded mapping, if it transforms any bounded set into a bounded set.
2. demi continuous mapping, if for all (vn)n∈N ⊂ Ω such that vn → v, we have R (vn)→ R(v).
3. a compact mapping, if R is continuous and the image of every bounded set is also compact.

Definition 2.5. (See [7]) Let us consider a mapping R : Ω ⊂ X→ X∗, then

1. R is of class (S+), if for all (vn)n∈N ⊂ Ω such that vn → v and lim sup
n→∞

⟨R(vn), vn − v⟩ ≤ 0, we have vn → v.

2. R is quasi-monotone, if for all sequence (vn)n∈N ⊂ Ω such that vn → v, we have lim sup
n→∞

⟨R(vn), vn − v⟩ ≥ 0.

Definition 2.6. (See [7]) For each operator R : Ω ⊂ X → X and all bounded operator F : Ω1 ⊂ X → X∗ such that
Ω ⊂ Ω0, get that R

1. is of class (S+)F, if for each (vn)n∈N ⊂ Ω such that vn → v, yn := F(vn)→ y and lim sup
n→∞

〈
R(vn), yn− y⟩ ≤ 0,

we get vn → v.
2. admits property (QM)F, if for all (vn)n∈N ⊂ Ωwith vn → v, yn := F(vn)→ y, we obtain lim sup

n→∞

〈
R(vn), y − yn

〉
≥

0.

The next result contains some fundamental properties of the operators:

F1(Ω) := {S + K : D(K) ∩Ω→ X∗ : K is demi-continuous, bounded and of class
(S+) with respect to D(K)},

HG := {S + K(s) : D(S) ∩ Ḡ→ X∗/K(s) is a bounded homotopy of class (S+)
with respect to D(S) from Ḡ to X∗},

whereHG (class) includes all affine homotopies S + (1 − s)K1 + sK2 with
(
K j + L

)
∈ FG, j = 1, 2.

Lemma 2.7. (See [24, Lemma 2.3]) Let X a real reflexive Banach space, and let us S : D(S) ⊂ X∗ → X to be
demi-continuous operator and F a continuous mapping in F1(Ē), where F(Ē) ⊂ D(S) and E ⊂ X is an open bounded
domain. Then
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1. If S is quas-imonotone, we get I + SoF ∈ FF(G), where I is the identity.
2. If S is of class (S+), we obtain SoF ∈ FF(G).

The following result owing to Mustonen and Berkovits [6] provides us with the existence of a topological
degree function fulfil (a)-(d).

Theorem 2.8. (See [6]) Let us consider L : D(L) ⊂ X −→ X∗ a densely maximal monotone linear mapping. There
exists a topological degree function d : {(R,G, h) : R ∈ FG, G ⊂ X an open bounded, h < R(∂G ∩D(L))} → Z
fulfilled the following:

(a) If d(R,G, h) , 0, we get R(v) = h admit a solution in G ∩D(L). (Existence).
(b) If G1,G2 ∈ G and G1 , G2 such that h < R

[(
Ḡ\ (G1 ∪ G2)

)
∩D(L)

]
, then we have

d(R,G, h) = d (R,G1, h) + d (R,G2, h) . (Additivity).

(c) If R(s) ∈ HG and h(s) < R(s)(∂G ∩D(L)) for all s ∈ [0, 1], where h(s) is a continuous curve in X∗, then

d(R(s),G, h(s)) = constant, for all s ∈ [0, 1]. (Invariance under homotopies)

(d) J + L is a normalizing map, where J is the duality mapping of X into X∗, that is,

d(J + L,G, h) = 1, whenever h ∈ (J + L)(G ∩D(L)). (Normalization).

Proposition 2.9. Under assumptions (H1)-(H2), the operator

S : W1,p(z)
0 (Ω) −→W1,p′(z)

0 (Ω)

defined by

⟨Sv,w⟩ = −
∫
Ω

λ f (v)

(
∫
Ω

f (v)dz)2
wdz, for all v,w ∈W1,p(z)

0 (Ω) is compact.

Proof. First, we demonstrate

φ(v) :=
λ f (v)

(
∫
Ω

f (v)dz)2

is bounded and continuous. For all v ∈W1,p(z)
0 (Ω), from (3) we get∥∥∥φ(v)

∥∥∥
p′(z)
≤ ρp′(z)(φ(v)) + 1

≤
λp+

(σmeas(Ω))2p−

∫
Ω

| f (v(z, s))|p
′(z)dz + 1

≤
λp+

(σmeas(Ω))2p−

∫
Ω

(
C1(|v|q(z)−1 + β(z))

)p′(z)
+ 1

≤
λp+

(σmeas(Ω))2p−

(
ρp′(z)(β) + ρr(z)(v)

)
+ 1.

(13)

Since
ρp(z)(v) ≤ ∥v∥p

−

p(z) + ∥v∥
p+

p(z) ,

there exits a positive constant C2 such that

∥∥∥φ(v)
∥∥∥

p′(z)
≤

λp+C2

(σmeas(Ω))2p−

(∥∥∥β∥∥∥p′+

p′(z)
+ ∥v∥r

+

r(z)

)
+ 1.
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Since r(z) := p′(z)(q(z) − 1), we have Lp(z)(Ω) ↪→ Lr(z)(Ω). Keeping this in mind and using Poincarée’s
Inequality [13], to obtain that

∥v∥r
+

r(z) ≤ ∥v∥
r+
p(z) ≤ ∥v∥

p+

p(z) ≤ C3 ∥v∥
p+

1,p(z) . (14)

From (13) and (14), it yields that∥∥∥φ(v)
∥∥∥

p′(z)
≤

λp+C2

(σ ·meas(Ω))2p−

(∥∥∥β∥∥∥p′+

p′(z)
+ C3 ∥v∥

p+

1,p(z)

)
+ 1. (15)

All the term in the right side of the above inequality are bounded. One can conclude that φ is bounded in
W1,p(z)

0 (Ω). It can be shown that φ is a continuous function. It is worth mentioning that

I : W1,p(z)
0 (Ω)→ Lp(z)(Ω)

is compact and knowing that the adjoint operator

I
∗ : Lp′(z)(Ω)→W−1,p′(z)(Ω)

is also compact, we get I∗oϕ : W1,p(z)
0 (Ω)→W−1,p′(z)(Ω) is compact. This concludes the proof.

2.1. Properties of p(z)-Laplacian operator
We devote this Section to presents some properties of p(z)-Laplacian, which useful in the sequel. We

define p(z)-Laplacian operator as follows:

−∆p(z)v := −div
(
|∇v|p(z)−2

∇v
)
.

It is worth mentioning that

K(v) :=
∫
Ω

1
p(z)
|∇v|p(z)dz, v ∈W1,p(z)

0 (Ω).

From [10], we obtain K ∈ C1
(
W1,p(z)

0 (Ω),R
)
, and the p(z)-Laplacian operator is the derivative operator of K

in the weak sense. We denote
J := K′ : W1,p(z)

0 (Ω)→W−1,p′(z)(Ω),

then we have

⟨Jv,w⟩ =
∫
Ω

|∇v|p(z)−2
∇v∇wdz, for all v,w ∈W1,p(z)

0 (Ω).

Theorem 2.10. (See [10, Theorem 3.1])

• J : W1,p(z)
0 (Ω)→W−1,p′(z)(Ω) is a strictly monotone, continuous and bounded operator;

• J is a mapping of class (S+);

• J is a homeomorphism.

3. Existence of a weak solution

This section is devoted to prove existence of a weak solution for problem (1).

Theorem 3.1. Let S + J ∈ FX and φ ∈ X∗. Suppose that there exists r > 0 such that

⟨S(v) + J(v) − φ(v), v⟩ > 0, (16)

for all v ∈ ∂Br(0) ∩D(S). Hence, (S + J)(D(S)) = X∗.
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Proof. Let ε be a positive constant with τ in [0, 1] and

Hε(τ, v) = S(v) + (1 − τ)J(v) + τ(J(v) + εL(v) − φ(v)).

Using the boundary condition of (1), we get〈
Hε(τ, v), v

〉
= ⟨τ(S(v) + J(v) − φ(v)), v⟩ + ⟨(1 − τ)S(v) + (1 + ετ − τ)L(v), v⟩
≥ ⟨(1 − τ)S(v) + (1 + ετ − τ)S(v), v⟩.

In view of the fact that 0 ∈ S(0), we obtain the following inequalities〈
Hε(τ, v), v

〉
≥ (1 − τ)⟨S(v), v⟩ + (1 + ετ − τ)⟨L(v), v⟩

≥ (1 + ετ − τ)∥v∥2 = (1 + ετ − τ)r2 > 0.

That is 0 < Hε(τ, v). By reason of S+ εJ and J are bounded, continuous and of type (S+),
{
Hε(τ, ·)

}
τ∈[0,1] is an

admissible homotopy. Consequently, by invariance, homotopy and normalisation, we get

d (Hε(τ, ·),Br(0), 0) = d (S + L,Br(0), 0) = 1.

Therefore, there exists vε ∈ D(S) such that 0 ∈ Hε(τ, ·). Letting ε → 0+and τ = 1, we get φ(v) ∈ Sv + Jv for
some v ∈ D(S). In view of the fact that φ ∈ X∗, we obtain (S + J)(D(S)) = X∗.

The following theorem gives the existence result.

Theorem 3.2. Let φ ∈ U∗ and v0 ∈ L2(Ω). There exists a weak solution v ∈ D(S) of problem (1) such that

−

∫
Q

v
∂w
∂s

dzds +
∫

Q
|∇v|p(z)−2

∇v∇wdzds =
∫

Q
φ(v)wdzds,

for all w ∈ U.

Proof. Let us S : D(S) ⊂ U −→ U∗, where

D(S) = {v ∈ U : v′ ∈ U∗, v(0) = 0}

and

⟨S(v),w⟩ = −
∫

Q
v
∂w
∂s

dzds, for all v ∈ D(S),w ∈ U.

We define S by the following identity

⟨S(v),w⟩ =
∫ T

0
⟨v′(s),w(s)⟩ ds, for all v ∈ D(S),w ∈ U.

The existence of S as a densely defined maximal monotone operator can be established, as in [29]. Using
the fact that ⟨S(v), v⟩ ≥ 0 for all v ∈ D(S) and by (12), we get

⟨S(v) + J(v), v⟩ ≥ ⟨J(v), v⟩ =
∫

Q
|∇v|p(z)dzds ≥ ∥∇v∥p

−

Lp(·)(Q)
− 1 = ∥v∥p

−

U
− 1, (17)

for all v ∈ U. In view of the fact that the right side of inequality (17) approaches ∞ as ∥v∥U → ∞. So,
for any function φ(v) ∈ U∗, there exists a positive constant r such that ⟨S(v) + J(v) − φ(v), v⟩ > 0 for all
v ∈ Br(0) ∩ D(S). Thanks to Theorem 2.8. Hence, the identity S(v) + J(v) = φ(v) is solvable in D(S), that is,
the problem (1) has a weak solution.
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4. Numerical results

In this section, we present numerical example to illustrate the evolution of solution. We use explicit
scheme of finite difference

vs(z, s) =
(
|vz(z, s)|p(z)−2 vz(z, s)

)
z
+

λ f (v(z, s))

(
∫
Ω

f (v(z, s))dz)2
, z ∈[0, 1], s > 0,

v(z, 0) = v0(z), z ∈[0, 1],
v(z, s) = 0, z ∈∂Ω, s > 0.

(18)

For the space discretization, we take

Uh = {zi : 0 = z0 < z1 < . . . < zM+1 = 1}

with zi = ih on Ω and substitute
(
|vz|

p(z)−2 vz

)
z

by the central difference approximation for i ∈ {1, 2, ...,M}.
System (18) becomes as in (19), for Vn

i ≈ v (zi, sn) (1 ≤ i ≤M) and n = 0, . . . ,m − 1, we have
Vn+1

i − Vn
i

∆s
= h−p(zi)B

(
Vn

i

)
+

λ f
(
Vn

i

)
(

1
2

[
f (Vn

M) + f (Vn
1 )

])2 , 1 ≤ i ≤M,

Vn+1
0 = Vn+1

M+1,

V(0, s) = V(1, s) = 0,

(19)

where qi + 2 := p (zi) and

B
(
Vn

i

)
=

∣∣∣Vn
i+1 − Vn

i

∣∣∣qi
(
Vn

i+1 − Vn
i

)
−

∣∣∣Vn
i − Vn

i−1

∣∣∣qi
(
Vn

i − Vn
i−1

)
.

Using MATLAB, we illustrate our previous results with the numerical experiments. We take the initial data
v0(z) = (z − 1)sin(z), z ∈ [0, 1]. The other parameters are specified in Figure 1.

Figure 1: Evolution of Solution for p(z) = πz + 2 at the left and p(z) = 1 at the right for Example 1

The region starts as blue, indicating a temperature of zero degrees. The temperature then steadily rises
until it reaches its maximum in the middle. After that, the material returns to its initial temperature.
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5. Conclusion

In this work, we showed existence of a weak solution in Sobolev spaces with variable exponent for
a nonlocal thermistor problem in the presence of doubly nonlinear terms. We also present a numerical
example to illustrate the evolution of solution. As future work, we plan to study the regularity of solution
in Sobolev spaces generalized for the same problem (1).
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