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AJGI iterative algorithm for solving coupled Sylvester matrix
equations with one side
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Abstract. This paper considers the coupled Sylvester matrix equations with one side, which have many
important applications in control theory and system theory. Based on the Jacobi iterative method and
the hierarchical identification principle, the Jacobi-gradient based iterative algorithm and the accelerated
Jacobi-gradient based iterative algorithm are constructed. It is theoretically proved that the presented
algorithms are convergent for any initial matrix under appropriate conditions, and numerical examples
are given to show that the presented iterative algorithms are faster than some existing iterative algorithms.
Moreover, the application of the accelerated Jacobi-gradient based iterative algorithm in dynamical systems
is presented.

1. Introduction

Solving linear or nonlinear matrix equations involves many fields, such as system theory [7, 15, 26],
control theory [32], signal processing [8], image restoration [38] and so on. For instance, the eigenstructure
assignment problem for the second-order linear system [7]

q̈ − Aq̇ − Cq = Bu, (1.1)

via controller{
u = −K0q − K1q̇ = −Kx,
K = [K0 K1],

can be solved by finding matrices V and K satisfying matrix equation

(A
′

− B
′

K)V = VΛ. (1.2)

2020 Mathematics Subject Classification. Primary 15A24; Secondary 65F10, 15A21.
Keywords. Coupled Sylvester matrix equations; Jacobi-gradient based iterative algorithm; Accelerated Jacobi-gradient based

iterative algorithm; Convergence performance.
Received: 05 August 2022; Revised: 16 September 2023; Accepted: 26 January 2025
Communicated by Marko Petković
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Therefore, solving various matrix equations has become an important research hotpot in recent years
[3, 10, 13, 16, 17, 19, 34]. For example, the conjugate direction (CD) method was developed to solve the
generalized nonhomogeneous Yakubovich-transpose matrix equation [15]. The Combined Real part and
Imaginary part (CRI) method was presented to solve the generalized Lyapunov matrix equation [23]. The
Lanczos version of the biconjugate residual algorithm was studied to solve the reflexive or anti-reflexive
solutions of a class of generalized coupled Sylvester matrix equations [36].

For the matrix equation with smaller coefficient matrix, the exact solution can be obtained quickly and
effectively. However, if the dimension of coefficient matrix is large, the direct method cannot solve the
problem well. In order to overcome this difficulty, numerous iterative methods are presented to solve the
matrix equations [2, 4, 11, 12, 14, 24, 25, 28–30, 37]. For example, Wu et al. [33] presented a gradient based
iterative (GI) algorithm for solving a class of complex conjugate and transpose matrix equation

s1∑
l=1

AlXBl +

s2∑
l=1

ClXDl +

s3∑
l=1

GlXTHl +

s4∑
l=1

MlXHNl = F, (1.3)

and left a conjecture that the sufficient condition is also the necessary condition for the convergence. To
verify this conjecture, Zhang et al. [39] constructed the GI algorithm for solving the complex matrix equation

AXB + CXD + GXTH +MXHN = F, (1.4)

which is a special case of (1.3), and obtained the necessary and sufficient conditions for convergence of the
GI algorithm. Based on the above work, Wang et al. [31] investigated a relaxed gradient based iterative
(RGI) algorithm for solving (1.4) and verified that the RGI algorithm is more efficient than the GI algorithm.
As an important and effective numerical algorithm, the RGI algorithm is one of the variants of the GI
algorithm originally proposed by Ding et al. [5, 6] and has been studied for solving other significant matrix
equations [18, 20–22]. Besides, other efficient variations of the GI algorithm include the accelerated GI
algorithm [1, 35], the Jacobi GI algorithm [9], the accelerated Jacobi GI algorithm [27] and so on. While the
methods proposed in [9, 27] successfully obtain sufficient condition for the convergence of the algorithm,
it is a hard task to compute the appropriate parameter value µ to satisfy the sufficient condition and they
do not consider the sufficient and necessary conditions for the convergence of the algorithm. Therefore,
this fact further encourages us to explore the appropriate parameter value µ that can be easily obtained to
satisfy the sufficient and necessary conditions for the convergence of the algorithm.

In this paper, we consider the numerical solutions of the coupled Sylvester matrix equations{
AX + XB = C,
DX + XE = F, (1.5)

where A,D ∈ Rm×m, B,E ∈ Rn×n, C,F ∈ Rm×n are given constant matrices, and X ∈ Rm×n is the unknown
matrix to be solved. Inspired by [1, 5, 6, 9, 18, 20–22, 27, 28, 30, 31, 33, 35, 39], the Jacobi-gradient based
iterative (JGI) algorithm and the accelerated Jacobi-gradient based iterative (AJGI) algorithm for solving
(1.5) are constructed by applying the Jacobi iterative method and the hierarchical identification principle,
which have not been studied to solve the coupled Sylvester matrix equations (1.5) to our knowledge. This
provides a variety of options for the numerical algorithms to solve (1.5). In the process of constructing the
algorithms, we extract the diagonal parts of coefficient matrices and use them to construct iterative formula.
In this case, the studied algorithms can greatly reduce the storage space and thus improve the operational
efficiency.

Throughout this paper, we use the following notations. LetRm×n denotes the set of m×n real matrix. For
A ∈ Rm×n, we use AT and ρ(A) to represent the transpose and the spectral radius of the matrix A, respectively.
For any A = (ai j) ∈ Rm×n, B = (bi j) ∈ Rs×t, A ⊗ B = (ai jB) ∈ Rms×nt denotes the Kronecker product of two
matrices. For a matrix X = (x1, x2, · · · , xn) ∈ Rm×n, the vector stretching function vec(·) : X → vec(X) is
defined as vec(X) = (xT

1 , x
T
2 , · · · , x

T
n )T
∈ Rmn. The symbol In represents the identity matrix of size n × n. The
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spectral norm of the matrix A is denoted by ∥A∥2 =
√
λmax(ATA) = σmax(A) and the Frobenious norm of the

matrix A is denoted by ∥A∥ =
√

tr(ATA) =

√√ m∑
i=1

n∑
j=1

|ai j|
2.

The rest of this paper is arranged as follows. In Section 2, we investigate the JGI algorithm and the AJGI
algorithm to solve (1.5). In Section 3, the convergence performance of the studied algorithms is discussed.
In Section 4, some numerical examples are provided to show that the studied algorithms are superior to
some existing algorithms. In Section 5, the application of the AJGI algorithm in dynamical systems is
provided. Finally, a brief conclusion is arranged in Section 6.

2. Finite iterative algorithms

First, let us start with a lemma that we will use in the subsequent derivation.

Lemma 2.1. ([6]) Consider the following matrix equation

AXB = F,

where A ∈ Rm×r,B ∈ Rs×n and F ∈ Rm×n are known matrices, and X ∈ Rr×s is the matrix to be determined. For this
matrix equation, an iterative algorithm is constructed as

X(k + 1) = X(k) + µAT(F − AX(k)B)BT,

with

0 < µ <
2

∥A∥22∥B∥
2
2

.

If A is a full column-rank matrix and B is a full row-rank matrix, then the iterative solution X(k) converges to the
unique solution X∗, that is limk→∞ X(k) = X∗.

In order to derive an iterative algorithm to (1.5), we need to define several intermediate matrices:

b1 := C − XB, b2 := C − AX, b3 := F − XE, b4 := F −DX. (2.1)

Now, by using the basic idea of Jacobi iterative method, the coefficient matrices A, B, D and E are
decomposed into the following forms:

A = D1 + F1, B = D2 + F2, D = D3 + F3, E = D4 + F4, (2.2)

where D1,D2,D3,D4 are the diagonal parts of A,B,D,E, respectively, i.e.

D1 = dia1[a11, a22, . . . , amm] ∈ Rm×m, D2 = dia1[b11, b22, . . . , bnn] ∈ Rn×n,

D3 = dia1[d11, d22, . . . , dmm] ∈ Rm×m, D4 = dia1[e11, e22, . . . , enn] ∈ Rn×n.

With the preceding definitions (2.1) and (2.2), equation (1.5) can be decomposed into four fictitious subsys-
tems

(D1 + F1)X = b1, X(D2 + F2) = b2, (D3 + F3)X = b3, X(D4 + F4) = b4. (2.3)

Then, we get

D1X = C − XB − F1X, XD2 = C − AX − XF2,
D3X = F − XE − F3X, XD4 = F −DX − XF4.

(2.4)
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We define

A1 = D1, A2 = D2, A3 = D3, A4 = D4, (2.5)

and

b̂1 = C − XB − F1X, b̂2 = C − AX − XF2,

b̂3 = F − XE − F3X, b̂4 = F −DX − XF4.
(2.6)

Thus, (2.4) can be simply written as

A1X = b̂1, XA2 = b̂2, A3X = b̂3, XA4 = b̂4. (2.7)

After the above treatment, equation (1.5) is decomposed into several simple matrix equations. Let X(k)
be the estimates of X at iteration k, associated with the subsystems in (2.7), respectively. From Lemma 2.1,
it leads to the following recursive iterative forms:

X1(k) = X(k − 1) + µAT
1 [b̂1 −A1X(k − 1)], (2.8)

X2(k) = X(k − 1) + µ[b̂2 − X(k − 1)A2]AT
2 , (2.9)

X3(k) = X(k − 1) + µAT
3 [b̂3 −A3X(k − 1)], (2.10)

X4(k) = X(k − 1) + µ[b̂4 − X(k − 1)A4]AT
4 . (2.11)

Substituting (2.5)-(2.6) into (2.8)-(2.11) gives

X1(k) = X(k − 1) + µD1[C − XB − F1X −D1X(k − 1)], (2.12)
X2(k) = X(k − 1) + µ[C − AX − XF2 − X(k − 1)D2]D2, (2.13)
X3(k) = X(k − 1) + µD3[F − XE − F3X −D3X(k − 1)], (2.14)
X4(k) = X(k − 1) + µ[F −DX − XF4 − X(k − 1)D4]D4. (2.15)

The right hand side of the equations above contains the matrix X to be solved, so the above iterative
algorithms are impossible to implement. In this case, we replace X in (2.12)−(2.15) with its estimate at
iteration (k − 1), thus, we get

X1(k) = X(k − 1) + µD1[C − AX(k − 1) − X(k − 1)B], (2.16)
X2(k) = X(k − 1) + µ[C − AX(k − 1) − X(k − 1)B]D2, (2.17)
X3(k) = X(k − 1) + µD3[F −DX(k − 1) − X(k − 1)E], (2.18)
X4(k) = X(k − 1) + µ[F −DX(k − 1) − X(k − 1)E]D4. (2.19)

Since only one iterative solution X(k) is needed, we take the average of X1(k),X2(k),X3(k) and X4(k). Then
we can obtain

X(k)

=
X1(k) + X2(k) + X3(k) + X4(k)

4

= X(k − 1) +
µ

4
D1[C − AX(k − 1) − X(k − 1)B] +

µ

4
[C − AX(k − 1) − X(k − 1)B]D2

+
µ

4
D3[F −DX(k − 1) − X(k − 1)E] +

µ

4
[F −DX(k − 1) − X(k − 1)E]D4. (2.20)

In summary of the above analysis, we present the JGI algorithm for solving (1.5).
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Algorithm 2.1 (The Jacobi-gradient iterative (JGI) algorithm)
Step 1. Input matrices A,B,C,D,E,F ∈ Rm×m. Given any small positive number ε and an appropriate

convergence factor µ. Given any two initial matrices X1(0),X2(0),X3(0),X4(0), and then X(0) = [X1(0) +
X2(0) + X3(0) + X4(0)]/4. Set k := 1;

Step 2. If δk =
√
∥X(k−1)−X∗∥2
∥X∗∥2 < ε, stop; otherwise, go to Step 3;

Step 3. Update the sequences

X1(k) = X(k − 1) + µD1[C − AX(k − 1) − X(k − 1)B],
X2(k) = X(k − 1) + µ[C − AX(k − 1) − X(k − 1)B]D2,

X3(k) = X(k − 1) + µD3[F −DX(k − 1) − X(k − 1)E],
X4(k) = X(k − 1) + µ[F −DX(k − 1) − X(k − 1)E]D4.

Compute

X(k) =
X1(k) + X2(k) + X3(k) + X4(k)

4
;

Step 4. Set k := k + 1, return to Step 2.

In order to improve the convergence performance of Algorithm 2.1, we introduce a relaxation factor ω,
then we get the following algorithm.

Algorithm 2.2 (The accelerated Jacobi-gradient based iterative (AJGI) algorithm)
Step 1. Input matrices A,B,C,D,E,F ∈ Rm×m. Given any small positive number ε, an appropriate

convergence factor µ and an appropriate relaxation factor ω such that 0 < ω < 1. Given any two initial
matrices X1(0),X2(0),X3(0),X4(0), and then X(0) = [X1(0) + X2(0) + X3(0) + X4(0)]/4. Set k := 1;

Step 2. If δk =
√
∥X(k−1)−X∗∥2
∥X∗∥2 < ε, stop; otherwise, go to Step 3;

Step 3. Update the sequences

X1(k) = X(k − 1) +
1
2
ωµD1

[
C − AX(k − 1) − X(k − 1)B

]
,

X(1)(k − 1) =
1
2

(1 − ω)X1(k) +
1
2
ωX2(k − 1) +

1
2

(1 − ω)X3(k − 1) +
1
2
ωX4(k − 1),

X2(k) = X(1)(k − 1) +
1
2

(1 − ω)µ
[
C − AX(1)(k − 1) − X(1)(k − 1)B

]
D2,

X(2)(k − 1) =
1
2

(1 − ω)X1(k) +
1
2
ωX2(k) +

1
2

(1 − ω)X3(k − 1) +
1
2
ωX4(k − 1),

X3(k) = X(2)(k − 1) +
1
2
ωµD3

[
F −DX(2)(k − 1) − X(2)(k − 1)E

]
,

X(3)(k − 1) =
1
2

(1 − ω)X1(k) +
1
2
ωX2(k) +

1
2

(1 − ω)X3(k) +
1
2
ωX4(k − 1)

X4(k) = X(3)(k − 1) +
1
2

(1 − ω)µ
[
F −DX(3)(k − 1) − X(3)(k − 1)E

]
D4,

X(k) =
1
2

(1 − ω)X1(k) +
1
2
ωX2(k) +

1
2

(1 − ω)X3(k) +
1
2
ωX4(k);

Step 4. Set k := k + 1, return to Step 2.

Remark 2.2. Different matrices are employed when updating X2(k), X3(k) and X4(k) at Step 3 of the JGI algorithm
and AJGI algorithm, which is their primary distinction. To be specific, the matrix X(k − 1) is employed to update
X2(k), X3(k) and X4(k) in the JGI algorithm. However, the matrices X(1)(k− 1), X(2)(k− 1) and X(3)(k− 1), which are
different from X(k − 1), are used to update X2(k), X3(k) and X4(k) in the AJGI algorithm.
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Remark 2.3. Parallel computing is a subdivision of high performance computing. Its main idea is to decompose a
complex problem into several parts and give each part to an independent processor for computation to improve efficiency.
Although equations (1.5) were decomposed into four virtual subsystems in the construction of JGI algorithm and AJGI
algorithm, these four virtual subsystems were not handed over to separate processors for calculation. Therefore, both
the JGI algorithm and the AJGI algorithm are not parallelized. The design of parallel algorithm will be further studied
in the future.

3. Convergence analysis

In this section, we study the convergence of the JGI algorithm and AJGI algorithm, which are listed in
the following theorems.

Theorem 3.1. If the coupled Sylvester matrix equations (1.5) are consistent and have a unique solution X∗, then
the iterative solution X(k) generated by Al1orithm 2.1 converges to X∗, i.e., lim

k→∞
X(k) = X∗; or the error X(k) − X∗

converges to zero for any initial value X(0) if and only if

ρ(H) < 1, (3.1)

where

H =Imn −
1
4
µ
(
In ⊗D1A + BT

⊗D1 +D2 ⊗ A +D2BT
⊗ Im

+In ⊗D3D + ET
⊗D3 +D4 ⊗D +D4ET

⊗ Im

)
. (3.2)

Proof. Define the error matrix

X̃(k) = X(k) − X∗. (3.3)

According to Algorithm 2.1, it can be obtained

X̃1(k) = X̃(k − 1) − µD1(AX̃(k − 1) + X̃(k − 1)B), (3.4)

X̃2(k) = X̃(k − 1) − µ(AX̃(k − 1) + X̃(k − 1)B)D2, (3.5)

X̃3(k) = X̃(k − 1) − µD3(DX̃(k − 1) + X̃(k − 1)E), (3.6)

X̃4(k) = X̃(k − 1) − µ(DX̃(k − 1) + X̃(k − 1)E)D4, (3.7)

and

X̃(k) =X̃(k − 1) −
1
4

(
µD1AX̃(k − 1) + µD1X̃(k − 1)B + µAX̃(k − 1)D2 + µX̃(k − 1)BD2

+µD3DX̃(k − 1) + µD3X̃(k − 1)E + µDX̃(k − 1)D4 + µX̃(k − 1)ED4

)
. (3.8)

Taking the vec-operator of the both sides of (3.8) gives

vec
(
X̃(k)
)
= vec

(
X̃(k − 1)

)
−

1
4
µ
(
In ⊗D1A + BT

⊗D1 +D2 ⊗ A +D2BT
⊗ Im

+In ⊗D3D + ET
⊗D3 +D4 ⊗D +D4ET

⊗ Im

)
vec
(
X̃(k − 1)

)
= Hvec

(
X̃(k − 1)

)
. (3.9)

Therefore, Algorithm 2.1 is convergent if and only if inequality (3.1) holds.
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To facilitate the description of the convergence of the AJGI algorithm, define the following symbols,

M = I −
1
2
ωµ(I ⊗D1A) −

1
2
ωµ(BT

⊗D1), (3.10)

N = I −
1
2

(1 − ω)µ(D2 ⊗ A) −
1
2

(1 − ω)µ(D2BT
⊗ I), (3.11)

P = I −
1
2
ωµ(I ⊗D3D) −

1
2
ωµ(ET

⊗D3), (3.12)

Q = I −
1
2

(1 − ω)µ(D4 ⊗D) −
1
2

(1 − ω)µ(D4ET
⊗ I), (3.13)

M1 =
1
2

(1 − ω)M, M2 =
1
2
ωM, (3.14)

N1 =
1
2

(1 − ω)NM1, N2 =
1
2

(1 − ω)NM2 +
1
2
ωN , (3.15)

N3 =
1
2

(1 − ω)NM1 +
1
2

(1 − ω)N , (3.16)

P1 =
1
2

(1 − ω)PM1 +
1
2
ωPN1, P2 =

1
2

(1 − ω)PM2 +
1
2
ωPN2, (3.17)

P3 =
1
2

(1 − ω)PM1 +
1
2
ωPN3 +

1
2

(1 − ω)P, P4 =
1
2

(1 − ω)PM2 +
1
2
ωPN2 +

1
2
ωP, (3.18)

Q1 =
1
2

(1 − ω)QM1 +
1
2
ωQN1 +

1
2

(1 − ω)QP1, (3.19)

Q2 =
1
2

(1 − ω)QM2 +
1
2
ωQN2 +

1
2

(1 − ω)QP2, (3.20)

Q3 =
1
2

(1 − ω)QM1 +
1
2
ωQN3 +

1
2

(1 − ω)QP3, (3.21)

Q4 =
1
2

(1 − ω)QM2 +
1
2
ωQN2 +

1
2

(1 − ω)QP4 +
1
2
ωQ. (3.22)

Now we are in a position to analyze the convergence of Algorithm 2.2.

Theorem 3.2. If the coupled Sylvester matrix equations (1.5) are consistent and have a unique solution X∗, then
the iterative solution X(k) generated by Algorithm 2.2 converges to X∗, i.e., lim

k→∞
X(k) = X∗; or the error X(k) − X∗

converges to zero for any initial value X(0) if and only if µ satisfies

ρ(A) < 1, (3.23)

where

A =


M1 M2 M1 M2
N1 N2 N3 N2
P1 P2 P3 P4
Q1 Q2 Q3 Q4

 . (3.24)

Proof. Define the error matrices

X̃(k) = X(k) − X∗, X̃i(k) = Xi(k) − X∗, i ∈ I[1, 4], (3.25)

X̃( j)(k) = X( j)(k) − X∗, j ∈ I[1, 3]. (3.26)

From Algorithm 2.2, it gets

X̃1(k) = X̃(k − 1) −
1
2
ωµD1

(
AX̃(k − 1) + X̃(k − 1)B

)
, (3.27)
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X̃2(k) = X̃(1)(k − 1) −
1
2

(1 − ω)µ
(
AX̃(1)(k − 1) + X̃(1)(k − 1)B

)
D2, (3.28)

X̃3(k) = X̃(2)(k − 1) −
1
2
ωµD3

(
DX̃(2)(k − 1) + X̃(2)(k − 1)E

)
, (3.29)

X̃4(k) = X̃(3)(k − 1) −
1
2

(1 − ω)µ
(
DX̃(3)(k − 1) + X̃(3)(k − 1)E

)
D4. (3.30)

By combining vector operator with Kronecker product, it has vec(AXB) = (BT
⊗ A)vec(X) and

vec(X̃1(k))

= vec(X̃(k − 1)) −
1
2
ωµ
[
(I ⊗D1A) + (BT

⊗D1)
]
vec(X̃(k − 1)),

=
[
I −

1
2
ωµ(I ⊗D1A) −

1
2
ωµ(BT

⊗D1)
]
vec(X̃(k − 1))

=Mvec(X̃(k − 1))

=M
[1
2

(1 − ω)vec(X̃1(k − 1)) +
1
2
ωvec(X̃2(k − 1))

+
1
2

(1 − ω)vec(X̃3(k − 1)) +
1
2
ωvec(X̃4(k − 1))

]
=M1vec(X̃1(k − 1)) +M2vec(X̃2(k − 1))

+M1vec(X̃3(k − 1)) +M2vec(X̃4(k − 1)), (3.31)

vec(X̃2(k))

= vec(X̃(1)(k − 1)) −
1
2

(1 − ω)µ
[
(D2 ⊗ A) + (D2BT

⊗ I)
]
vec(X̃(1)(k − 1)),

=
[
I −

1
2

(1 − ω)µ(D2 ⊗ A) −
1
2

(1 − ω)µ(D2BT
⊗ I)
]
vec(X̃(1)(k − 1))

= Nvec(X̃(1)(k − 1))

= N
[1
2

(1 − ω)vec(X̃1(k)) +
1
2
ωvec(X̃2(k − 1))

+
1
2

(1 − ω)vec(X̃3(k − 1)) +
1
2
ωvec(X̃4(k − 1))

]
= N1vec(X̃1(k − 1)) +N2vec(X̃2(k − 1))

+N3vec(X̃3(k − 1)) +N2vec(X̃4(k − 1)), (3.32)

vec(X̃3(k))

= vec(X̃(2)(k − 1)) −
1
2
ωµ
[
(I ⊗D3D) + (ET

⊗D3)
]
vec(X̃(2)(k − 1)),

=
[
I −

1
2
ωµ(I ⊗D3D) −

1
2
ωµ(ET

⊗D3)
]
vec(X̃(2)(k − 1))

= Pvec(X̃(2)(k − 1))

= P
[1
2

(1 − ω)vec(X̃1(k)) +
1
2
ωvec(X̃2(k))

+
1
2

(1 − ω)vec(X̃3(k − 1)) +
1
2
ωvec(X̃4(k − 1))

]
= P1vec(X̃1(k − 1)) +P2vec(X̃2(k − 1))
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+P3vec(X̃3(k − 1)) +P4vec(X̃4(k − 1)), (3.33)

vec(X̃4(k))

= vec(X̃(3)(k − 1)) −
1
2

(1 − ω)µ
[
(D4 ⊗D) + (D4ET

⊗ I)
]
vec(X̃(3)(k − 1)),

=
[
I −

1
2

(1 − ω)µ(D4 ⊗D) −
1
2

(1 − ω)µ(D4ET
⊗ I)
]
vec(X̃(3)(k − 1))

= Qvec(X̃(3)(k − 1))

= Q
[1
2

(1 − ω)vec(X̃1(k)) +
1
2
ωvec(X̃2(k)) +

1
2

(1 − ω)vec(X̃3(k)) +
1
2
ωvec(X̃4(k − 1))

]
= Q1vec(X̃1(k − 1)) + Q2vec(X̃2(k − 1))

+ Q3vec(X̃3(k − 1)) + Q4vec(X̃4(k − 1)). (3.34)

From Eqs(3.31)-(3.34), it can be obtain
vec(X̃1(k))
vec(X̃2(k))
vec(X̃3(k))
vec(X̃4(k))

 = A


vec(X̃1(k − 1))
vec(X̃2(k − 1))
vec(X̃3(k − 1))
vec(X̃4(k − 1))

 . (3.35)

Thus, Algorithm 2.2 converges if and only if inequality (3.23) holds. This completes the proof.
Apparently, calculating the appropriate parameter µ to satisfy relations (3.1) and (3.23) is a hard task. In

addition, it is also difficult to obtain the optimal convergence parameter directly from Theorems 3.1 and 3.2.
However, these problems can be addressed by programming with MATLAB software. For more details,
please refer to Section 4, where we further explain these issues. Meanwhile, we will continue to study how
to directly obtain appropriate parameter range and optimal convergence parameter through theoretical
derivation in the future.

4. Numerical examples

In this section, we give an example to illustrate the performance of the proposed algorithms. All
the computations are performed on Intel(R) Core(TM) i5-12500H CPU @ 2.50GHz, 16GB RAM by using
MATLAB R2021b.

In the following examples, the initial iteration value is taken as X(0) = 10−61m×m , where 1m×m is an
m-order square matrix with all elements of 1, and the relative error is defined as:

δk =

√
∥X(k) − X∗∥2

∥X∗∥2
,

where X(k) is the kth iterative solution.

Example 4.1 Consider the coupled Sylvester matrix equation (1.5), where A,B,D,E,X are generated in
MATLAB as follows:

A = triu(rand(m), 1) + dia1(α + dia1(rand(m)));
B = tril(rand(m), 1) + eye(m);
D = rand(m) + dia1(α + dia1(rand(m)));
E = rand(m) + dia1(α + dia1(rand(m)));
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X = rand(m) + eye(m) × β; X = X + XT.

Let C = AX +XB, F = DX +XE, then equations (1.5) have a unique solution X∗. In this example, we choose
m = 30, α = 6 and β = 2.

In Fig. 1, we calculate the spectral radius of the iterative matrices of the JGI algorithm and the AJGI
algorithm respectively according to Theorems 3.1 and 3.2. When 0 < µ < 0.0104 is met, then ρ(H) < 1 holds
and the JGI algorithm is convergent. Analogously, when 0 < µ < 0.072 is satisfied, then ρ(A) < 1 holds and
the AJGI algorithm is convergent. It can also be obtained that the optimal convergence parameters of JGI
algorithm and AJGI algorithm are 0.0083 and 0.0341 respectively, and the spectral radius of their iterative
matrices reaches the minimum value.
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Fig. 1: The spectral radius of the iteration matrices of the JGI and AJGI algorithms.

The relative error δk of the algorithms is displayed in Fig. 2, and the values of convergence parameter µ
and relaxation parameterω for each algorithm in Fig. 2 are shown in Table 1. These algorithms are effective
because their relative error δk decreases and tends to zero with the increase of iteration steps k. From Fig. 2,
we can find the convergence performance of the JGI algorithm and the AJGI algorithm are better than that
of the GI algorithm [5], RGI algorithm [22] and AGI algorithm [35].

In addition, we compare the iteration step (denoted as IT), the computational time in seconds (denoted
as CPU) and the relative error (denoted as δk) of the GI algorithm [5], RGI algorithm [22] and AGI algorithm
[35], the JGI algorithm and the AJGI algorithm, and the results are listed in Table 1. As it can be seen from
Table 1, the JGI algorithm and the AJGI algorithm perform better in terms of efficiency and accuracy.

Table 1: The parameter values (µ, ω), the iterative steps (IT), the relative error (δk) and the computational time (CPU) of the algorithms

Method µ ω IT CPU δk

GI algorithm [5] 0.0017 \ 241 0.0356 9.9346e-05
RGI algorithm [22] 0.0136 1

3 135 0.0299 9.7989e-05
AGI algorithm [35] 0.0130 1

2 78 0.0284 9.1441e-05
JGI algorithm in this paper 0.0083 \ 44 0.0154 8.9304e-05
AJGI algorithm in this paper 0.0341 1

2 22 0.0234 9.2566e-05

Example 4.2 Consider the coupled Sylvester matrix equation (1.5), where A,B,D,E,X are taken from
Example 4.1. In this example, we take m = 100, α = 8 and β = 1.

Fig. 3 shows the spectral radius of the iterative matrices of the JGI algorithm and the AJGI algorithm
respectively. From Fig. 3, it can be concluded that the JGI algorithm is convergent when 0 < µ < 0.0030 and
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Fig. 2: Comparison of convergence curves

the AJGI algorithm is convergent when 0 < µ < 0.0139. Moreover, the optimal convergence parameters of
JGI algorithm and AJGI algorithm are 0.0027 and 0.0116 respectively.

We compare the relative errors of the GI [5], RGI [22], AGI [35], JGI and AJGI algorithms, and the
convergence curve is shown in Fig. 4. The values of convergence parameters (µ, ω) of these algorithms are
described in Table 2. In addition, we compare the iteration step (denoted as IT), the computational time in
seconds (denoted as CPU) and the relative error (denoted as δk) of these algorithms in Table 2. It can be
concluded that the JGI algorithm and the AJGI algorithm have better convergence performance.

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Parameter 

0.8

0.9

1

1.1

1.2

1.3

T
h
e
 s

p
e
c
tr

a
l 
ra

d
iu

s
 o

f 
th

e
 i
te

ra
ti
v
e
 m

a
tr

ix

X 0.0027

Y 0.81019

(a) ρ(H)

0 0.005 0.01 0.015

Parameter 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

T
h
e
 s

p
e
c
tr

a
l 
ra

d
iu

s
 o

f 
th

e
 i
te

ra
ti
v
e
 m

a
tr

ix

X 0.0116

Y 0.686669

(b) ρ(A)

Fig. 3: The spectral radius of the iteration matrices of the JGI and AJGI algorithms.
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Fig. 4: Comparison of convergence curves

Table 2: The parameter values (µ,ω), the iterative steps (IT), the relative error (δk) and the computational time (CPU) of the algorithms.

Method µ ω IT CPU δk

GI algorithm [5] 3.4947 × 10−4
\ 838 1.6783 6.3579e-05

RGI algorithm [22] 2.2300 × 10−3 1
4 667 1.3165 6.3338e-05

AGI algorithm [35] 2.0000 × 10−3 1
3 424 0.9833 6.3279e-05

JGI algorithm in this paper 2.7000 × 10−3
\ 92 0.1737 6.3315e-05

AJGI algorithm in this paper 1.1600 × 10−2 1
3 46 0.1475 6.3707e-05

5. Application in dynamical systems

Example 5.1. Consider the following dynamical systems
ẋ = Ax + Bu
ẇ = Fw + Pu
e = Cx +Qw,

(5.1)

where A ∈ Rn×n,B ∈ Rn×r, F ∈ Rp×p, P ∈ Rp×r, C ∈ Rm×n and Q ∈ Rm×p are constant matrices, x ∈ Rn, u ∈ Rr

and e ∈ Rm are the state, the control input and the measurable error output, respectively. The symbol
w ∈ Rp is the exogenous input which includes “reference signals to be tracked” and/or “disturbances to be
rejected”. If we assume that (A,B) is controllable, then F is critical stable. If the full information feedback
u = −Kx + Lw is applied on the system, then the closed-loop system can result in:

ẋ = (A − BK)x + BLw
ẇ = (F + PL)w − PKx
e = Cx +Qw,

(5.2)

The aim of the output regulation problem is to find two matrices K and L such that the matrix A − BK is
stable and

lim
t→∞

e(t) = lim
t→∞

(Cx(t) +Qw(t)) = 0, (5.3)
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which (x(0),w(0)) are arbitrary and (x(0),w(0)) ∈ Rn
×Rp. It has been shown that such a problem is solvable

if and only if there exist a matrix X such that{
A1X + XB1 = C1
A2X + XB2 = C2.

(5.4)

If the parametric matrices are chosen as

A1 = triu(rand(m), 1) + dia1(α + dia1(rand(m)));
B1 = tril(rand(m), 1) + eye(m);
A2 = rand(m) + dia1(α + dia1(rand(m)));
B2 = rand(m) + dia1(α + dia1(rand(m)));

C1 =



24.1669 7.4974 6.1789 6.7332 8.7541 8.3442
3.2026 23.0693 8.0316 8.6003 5.2917 4.3749
4.5302 6.1486 17.4244 7.3854 6.6593 6.8793
4.1416 9.2624 4.9138 18.7287 3.8105 3.5077
4.6083 7.6737 4.6326 7.5453 20.1149 5.9955
3.4422 7.7432 6.5496 9.1927 4.1675 22.4214


.

and

C2 =



37.8630 9.3800 7.4641 7.6002 13.4315 8.9297
5.4919 35.7256 6.1952 10.6085 10.2580 8.8828
11.4565 6.9082 28.2476 9.9142 10.9923 10.9328
9.5131 13.5593 11.4434 36.3935 8.7026 11.1344
10.1583 14.8293 6.4088 14.5341 32.7100 10.8894
7.5627 14.6808 11.7805 13.3619 14.8203 39.8488


.

in which m = 6, α = 3. In this case, we apply the AJGI algorithm to solve the coupled Sylvester matrix
equations (5.4) with one side and the simulation results are provided in Fig. 5.

In Fig. 5(a), the parameter values (µ, ω) are set to (0.1481, 1
2 ). From Fig. 5(b), the AJGI is convergent

when 0 < µ < 0.4058 and the spectral radius of the iterative matrix of the AJGI algorithm reaches the
minimum value when µ = 0.1481.
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Fig. 5: (a) Convergence curves of the AJGI algorithm; (b) The spectral radius of the iteration matrices of the AJGI algorithm.
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When the AJGI algorithm is iterated 10 times, the relative error is 7.9325 × 10−4 and the numerical
solution is

X =



4.3266 0.3674 0.0987 0.1068 0.8909 0.5000
0.2316 4.1559 0.2619 0.6538 0.3342 0.4799
0.4889 0.0377 3.3778 0.4942 0.6987 0.9047
0.6241 0.8852 0.6797 3.9289 0.1978 0.6099
0.6791 0.9133 0.1366 0.7150 3.4629 0.6177
0.3955 0.7962 0.7212 0.9037 0.7441 4.6628


.

6. Conclusion remarks and future works

In this paper, the Jacobi-gradient iterative algorithm and the accelerated Jacobi-gradient based iterative
algorithm are established for solving coupled Sylvester matrix equations with one side. The convergence of
the proposed algorithms is analysed by using the spectral norm and the Kronecker product. Some numeri-
cal examples are given to show that the iterative solution generated by the studied iterative algorithms can
converge to the exact solution under certain conditions. Moreover, we give the application in dynamical
systems. As an outlook for the future, we believe the algorithms presented in this paper may be applied
to study the other vital matrix equations, such as the generalized nonhomogeneous Yakubovich-transpose
matrix equation [15], the generalized Lyapunov matrix equation [4, 23] and so on.
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