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Abstract. Let Gn,r be the set of digraphs of order n with dichromatic number r. Let in-tree be a directed
tree with n vertices which the outdegree of each vertex is at most one. In this paper, we obtain the digraph
which has the minimal Aα spectral radius of the join of in-trees with dichromatic number r. Moreover, we
characterize the digraph which has the maximal Aα spectral radius in Gn,r by using a new method.

1. Introduction

Let G = (V(G),A(G)) be a digraph with vertex setV(G) = {v1, v2, . . . , vn} and arc setA(G). We denote an
arc from vertex vi to vertex v j by (vi, v j), where vi is the tail of (vi, v j) and v j is the head of (vi, v j). The outdegree
d+i = d+G(vi) (or indegree d−i = d−G(vi)) of G is the number of arcs whose tail (or head) is vertex vi. We denote
by∆+(G) the maximum outdegree of G and δ−(G) the minimum indegree of G, respectively. A directed path
with length n is a finite non-null sequence v1e1v2e2 · · · vnenvn+1, where the vertices v1, v2, . . . , vn+1 are distinct
and ei is the arc (vi, vi+1), which is Pn+1. If vn+1 = v1, the sequence v1e1v2e2 . . . vnenv1 is the directed cycle Cn.
A digraph is connected if its underlying graph is connected. A digraph G is strongly connected if for any
pair of vertices vi, v j ∈ V(G), there is a directed path from vi to v j. Throughout this paper, we consider the
connected digraphs without loops and multiple arcs.

A digraph is acyclic if it has no directed cycles. A directed tree is a digraph with n vertices and n − 1
arcs which its underlying graph does not contain cycles. An in-tree is a directed tree with n vertices which
the outdegree of each vertex is at most one. Then the in-tree has exactly one vertex with outdegree 0 and
such vertex is called the root of the in-tree. An in-star is a directed tree with n vertices which has one
vertex with indegree n − 1 and other vertices with indegree 0. Obviously, in-star is a kind of in-tree. A
tournament is a digraph obtained from an undirected complete graph by assigning a direction for each
edge. A transitive tournament is a tournament G satisfying the following: if (u, v) ∈ A(G) and (v,w) ∈ A(G),
then (u,w) ∈ A(G). The join of two digraphs G and H, denoted by G ∨ H, is the digraph having vertex set
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V(G) ∪V(H) and arc setA(G) ∪A(H) ∪ {(u, v), (v,u)|u ∈ V(G), v ∈ V(H)}. Let G = V1
∨ V2

∨ · · · ∨ Vr be a
join digraph with dichromatic number r which each Vi (i = 1, 2, . . . , r) is an acyclic digraph.

For a digraph G, the adjacency matrix A(G) = (ai j) of G is an n × n matrix whose (i, j)-entry equals
to 1 if (vi, v j) ∈ A(G) and equals to 0 otherwise. The diagonal outdegree matrix D+(G) of G is D+(G) =
dia1(d+1 , d

+
2 , . . . , d

+
n ). The Laplacian matrix L(G) and the signless Laplacian matrix Q(G) of G are L(G) =

D+(G) − A(G) and Q(G) = D+(G) + A(G), respectively. In [18], Liu et al. defined the Aα-matrix of G as

Aα(G) = αD+(G) + (1 − α)A(G),

where α ∈ [0, 1]. Obviously, A0(G) = A(G), A 1
2
(G) = 1

2 Q(G) and A1(G) = D+(G). Since D+(G) is not
interesting, we only consider α ∈ [0, 1). The eigenvalue of Aα(G) with largest modulus is called the Aα
spectral radius of G, denoted by ρα(G). Now, many results about the Aα-matrix of an undirected graph can
be found in [11, 12, 14, 15, 17, 21, 22], but not much is known about digraphs. Xi et al. [23] determined
the digraphs which attain the maximum (or minimum) Aα spectral radius among all strongly connected
digraphs with given parameters such as girth, clique number, vertex connectivity or arc connectivity. Xi
and Wang [25] established some lower bounds on ∆+(G) − ρα(G) for strongly connected irregular digraphs
with given maximum outdegree and some other parameters. Ganie and Baghipur [7] obtained some lower
bounds for the spectral radius of Aα(G) in terms of the number of vertices, arcs and closed walks of G. More
knowledge about the spectra of digraphs can be found in a survey [5] and a book [8].

A vertex set F ⊆ V(G) is acyclic if its induced subdigraph G[F] is acyclic. A partition of V(G) into r
acyclic sets is called a r-coloring of G. The minimum integer r for which there exists a r-coloring of G is
the dichromatic number χ(G) of G. Let Gn,r denote the set of digraphs of order n with dichromatic number
r. In 1982, Neumann-Lara [20] first introduced the dichromatic number of a digraph. Lin and Shu [16]
characterized the digraph which has the maximal spectral radius with given dichromatic number. Drury
and Lin [6] determined the digraphs that have the minimum and second minimum spectral radius among
all strongly connected digraphs with given order and dichromatic number. Liu et al. [18] characterized
the digraph which has the maximal Aα spectral radius with given dichromatic number. Kim et al. [10]
proved a tight upper bound for the spectral radius of digraphs in terms of the number of vertices and the
dichromatic number. For more papers on the dichromatic number of digraphs see [2, 13, 19, 24].

In this paper, the organization is as follows. In Section 2, we list some known results used for later. In
Section 3, we obtain the digraph which has the minimal Aα spectral radius of the join of in-trees with given
dichromatic number. In Section 4, we characterize the digraph which has the maximal Aα spectral radius
with given dichromatic number by using the equitable quotient matrix. Note that Liu et al. [18] obtained
the results by using the Perron-Frobenius Theorem.

2. Preliminaries

In this section, we will list some known results used for later.

Definition 2.1. ([1]) Let A = (ai j), B = (bi j) be two n × n matrices. If ai j ≤ bi j for all i and j, then A ≤ B. If A ≤ B
and A , B, then A < B. If ai j < bi j for all i and j, then A≪ B.

Lemma 2.2. ([1]) Let A = (ai j), B = (bi j) be two n × n matrices with the spectral radii ρ(A) and ρ(B), respectively.
If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B). Furthermore, If 0 ≤ A < B and B is irreducible, then ρ(A) < ρ(B).

Definition 2.3. ([4]) Let M be a complex matrix of order n described in the following block form

M =


M11 · · · M1t
...

. . .
...

Mt1 · · · Mtt

 ,
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where the blocks Mi j are ni × n j matrices for any 1 ≤ i, j ≤ t and n = n1 + n2 + · · · + nt. For 1 ≤ i, j ≤ t, let bi j be the
average row sum of Mi j, i.e. bi j is the sum of all entries in Mi j divided by the number of rows. Then B(M) = (bi j) (or
simply B) is called the quotient matrix of M. If for each pair i, j, the row sum of the matrix Mi j is same for each row,
then B is called an equitable quotient matrix of M.

Lemma 2.4. ([26]) Let M be a nonnegative matrix and B be the equitable quotient matrix of M as defined in Definition
2.3. If B is irreducible, then ρ(B) = ρ(M).

Lemma 2.5. (Perron-Frobenius Theorem [9]) Let M be a irreducible and nonnegative matrix of order n. Then
(a) ρ(M) > 0.
(b) ρ(M) is an algebraically simple eigenvalue of M.
(c) there is a unique real vector x = (x1, x2, . . . , xn)T such that Mx = ρ(M)x and x1 + x2 + · · ·+ xn = 1; this vector

is positive.
(d) there is a unique real vector y = (y1, y2, . . . , yn)T such that yTM = ρ(M)yT and x1y1 + · · · + xnyn = 1; this

vector is positive.

Lemma 2.6. ([9]) If M is a nonnegative matrix and X ≥ 0 is a nonnegative vector such that MX ≥ βX for some
β ∈ R, then ρ(M) ≥ β, where ρ(M) is the largest eigenvalue of M. Furthermore, if M is irreducible and MX > βX,
then ρ(M) > β.

Lemma 2.7. ([3]) Let G be a digraph with no directed cycle. Then δ−(G) = 0 and there is an ordering v1, v2, . . . , vn
ofV(G) such that, for 1 ≤ i ≤ n, every arc of G with head vi has its tail in {v1, v2, . . . , vi−1}.

Lemma 2.8. ([18, 24]) Let G be a strongly connected digraph with the Aα spectral radius ρα(G) and maximal
outdegree ∆+(G). If H is a proper subdigraph of G, then ρα(G) > ρα(H), especially, ρα(G) > α∆+(G).

Let G ∈ Gn,r be a digraph of order n with dichromatic number r. From the definition of dichromatic
number, G has r-coloring classes and each of which is an acyclic set. Let λα1, λα2, . . . , λαn be the Aα
eigenvalues of G and d+1 , d

+
2 , . . . , d

+
n be the outdegrees of vertices of G. Then we have known the Aα

eigenvalue of an acyclic digraph is λαi = αd+i , where i = 1, 2, . . . ,n. So if r = 1, G is an acyclic digraph with
ρα(G) = α∆+(G). Therefore in this paper, we only consider the case when r ≥ 2.

3. The minimal Aα spectral radius of the join of in-trees with given dichromatic number

In this section, we will consider the minimal Aα spectral radius of the join of in-trees with given
dichromatic number. Let T̃n,r = V1

∨ V2
∨ · · · ∨ Vr denote the set of digraphs which each Vi (i = 1, 2, . . . , r)

is an in-tree. Let T̃ ⋆n,r = V⋆1
∨V⋆2

∨ · · · ∨V⋆r denote the set of digraphs which each V⋆i (i = 1, 2, . . . , r) is an
in-star. Obviously, T̃ ⋆n,r ⊆ T̃n,r. Let T̃⋆⋆n,2 denote the digraph in T̃ ⋆n,2 which V⋆1 is an in-star with n− 1 vertices
and V⋆2 is a digraph with one vertex. First, we will prove the digraph which has the mimimal Aα spectral
radius of the join of in-trees with dichromatic number r must be in T̃ ⋆n,r.

Theorem 3.1. Let G = V1
∨V2

∨· · ·∨Vr be a digraph in T̃n,r, where Vi (i = 1, 2, . . . , r) is an in-tree with ni vertices.
Let G⋆ = V⋆1

∨ V⋆2
∨ · · · ∨ V⋆r be a digraph in T̃ ⋆n,r, where V⋆i (i = 1, 2, . . . , r) is an in-star with ni vertices. Then

ρα(G) ≥ ρα(G⋆) with equality holds if and only if G � G⋆.

Proof. For the digraph G⋆, let the vertex ordering of in-star V⋆i be {vi
1, v

i
2, . . . , v

i
ni
} such that (vi

j, v
i
ni

) ∈ A(G⋆),
for all i = 1, 2, . . . , r and j = 1, 2, . . . ,ni − 1. Then d+G⋆ (vi

j) = n − ni + 1 and d+G⋆ (vi
ni

) = n − ni. Suppose that

x = (x1
1, x

1
2, . . . , x

1
n1
, x2

1, x
2
2, . . . , x

2
n2
, . . . , xr

1, x
r
2, . . . , x

r
nr

)T
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is a Perron vector of G⋆ corresponding to the Aα spectral radius ρ⋆α = ρα(G⋆), where xi
j is the characteristic

component corresponding to vi
j for each 1 ≤ i ≤ r and 1 ≤ j ≤ ni.

Since Aα(G⋆)x = ρ⋆αx, we haveα(n − ni + 1)xi
j + (1 − α)xi

ni
+ (1 − α)

∑r
s=1,s,i

∑ns
t=1 xs

t = ρ
⋆
αxi

j,

α(n − ni)xi
ni
+ (1 − α)

∑r
s=1,s,i

∑ns
t=1 xs

t = ρ
⋆
αxi

ni
,

where i = 1, 2, . . . , r and j = 1, 2, . . . ,ni − 1. Then we have

((1 − α) + ρ⋆α − α(n − ni))xi
ni
= (ρ⋆α − α(n − ni + 1))xi

j.

Obviously, xi
ni
< xi

1 = xi
2 = · · · = xi

ni−1 for all i = 1, 2, . . . , r.
Next we prove ρα(G) ≥ ρα(G⋆). Suppose that G , G⋆, we can get the digraph G by changing many

arcs in G⋆. We first consider the transformation of one arc. We do the transformation of an arbitrary arc
(vi

j, v
i
ni

) ∈ A(G⋆) for all i = 1, 2, . . . , r and j = 1, 2, . . . ,ni − 1. Without loss of generality, we consider the arc
(v1

j , v
1
n1

). Let

G = G⋆ − (v1
j , v

1
n1

) + (v1
s , v

1
t ).

By the structural property of directed trees, the arc (v1
s , v1

t ) only has three cases: (v1
s , v1

t ) = (v1
j , v

1
t ) or

(v1
s , v1

t ) = (v1
n1
, v1

j ) or (v1
s , v1

t ) = (v1
s , v1

j ), where s, t = 1, 2, . . . ,n1 − 1. Since the outdegree sequence of the in-tree
is (1,1,. . . ,1,0), the case (v1

s , v1
t ) = (v1

s , v1
j ) is impossible. So we only discuss the two cases: (v1

j , v
1
n1

)→ (v1
j , v

1
t )

or (v1
j , v

1
n1

)→ (v1
n1
, v1

j ).

Case 1. If (v1
j , v

1
n1

)→ (v1
j , v

1
t ). Since x1

n1
< x1

j = x1
t , we obtain

(Aα(G) − Aα(G⋆))x = (0, . . . , 0, (1 − α)(x1
t − x1

n1
), 0, . . . , 0)T > 0.

That is Aα(G)x > Aα(G⋆)x = ρα(G⋆)x. By Lemma 2.6, ρα(G) > ρα(G⋆).

Case 2. If (v1
j , v

1
n1

) → (v1
n1
, v1

j ). We can find a digraph G′ such that G′ � G. Without loss of generality, let
v1

j = v1
1. Then we have d+G(v1

1) = n − n1 and d+G⋆ (v1
n1

) = n − n1. Let G′ be a digraph which switch the index of
v1

n1
and v1

1 in G. Then

G′ = G − (v1
n1
, v1

1) − {(v1
i , v

1
n1

)|i = 2, 3, . . . ,n1 − 1} + (v1
1, v

1
n1

) + {(v1
i , v

1
1)|i = 2, 3, . . . ,n1 − 1}.

Obviously, G′ � G and

G′ = G⋆ − {(v1
i , v

1
n1

)|i = 2, 3, . . . ,n1 − 1} + {(v1
i , v

1
1)|i = 2, 3, . . . ,n1 − 1}.

Then we obtain

(Aα(G′) − Aα(G⋆))x = (0, (1 − α)(x1
1 − x1

n1
), . . . , (1 − α)(x1

1 − x1
n1

), 0, . . . , 0)T > 0.

That is Aα(G′)x > Aα(G⋆)x = ρα(G⋆)x. By Lemma 2.6, ρα(G′) > ρα(G⋆). So we have ρα(G) = ρα(G′) > ρα(G⋆).
For the transformation of many arcs, similar to Case 2, we can find a digraph G such that d+G(vi

ni
) = n−ni

and d+G(vi
j) = n−ni + 1 for all i = 1, 2, . . . , r and j = 1, 2, . . . ,ni − 1. Then the components of (Aα(G)−Aα(G⋆))x

are 0 or (1 − α)(xi
j − xi

ni
). So (Aα(G) − Aα(G⋆))x > 0 always holds and ρα(G) > ρα(G⋆).

To sum up the above, we have ρα(G) ≥ ρα(G⋆) with equality holding if and only if G � G⋆.

To illustrate the transformation for Theorem 3.1 better, we give the following example.

Example 3.2. Let H = V1
∨ V2 and F = V1⋆

∨ V2⋆ be two digraphs shown in Figure 1. Then we can get the
digraph H by changing many arcs in the digraph F: (v1

1, v
1
6) → (v1

1, v
1
2), (v1

3, v
1
6) → (v1

3, v
1
2), (v1

4, v
1
6) → (v1

4, v
1
3),

(v1
5, v

1
6) → (v1

5, v
1
3), (v2

1, v
2
4) → (v2

1, v
2
2), (v2

2, v
2
4) → (v2

2, v
2
3). From Theorem 3.1, we have (Aα(H) − Aα(F))x =

{(1 − α)(x1
2 − x1

6), 0, (1 − α)(x1
2 − x1

6), (1 − α)(x1
3 − x1

6), (1 − α)(x1
3 − x1

6), 0, (1 − α)(x2
2 − x2

4), (1 − α)(x2
3 − x2

4), 0, 0} > 0.
So ρα(H) > ρα(F).
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Figure 1: The digraphs H and F

Next we will prove the digraph T̃⋆⋆n,2 has the minimal Aα spectral radius of the join of in-trees with
dichromatic number 2 when α = 0 or α = 1

2 .

Theorem 3.3. The digraph T̃⋆⋆n,2 is the unique digraph which has the minimal A0 spectral radius among all digraphs

in T̃n,2.

Proof. Let G be an arbitrary digraph in T̃n,2, ρ0(G) be the spectral radius of A0(G) and ρA(G) be the spectral
radius of adjacency matrix A(G). Obviously, ρ0(G) = ρA(G). Let G = V1

∨V2, where Vi is an in-tree, |Vi
| = ni

and n1 ≥ n2. Then ⌈ n
2 ⌉ ≤ n1 ≤ n − 1, 1 ≤ n2 ≤ ⌊

n
2 ⌋ and n1 + n2 = n. By Theorem 3.1, we know that the

digraph which has the mimimal Aα spectral radius of the join of in-trees with dichromatic number r must
be in T̃ ⋆n,r. So we only need to consider the number of ni of digraph G⋆ in T̃ ⋆n,2. That is G⋆ = V⋆1

∨ V⋆2,
where V⋆i is an in-star, |V⋆i

| = ni and n1 ≥ n2. Then d+G⋆ (vi
j) = n − ni + 1 and d+G⋆ (vi

ni
) = n − ni, where

i = 1, 2 and j = 1, 2, . . . ,ni − 1. Let A11 = {v1
j | j = 1, 2, . . . ,n1 − 1}, A12 = {v1

n1
}, A21 = {v2

j | j = 1, 2, . . . ,n2 − 1}
and A22 = {v2

n2
}. Let BA = BA(G⋆) be the quotient matrix of A(G⋆), where BA corresponding to the vertex

partition A11,A12,A21,A22. Then the quotient matrix BA is equitable. Next we consider the cases when
n1 > n2 > 1, n1 = n2 and n1 = n − 1, n2 = 1.

Case 1: If n1 > n2 > 1, then the equitable quotient matrix BA as follow:

BA =


0 1 n2 − 1 1
0 0 n2 − 1 1

n1 − 1 1 0 1
n1 − 1 1 0 0

 .
The characteristic polynomial of BA is

|xI4 − BA| = x4
− n1n2x2 + (n − 2n1n2)x + (n − n1n2 − 1).

Let
fA(x) = fA(x; n1,n2) = x4

− n1n2x2 + (n − 2n1n2)x + (n − n1n2 − 1).

By using the Perron-Frobenius Theorem, ρA(G⋆) is an eigenvalue (multiplicity one) of A(G⋆) and there is
a corresponding eigenvector whose coordinates are all positive. And from Lemma 2.4, ρ⋆A = ρA(G⋆) is the
root of fA(x) with the largest modulus.

Next we prove ρA(G⋆) ≥ ρA(T̃⋆⋆n,2 ). We move one of the vertices in V⋆1 (except for the vertex v1
n1

) to V⋆2.
Without loss of generality, let that vertex be v1

1. That is

G′ =G⋆ − (v1
1, v

1
n1

) − {(v1
1, v

2
s )|s = 1, 2, . . . ,n2} − {(v2

s , v
1
1)|s = 1, 2, . . . ,n2}
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+ (v1
1, v

2
n2

) + {(v1
t , v

1
1)|t = 2, . . . ,n1} + {(v1

1, v
1
t )|t = 2, . . . ,n1}.

Let ρ′A = ρA(G′) be the root of f̃A(x) with the largest modulus, where f̃A(x) = fA(x; n1 − 1,n2 + 1) =
x4
− (n1 − 1)(n2 + 1)x2 + (n − 2(n1 − 1)(n2 + 1))x + (n − (n1 − 1)(n2 + 1) − 1). Then

f̃A(ρ⋆A) = fA(ρ⋆A) + (n2 + 1 − n1)(ρ⋆A + 1)2.

We know fA(ρ⋆A) = 0 and n1 > n2 > 1. If n2 + 1 − n1 = 0, then n > 2 is odd and n1 =
n+1

2 , n2 =
n−1

2 . That is
G′ = G⋆. If n2 + 1 − n1 < 0, then f̃A(ρ⋆A) < 0.

As both fA(x) and f̃A(x) have the positive leading coefficients, f̃A(ρ⋆A) < 0 implies that ρ⋆A < ρ
′

A. So the
A0 spectral radius with n1 and n2 is smaller than the A0 spectral radius with n1 − 1 and n2 + 1. That is when
n1 = n − 2 and n2 = 2, the A0 spectral radius is minimal.

Case 2: If n1 = n2 > 1, then n > 2 is even and n1 = n2 =
n
2 . By Case 1, we know the A0 spectral radius

with n1 = n2 =
n
2 is bigger than the A0 spectral radius with n1 =

n
2 + 1 and n2 =

n
2 − 1. So when n1 = n − 2

and n2 = 2, the A0 spectral radius is minimal.
Case 3: If n1 = n − 1 and n2 = 1, then the equitable quotient matrix B′A is

B′A =

 0 1 1
0 0 1

n − 2 1 0

 .
From Lemma 2.2, we have ρ(B′A) = ρ(B′′A) < ρ(BA), where BA with n1 = n − 1, n2 = 1 and

B′′A =


0 1 0 1
0 0 0 1
0 0 0 0

n − 2 1 0 0

 .
By Case 1, the A0 spectral radius with n1 = n − 2 and n2 = 2 is bigger than the A0 spectral radius with
n1 = n − 1 and n2 = 1. So when n1 = n − 1 and n2 = 1, the A0 spectral radius is minimal.

Hence, the digraph T̃⋆⋆n,2 is the unique digraph which has the minimal A0 spectral radius among all

digraphs in T̃n,2.

Theorem 3.4. The digraph T̃⋆⋆n,2 is the unique digraph which has the minimal A 1
2

spectral radius among all digraphs

in T̃n,2.

Proof. Let G be an arbitrary digraph in T̃n,2, ρ 1
2
(G) be the spectral radius of A 1

2
(G) and ρQ(G) be the spectral

radius of signless Laplacian matrix Q(G). Obviously, ρ 1
2
(G) = 1

2ρQ(G). So we only consider ρQ(G). By

Theorem 3.1, we only need to consider the number of ni of digraph G⋆ in T̃ ⋆n,2. Similar to the proof of
Theorem 3.3, let BQ = BQ(G⋆) be the equitable quotient matrix of Q(G⋆), where BQ corresponding to the
vertex partition A11,A12,A21,A22. We also omit the category discussion about n1 and n2.

If n1 > n2 > 1, then the equitable quotient matrix BQ as follow:

BQ =


n2 + 1 1 n2 − 1 1

0 n2 n2 − 1 1
n1 − 1 1 n1 + 1 1
n1 − 1 1 0 n1

 .
The characteristic polynomial of BQ is

|xI4 − BQ| = x4
− (2 + 2n)x3 + (1 + 3n + n2 + n1n2)x2 + (n − n2

− 4n1n2 − n1n2n)x + (−4 + 2n − 4n1n2 + 2n1n2n).
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Let

fQ(x) = fQ(x; n1,n2) = x4
− (2 + 2n)x3 + (1 + 3n + n2 + n1n2)x2

+ (n − n2
− 4n1n2 − n1n2n)x + (−4 + 2n − 4n1n2 + 2n1n2n).

By the Perron-Frobenius Theorem, ρQ(G⋆) is an eigenvalue (multiplicity one) of Q(G⋆) and there is a
corresponding eigenvector whose coordinates are all positive. And from Lemma 2.4, ρ⋆Q = ρQ(G⋆) is the
root of fQ(x) with the largest modulus.

Next we prove ρQ(G⋆) ≥ ρQ(T̃⋆⋆n,2 ). We move one of the vertices in V⋆1 (except for the vertex v1
n1

) to V⋆2.
The operation is similar to the Theorem 3.3, so we omit it. Let ρ′Q = ρQ(G′) be the root of f̃Q(x) with the
largest modulus, where

f̃Q(x) = fQ(x; n1 − 1,n2 + 1) = x4
− (2 + 2n)x3 + (1 + 3n + n2 + (n1 − 1)(n2 + 1))x2

+ (n − n2
− 4(n1 − 1)(n2 + 1) − (n1 − 1)(n2 + 1)n)x

+ (−4 + 2n − 4(n1 − 1)(n2 + 1) + 2(n1 − 1)(n2 + 1)n).

Then
f̃Q(ρ⋆Q) = fQ(ρ⋆Q) + (n1 − n2 − 1)

(
(ρ⋆Q)2

− (4 + n)ρ⋆Q + 2(n − 2)
)
.

Since n1 > n2 > 1 and fQ(ρ⋆Q) = 0, to prove f̃Q(ρ⋆Q) < 0 implies that (ρ⋆Q)2
− (4 + n)ρ⋆Q + 2(n − 2) < 0. That is

4 + n −
√

32 + n2

2
< ρ⋆Q <

4 + n +
√

32 + n2

2
.

Since fQ(n + 2) = 4(3n + n2
1 + n2

2) > 0 and fQ(n) = −2(n + 2)(n1 − 1)(n2 − 1) < 0, we get n < ρ⋆Q < n + 2.

Because 4+n−
√

32+n2

2 < n and n + 2 < 4+n+
√

32+n2

2 are always true, f̃Q(ρ⋆Q) < 0. Then ρ′Q > ρ
⋆
Q.

Therefore, similar to the proof of Theorem 3.3, when n1 = n − 1 and n2 = 1, the A 1
2

spectral radius is

minimal. That is, the digraph T̃⋆⋆n,2 is the unique digraph which has the minimal A 1
2

spectral radius among

all digraphs in T̃n,2.

From Theorems 3.1, 3.3, 3.4, we get our main result.

Theorem 3.5. Let G = V1
∨ V2

∨ · · · ∨ Vr be a digraph with dichromatic number 2 which each Vi (i = 1, 2) is an
in-tree. Then the digraph T̃⋆⋆n,2 is the unique digraph which has the minimal A0 or A 1

2
spectral radius of the join of

in-trees with dichromatic number 2.

Example 3.6. From the proof of Theorems 3.3 and 3.4, we know the equitable quotient matrix Bα of Aα matrix of a
digraph in T̃ ⋆n,2 as follow:

Bα =


α(n2 + 1) 1 − α (1 − α)(n2 − 1) 1 − α

0 n2α (1 − α)(n2 − 1) 1 − α
(1 − α)(n1 − 1) 1 − α α(n1 + 1) 1 − α
(1 − α)(n1 − 1) 1 − α 0 αn1

 .
From Tables 1 and 2, we take an example about the Aα spectral radius of the digraphs in T̃ ⋆7,2 and T̃ ⋆10,2 when

α = 1
6 ,

3
10 ,

1
2 ,

11
20 ,

3
5 ,

8
11 ,

6
7 .

From Table 1, we find in T̃ ⋆7,2, with n1 increases and n2 decreases, the Aα spectral radius of the digraph
is decreasing when α = 1

6 ,
3

10 ,
1
2 ,

11
20 . But when α = 3

5 ,
8
11 ,

6
7 , it has no such property. From Table 2, we

find in T̃ ⋆10,2, with n1 increases and n2 decreases, the Aα spectral radius of the digraph is decreasing when
α = 1

6 ,
3
10 ,

1
2 . But when α = 11

20 ,
3
5 ,

8
11 ,

6
7 , it has no such property. So we give the following problem.
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Table 1: The Aα spectral radius of the join of in-stars in T̃ ⋆7,2

n = n1 + n2 = 7 n1 = 4,n2 = 3 n1 = 5,n2 = 2 n1 = 6,n2 = 1

ρα

α = 1
6 4.0838 3.7847 2.9626

α = 3
10 4.1024 3.8660 3.1616

α = 1
2 4.1475 4.0685 3.6309

α = 11
20 4.1646 4.1463 3.85

α = 3
5 4.1856 4.2420 4.2

α = 8
11 4.2699 4.6040 5.0909

α = 6
7 4.4674 5.1892 6

Table 2: The Aα spectral radius of the join of in-stars in T̃ ⋆10,2

n = n1 + n2 = 10 n1 = 5,n2 = 5 n1 = 6,n2 = 4 n1 = 7,n2 = 3 n1 = 8,n2 = 2 n1 = 9,n2 = 1

ρα

α = 1
6 5.7080 5.6181 5.3333 4.7906 3.7203

α = 3
10 5.7152 5.6472 5.4314 5.0168 4.1378

α = 1
2 5.7321 5.7183 5.6715 5.5649 5.0958

α = 11
20 5.7382 5.7454 5.7615 5.7619 5.5

α = 3
5 5.7457 5.7789 5.8704 5.9916 6

α = 8
11 5.7737 5.9142 6.2727 6.7479 7.2727

α = 6
7 5.8307 6.2256 6.9544 7.7523 8.5714

Problem 3.7. There exists a number α0 ∈ [0, 1) such that when α ≤ α0, the digraph T̃⋆⋆n,2 is the unique digraph which
has the minimal Aα spectral radius of the join of in-trees with dichromatic number 2.

Furthermore, from Theorem 3.1, we only find the digraph which has the mimimal Aα spectral radius of
the join of in-trees with dichromatic number r must be in T̃ ⋆n,r. But for the join of any directed trees, whether
the same conclusion can be obtained. So we give the following problem.

Problem 3.8. Among the join of directed trees with dichromatic number r, does the digraph in T̃ ⋆n,r attain the mimimal
Aα spectral radius?

4. The maximal Aα spectral radius of digraphs with given dichromatic number

In this section, we will consider the maximal Aα spectral radius of digraphs with given dichromatic
number. Using the Perron-Frobenius Theorem, this result has been proved by Liu et al. [18], but we give a
new proof by using the equitable quotient matrix.

Let Tn,r = V1
∨ V2

∨ · · · ∨ Vr denote the set of digraphs which each Vi (i = 1, 2, . . . , r) is a transitive
tournament. Let T∗n,r denote the digraph in Tn,r with ||Vi

| − |V j
|| ≤ 1. By Lemma 2.8, we know that adding

the arcs will increase the Aα spectral radius. So the transitive tournament has the maximum Aα spectral
radius in acyclic digraphs. Hence we know that the digraph which has the maximal Aα spectral radius with
dichromatic number r must be in Tn,r. Next we will use the equitable quotient matrix to prove the digraph
T∗n,r has the maximal Aα spectral radius in Tn,r.
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Theorem 4.1. Let G = V1
∨V2

∨ · · · ∨Vr be a digraph in Tn,r, where Vi (i = 1, 2, . . . , r) is a transitive tournament
with ni vertices and n1 ≥ n2 ≥ · · · ≥ nr. Then ρα(G) ≤ ρα(T∗n,r) with equality holds if and only if G � T∗n,r.

Proof. Let G be an arbitrary digraph in Tn,r. By Lemma 2.7, we obtain a vertex ordering {vi
1, v

i
2, . . . , v

i
ni
} of

each transitive tournament Vi such that (vi
s, vi

t) ∈ A(G), for all s < t and i = 1, 2, . . . , r. Then d+G(vi
j) = n − j.

For each j = 1, 2, . . . ,n1, let A j = {vi
j|i = 1, 2, . . . , r} and |A j| = a j. Then the vertices in A j have the same

outdegree n− j. Let B = B(G) be the quotient matrix of Aα(G), where B corresponding to the vertex partition
A1,A2, . . . ,An1 . Then the quotient matrix B is equitable and

Bi j =


α(n − j) + (1 − α)(a j − 1), if i = j,
(1 − α)a j, if i < j,
(1 − α)(a j − 1), if i > j.

The characteristic polynomial of B is

|xIn1 − B| =
n1∏
i=1

(x − α(n − i)) −
n1∑
j=1

(1 − α)(a j − 1)
j−1∏
i=1

(x − α(n − i))
n1∏

i= j+1

((1 − α) + x − α(n − i))

 .
Note: if j = n1, let

∏n1
i= j+1((1 − α) + x − α(n − i)) = 1. (See Appendix for detailed calculation.)

Let

f (x) = f (x; n1, . . . ,nr)

=

n1∏
i=1

(x − α(n − i)) −
n1∑
j=1

(1 − α)(a j − 1)
j−1∏
i=1

(x − α(n − i))
n1∏

i= j+1

((1 − α) + x − α(n − i))

 .
By Lemma 2.5 (Perron-Frobenius Theorem), ρα(G) is an eigenvalue (multiplicity one) of Aα(G) and there is a
corresponding eigenvector whose coordinates are all positive. And from Lemma 2.4, ρα = ρα(G) is the root
of f (x) with the largest modulus. From Lemma 2.8, we know ρα > α∆+(G) = α(n − 1). For convenience, let

Xn1
j (x) =

j−1∏
i=1

(x − α(n − i))
n1∏

i= j+1

((1 − α) + x − α(n − i)).

Next we prove ρα(G) ≤ ρα(T∗n,r). We assume that G , T∗n,r, then we have n1 ≥ nr + 2. Let p be the largest
index such that n1 = · · · = np > np+1 ≥ · · · ≥ nr. We do the following operation:

G′ = G + {(vp
np
, vp

i )|i = 1, 2, . . . ,np − 1} − {(vp
np
, vr

j)| j = 1, 2, . . . ,nr}.

Let ρ′α = ρα(G′) be the root of f̃ (x) with the largest modulus, where f̃ (x) = f (x; n1, . . . ,np − 1, . . . ,nr + 1).
Next, we will prove f̃ (ρα) < 0 by the following two cases.

Case 1: If p ≥ 2, that is n1 = n2 = · · · = np. Let

f̃ (x) = f (x; n1, . . . ,np − 1, . . . ,nr + 1) =
n1∏
i=1

(x − α(n − i)) −
n1∑
j=1

(
(1 − α)(a′j − 1)Xn1

j (x)
)
,

where

a′j =


a j + 1, if j = nr + 1,
a j − 1, if j = n1,

a j, otherwise.
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Then

f̃ (ρα) =
n1∏
i=1

(ρα − α(n − i)) −
n1−1∑

j=1, j,nr+1

(
(1 − α)(a j − 1)Xn1

j (ρα)
)

− (1 − α)(anr+1 + 1 − 1)Xn1
nr+1(ρα) − (1 − α)(an1 − 1 − 1)Xn1

n1
(ρα)

=

n1∏
i=1

(ρα − α(n − i)) −
n1∑
j=1

(
(1 − α)(a j − 1)Xn1

j (ρα)
)
− (1 − α)Xn1

nr+1(ρα) + (1 − α)Xn1
n1

(ρα)

= f (ρα) − (1 − α)(Xn1
nr+1(ρα) − Xn1

n1
(ρα)).

Next,

Xn1
nr+1(ρα) − Xn1

n1
(ρα)

=

nr∏
i=1

(ρα − α(n − i))
n1∏

i=nr+2

((1 − α) + ρα − α(n − i)) −
n1−1∏
i=1

(ρα − α(n − i))
n1∏

i=n1+1

((1 − α) + ρα − α(n − i))

=

nr∏
i=1

(ρα − α(n − i))

 n1∏
i=nr+2

((1 − α) + ρα − α(n − i)) −
n1−1∏

i=nr+1

(ρα − α(n − i))

 .
Since n1 ≥ nr + 2, we have

ρα − α(n − i) > α∆+(G) − α(n − i) = α(n − 1) − α(n − i) = α(i − 1) ≥ 0 (i ≥ 1),

(1 − α) + ρα − α(n − i) > (1 − α) + α(i − 1) = α(i − 2) + 1 ≥ 1 (i ≥ nr + 2),

and
((1 − α) + ρα − α(n − n1)) − (ρα − α(n − (nr + 1))) = α(n1 − nr − 2) + 1 ≥ 1.

Obviously,
(1 − α) + ρα − α(n − i) > ρα − α(n − i).

Then

n1∏
i=nr+2

((1 − α) + ρα − α(n − i)) −
n1−1∏

i=nr+1

(ρα − α(n − i))

=

n1−1∏
i=nr+2

((1 − α) + ρα − α(n − i)) −
n1−1∏

i=nr+2

(ρα − α(n − i)) + ((1 − α) + ρα − α(n − n1)) − (ρα − α(n − (nr + 1)))

> 0.

Hence Xn1
nr+1(ρα) − Xn1

n1
(ρα) > 0. Since f (ρα) = 0, we have f̃ (ρα) < 0.

Case 2: If p = 1, that is n1 > n2. Let

f̃ (x) = f (x; n1 − 1, . . . ,nr + 1) =
n1−1∏
i=1

(x − α(n − i)) −
n1−1∑
j=1

(
(1 − α)(a′j − 1)Xn1−1

j (x)
)
,

where

a′j =

a j + 1, if j = nr + 1,
a j, otherwise.
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Then

f̃ (ρα) =
n1−1∏
i=1

(ρα − α(n − i)) −
n1−1∑

j=1, j,nr+1

(
(1 − α)(a j − 1)Xn1−1

j (ρα)
)
− (1 − α)(anr+1 + 1 − 1)Xn1−1

nr+1 (ρα)

=

n1−1∏
i=1

(ρα − α(n − i)) −
n1−1∑
j=1

(
(1 − α)(a j − 1)Xn1−1

j (ρα)
)
− (1 − α)Xn1−1

nr+1 (ρα).

Since

f (ρα) =
n1∏
i=1

(ρα − α(n − i)) −
n1∑
j=1

(
(1 − α)(a j − 1)Xn1

j (ρα)
)
,

and
Xn1

j (ρα) = ((1 − α) + ρα − α(n − n1))Xn1−1
j (ρα),

we have

f̃ (ρα)
(
(1 − α) + ρα − α(n − n1)

)
= f (ρα) + (1 − α)

n1−1∏
i=1

(ρα − α(n − i)) + (1 − α)(an1 − 1)Xn1
n1

(ρα) − (1 − α)Xn1
nr+1(ρα)

= f (ρα) + (1 − α)
n1−1∏
i=1

(ρα − α(n − i)) − (1 − α)
nr∏

i=1

(ρα − α(n − i))
n1∏

i=nr+2

((1 − α) + ρα − α(n − i))

= f (ρα) + (1 − α)
nr∏

i=1

(ρα − α(n − i))

 n1−1∏
i=nr+1

(ρα − α(n − i)) −
n1∏

i=nr+2

((1 − α) + ρα − α(n − i))

 .
Since n1 ≥ nr + 2, we have

(ρα − α(n − nr − 1)) − ((1 − α) + ρα − α(n − n1)) = α(nr + 2 − n1) − 1 < 0.

Obviously,
(1 − α) + ρα − α(n − i) > ρα − α(n − i).

Then we have

n1−1∏
i=nr+1

(ρα − α(n − i)) −
n1∏

i=nr+2

((1 − α) + ρα − α(n − i))

=

n1−1∏
i=nr+2

(ρα − α(n − i)) −
n1−1∏

i=nr+2

((1 − α) + ρα − α(n − i)) + (ρα − α(n − nr − 1)) − ((1 − α) + ρα − α(n − n1))

< 0.

So f̃ (ρα) < 0.
As both f (x) and f̃ (x) have the positive leading coefficients, f̃ (ρα) < 0 implies that ρα < ρ′α. We perform

the above operation as many times as possible until |n1 − nr| ≤ 1, which means the maximal Aα spectral
radius in Tn,r is achieved only at T∗n,r.

From Lemma 2.8 and Theorem 4.1, we get the following theorem.

Theorem 4.2. The digraph T∗n,r is the unique digraph which has the maximal Aα spectral radius among all digraphs
in Gn,r.
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Appendix

Let bi = x − α(n − i), ci = −(1 − α)(ai − 1), d = bn1 + cn1 = x − α(n − n1) − (1 − α)(an1 − 1), β = −(1 − α) and
γ = −bn1 + β = −x + α(n − n1) − (1 − α), where i = 1, 2, . . . ,n1. Let

Qn1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 β β · · · β γ

0 b2 β · · · β γ

0 0 b3 · · · β γ
...
...
...

...
...

0 0 0 · · · bn1−1 γ

c1 c2 c3 · · · cn1−1 d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, Pn1−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β β · · · β γ

b2 β · · · β γ

0 b3 · · · β γ
...
...

...
...

0 0 · · · bn1−1 γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and Qn1−i be the determinant obtained by deleting the pre-i rows and the pre-i columns of Qn1 , Pn1−1−i be
the determinant obtained by deleting the pre-i rows and the pre-i columns of Pn1−1.

Then

|xIn1 − B| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 + c1 c2 + β c3 + β · · · cn1−1 + β cn1 + β

c1 b2 + c2 c3 + β · · · cn1−1 + β cn1 + β

c1 c2 b3 + c3 · · · cn1−1 + β cn1 + β
...

...
...

...
...

c1 c2 c3 · · · bn1−1 + cn1−1 cn1 + β

c1 c2 c3 · · · cn1−1 bn1 + cn1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 β β · · · β γ

0 b2 β · · · β γ

0 0 b3 · · · β γ
...
...
...

...
...

0 0 0 · · · bn1−1 γ

c1 c2 c3 · · · cn1−1 d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b2 β · · · β γ

0 b3 · · · β γ
...
...

...
...

0 0 · · · bn1−1 γ

c2 c3 · · · cn1−1 d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n1+1c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β β · · · β γ

b2 β · · · β γ

0 b3 · · · β γ
...
...

...
...

0 0 · · · bn1−1 γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= b1Qn1−1 + (−1)n1+1c1Pn1−1

= b1Qn1−1 + (−1)n1+1c1(β − b2)Pn1−2

= b1Qn1−1 + (−1)n1+1c1

n1−1∏
i=2

(β − bi)γ
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= b1

b2Qn1−2 + (−1)n1 c2

n1−1∏
i=3

(β − bi)γ

 + (−1)n1+1c1

n1−1∏
i=2

(β − bi)γ

=

2∏
i=1

biQn1−2 + b1(−1)n1 c2

n1−1∏
i=3

(β − bi)γ + (−1)n1+1c1

n1−1∏
i=2

(β − bi)γ

=

2∏
i=1

bi

b3Qn1−3 + (−1)n1−1c3

n1−1∏
i=4

(β − bi)γ

 + b1(−1)n1 c2

n1−1∏
i=3

(β − bi)γ + (−1)n1+1c1

n1−1∏
i=2

(β − bi)γ

=

3∏
i=1

biQn1−3 +

2∏
i=1

bi(−1)n1−1c3

n1−1∏
i=4

(β − bi)γ + b1(−1)n1 c2

n1−1∏
i=3

(β − bi)γ + (−1)n1+1c1

n1−1∏
i=2

(β − bi)γ

=

3∏
i=1

biQn1−3 +

2∑
t=0

 t∏
i=1

bi(−1)n1+1−tct+1

n1−1∏
i=t+2

(β − bi)γ


=

n1−1∏
i=1

bid +
n1−2∑
t=0

(−1)n1+1−tct+1γ
t∏

i=1

bi

n1−1∏
i=t+2

(β − bi)

 .
Note: if t = 0, let

∏t
i=1 bi = 1; if t = n1 − 2, let

∏n1−1
i=t+2(β − bi) = 1.

Hence, we get

|xIn1 − B| =
n1∏
i=1

(x − α(n − i)) −
n1∑
j=1

(1 − α)(a j − 1)
j−1∏
i=1

(x − α(n − i))
n1∏

i= j+1

((1 − α) + x − α(n − i))

 .
Note: if j = n1, let

∏n1
i= j+1((1 − α) + x − α(n − i)) = 1.
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