Filomat 39:11 (2025), 3555–3568 https://doi.org/10.2298/FIL2511555Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Colorings and A_{α} spectral radius of (join) digraphs

Xiuwen Yang^{a,b,c}, Ligong Wang^{b,c,*}, Jing Li^{b,c}

^a School of Science, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, P.R. China ^b School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P.R. China ^c Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P.R. China

Abstract. Let $\mathcal{G}_{n,r}$ be the set of digraphs of order *n* with dichromatic number *r*. Let in-tree be a directed tree with *n* vertices which the outdegree of each vertex is at most one. In this paper, we obtain the digraph which has the minimal A_{α} spectral radius of the join of in-trees with dichromatic number *r*. Moreover, we characterize the digraph which has the maximal A_{α} spectral radius in $\mathcal{G}_{n,r}$ by using a new method.

1. Introduction

Let $G = (\mathcal{V}(G), \mathcal{A}(G))$ be a digraph with vertex set $\mathcal{V}(G) = \{v_1, v_2, \dots, v_n\}$ and arc set $\mathcal{A}(G)$. We denote an arc from vertex v_i to vertex v_j by (v_i, v_j) , where v_i is the tail of (v_i, v_j) and v_j is the head of (v_i, v_j) . The outdegree $d_i^+ = d_G^+(v_i)$ (or indegree $d_i^- = d_G^-(v_i)$) of G is the number of arcs whose tail (or head) is vertex v_i . We denote by $\Delta^+(G)$ the maximum outdegree of G and $\delta^-(G)$ the minimum indegree of G, respectively. A directed path with length n is a finite non-null sequence $v_1e_1v_2e_2\cdots v_ne_nv_{n+1}$, where the vertices v_1, v_2, \dots, v_{n+1} are distinct and e_i is the arc (v_i, v_{i+1}) , which is P_{n+1} . If $v_{n+1} = v_1$, the sequence $v_1e_1v_2e_2 \dots v_ne_nv_1$ is the directed cycle C_n . A digraph is connected if its underlying graph is connected. A digraph G is strongly connected if for any pair of vertices $v_i, v_j \in \mathcal{V}(G)$, there is a directed path from v_i to v_j . Throughout this paper, we consider the connected digraphs without loops and multiple arcs.

A digraph is acyclic if it has no directed cycles. A directed tree is a digraph with *n* vertices and n - 1 arcs which its underlying graph does not contain cycles. An in-tree is a directed tree with *n* vertices which the outdegree of each vertex is at most one. Then the in-tree has exactly one vertex with outdegree 0 and such vertex is called the root of the in-tree. An in-star is a directed tree with *n* vertices which has one vertex with indegree n - 1 and other vertices with indegree 0. Obviously, in-star is a kind of in-tree. A tournament is a digraph obtained from an undirected complete graph by assigning a direction for each edge. A transitive tournament is a tournament *G* satisfying the following: if $(u, v) \in \mathcal{A}(G)$ and $(v, w) \in \mathcal{A}(G)$, then $(u, w) \in \mathcal{A}(G)$. The join of two digraphs *G* and *H*, denoted by $G \lor H$, is the digraph having vertex set

- Received: 22 July 2022; Accepted: 02 February 2025
- Communicated by Yimin Wei

²⁰²⁰ Mathematics Subject Classification. Primary 05C20; Secondary 05C50.

Keywords. A_{α} spectral radius; dichromatic number; quotient matrix.

Research supported by the National Natural Science Foundation of China (Nos. 12271439 and 11871398), the Natural Science Foundation of Shaanxi Province (No. 2020JQ-107) and the China Scholarship Council (No. 202106290009).

^{*} Corresponding author: Ligong Wang

Email addresses: yangxiuwen1995@163.com (Xiuwen Yang), lgwangmath@163.com (Ligong Wang), jingli@nwpu.edu.cn (Jing Li) ORCID iDs: https://orcid.org/0000-0002-0959-8323 (Xiuwen Yang), https://orcid.org/0000-0002-6160-1761 (Ligong Wang), https://orcid.org/0000-0002-4883-8633 (Jing Li)

 $\mathcal{V}(G) \cup \mathcal{V}(H)$ and arc set $\mathcal{A}(G) \cup \mathcal{A}(H) \cup \{(u, v), (v, u) | u \in \mathcal{V}(G), v \in \mathcal{V}(H)\}$. Let $G = V^1 \vee V^2 \vee \cdots \vee V^r$ be a join digraph with dichromatic number r which each V^i (i = 1, 2, ..., r) is an acyclic digraph.

For a digraph *G*, the adjacency matrix $A(G) = (a_{ij})$ of *G* is an $n \times n$ matrix whose (i, j)-entry equals to 1 if $(v_i, v_j) \in \mathcal{A}(G)$ and equals to 0 otherwise. The diagonal outdegree matrix $D^+(G)$ of *G* is $D^+(G) = diag(d_1^+, d_2^+, \ldots, d_n^+)$. The Laplacian matrix L(G) and the signless Laplacian matrix Q(G) of *G* are $L(G) = D^+(G) - A(G)$ and $Q(G) = D^+(G) + A(G)$, respectively. In [18], Liu et al. defined the A_α -matrix of *G* as

$$A_{\alpha}(G) = \alpha D^{+}(G) + (1 - \alpha)A(G),$$

where $\alpha \in [0,1]$. Obviously, $A_0(G) = A(G)$, $A_{\frac{1}{2}}(G) = \frac{1}{2}Q(G)$ and $A_1(G) = D^+(G)$. Since $D^+(G)$ is not interesting, we only consider $\alpha \in [0,1)$. The eigenvalue of $A_\alpha(G)$ with largest modulus is called the A_α spectral radius of *G*, denoted by $\rho_\alpha(G)$. Now, many results about the A_α -matrix of an undirected graph can be found in [11, 12, 14, 15, 17, 21, 22], but not much is known about digraphs. Xi et al. [23] determined the digraphs which attain the maximum (or minimum) A_α spectral radius among all strongly connected digraphs with given parameters such as girth, clique number, vertex connectivity or arc connectivity. Xi and Wang [25] established some lower bounds on $\Delta^+(G) - \rho_\alpha(G)$ for strongly connected irregular digraphs with given maximum outdegree and some other parameters. Ganie and Baghipur [7] obtained some lower bounds for the spectral radius of $A_\alpha(G)$ in terms of the number of vertices, arcs and closed walks of *G*. More knowledge about the spectra of digraphs can be found in a survey [5] and a book [8].

A vertex set $F \subseteq \mathcal{V}(G)$ is acyclic if its induced subdigraph G[F] is acyclic. A partition of $\mathcal{V}(G)$ into r acyclic sets is called a r-coloring of G. The minimum integer r for which there exists a r-coloring of G is the dichromatic number $\chi(G)$ of G. Let $\mathcal{G}_{n,r}$ denote the set of digraphs of order n with dichromatic number r. In 1982, Neumann-Lara [20] first introduced the dichromatic number of a digraph. Lin and Shu [16] characterized the digraph which has the maximal spectral radius with given dichromatic number. Drury and Lin [6] determined the digraphs that have the minimum and second minimum spectral radius among all strongly connected digraphs with given order and dichromatic number. Liu et al. [18] characterized the digraph which has the maximal A_{α} spectral radius with given dichromatic number. Kim et al. [10] proved a tight upper bound for the spectral radius of digraphs in terms of the number of vertices and the dichromatic number. For more papers on the dichromatic number of digraphs see [2, 13, 19, 24].

In this paper, the organization is as follows. In Section 2, we list some known results used for later. In Section 3, we obtain the digraph which has the minimal A_{α} spectral radius of the join of in-trees with given dichromatic number. In Section 4, we characterize the digraph which has the maximal A_{α} spectral radius with given dichromatic number by using the equitable quotient matrix. Note that Liu et al. [18] obtained the results by using the Perron-Frobenius Theorem.

2. Preliminaries

In this section, we will list some known results used for later.

Definition 2.1. ([1]) Let $A = (a_{ij})$, $B = (b_{ij})$ be two $n \times n$ matrices. If $a_{ij} \le b_{ij}$ for all i and j, then $A \le B$. If $A \le B$ and $A \ne B$, then A < B. If $a_{ij} < b_{ij}$ for all i and j, then $A \ll B$.

Lemma 2.2. ([1]) Let $A = (a_{ij})$, $B = (b_{ij})$ be two $n \times n$ matrices with the spectral radii $\rho(A)$ and $\rho(B)$, respectively. If $0 \le A \le B$, then $\rho(A) \le \rho(B)$. Furthermore, If $0 \le A < B$ and B is irreducible, then $\rho(A) < \rho(B)$.

Definition 2.3. ([4]) Let M be a complex matrix of order n described in the following block form

$$M = \left[\begin{array}{ccc} M_{11} & \cdots & M_{1t} \\ \vdots & \ddots & \vdots \\ M_{t1} & \cdots & M_{tt} \end{array} \right],$$

where the blocks M_{ij} are $n_i \times n_j$ matrices for any $1 \le i, j \le t$ and $n = n_1 + n_2 + \cdots + n_t$. For $1 \le i, j \le t$, let b_{ij} be the average row sum of M_{ij} , i.e. b_{ij} is the sum of all entries in M_{ij} divided by the number of rows. Then $B(M) = (b_{ij})$ (or simply B) is called the quotient matrix of M. If for each pair *i*, *j*, the row sum of the matrix M_{ij} is same for each row, then B is called an equitable quotient matrix of M.

Lemma 2.4. ([26]) Let *M* be a nonnegative matrix and *B* be the equitable quotient matrix of *M* as defined in Definition 2.3. If *B* is irreducible, then $\rho(B) = \rho(M)$.

Lemma 2.5. (*Perron-Frobenius Theorem* [9]) Let M be a irreducible and nonnegative matrix of order n. Then (a) $\rho(M) > 0$.

(b) $\rho(M)$ is an algebraically simple eigenvalue of M.

(c) there is a unique real vector $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ such that $M\mathbf{x} = \rho(M)\mathbf{x}$ and $x_1 + x_2 + \cdots + x_n = 1$; this vector is positive.

(d) there is a unique real vector $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$ such that $\mathbf{y}^T M = \rho(M)\mathbf{y}^T$ and $x_1y_1 + \dots + x_ny_n = 1$; this vector is positive.

Lemma 2.6. ([9]) If *M* is a nonnegative matrix and $X \ge 0$ is a nonnegative vector such that $MX \ge \beta X$ for some $\beta \in R$, then $\rho(M) \ge \beta$, where $\rho(M)$ is the largest eigenvalue of *M*. Furthermore, if *M* is irreducible and $MX > \beta X$, then $\rho(M) > \beta$.

Lemma 2.7. ([3]) Let G be a digraph with no directed cycle. Then $\delta^-(G) = 0$ and there is an ordering $v_1, v_2, ..., v_n$ of $\mathcal{V}(G)$ such that, for $1 \le i \le n$, every arc of G with head v_i has its tail in $\{v_1, v_2, ..., v_{i-1}\}$.

Lemma 2.8. ([18, 24]) Let G be a strongly connected digraph with the A_{α} spectral radius $\rho_{\alpha}(G)$ and maximal outdegree $\Delta^+(G)$. If H is a proper subdigraph of G, then $\rho_{\alpha}(G) > \rho_{\alpha}(H)$, especially, $\rho_{\alpha}(G) > \alpha \Delta^+(G)$.

Let $G \in \mathcal{G}_{n,r}$ be a digraph of order n with dichromatic number r. From the definition of dichromatic number, G has r-coloring classes and each of which is an acyclic set. Let $\lambda_{\alpha 1}, \lambda_{\alpha 2}, \ldots, \lambda_{\alpha n}$ be the A_{α} eigenvalues of G and $d_1^+, d_2^+, \ldots, d_n^+$ be the outdegrees of vertices of G. Then we have known the A_{α} eigenvalue of an acyclic digraph is $\lambda_{\alpha i} = \alpha d_i^+$, where $i = 1, 2, \ldots, n$. So if r = 1, G is an acyclic digraph with $\rho_{\alpha}(G) = \alpha \Delta^+(G)$. Therefore in this paper, we only consider the case when $r \ge 2$.

3. The minimal A_{α} spectral radius of the join of in-trees with given dichromatic number

In this section, we will consider the minimal A_{α} spectral radius of the join of in-trees with given dichromatic number. Let $\widetilde{\mathcal{T}}_{n,r} = V^1 \vee V^2 \vee \cdots \vee V^r$ denote the set of digraphs which each V^i (i = 1, 2, ..., r) is an in-tree. Let $\widetilde{\mathcal{T}}_{n,r}^{\star} = V^{\star 1} \vee V^{\star 2} \vee \cdots \vee V^{\star r}$ denote the set of digraphs which each $V^{\star i}$ (i = 1, 2, ..., r) is an in-star. Obviously, $\widetilde{\mathcal{T}}_{n,r}^{\star} \subseteq \widetilde{\mathcal{T}}_{n,r}$. Let $\widetilde{\mathcal{T}}_{n,2}^{\star}$ denote the digraph in $\widetilde{\mathcal{T}}_{n,2}^{\star}$ which $V^{\star 1}$ is an in-star with n - 1 vertices and $V^{\star 2}$ is a digraph with one vertex. First, we will prove the digraph which has the minimal A_{α} spectral radius of the join of in-trees with dichromatic number r must be in $\widetilde{\mathcal{T}}_{n,r}^{\star}$.

Theorem 3.1. Let $G = V^1 \vee V^2 \vee \cdots \vee V^r$ be a digraph in $\widetilde{\mathcal{T}}_{n,r}$, where V^i (i = 1, 2, ..., r) is an in-tree with n_i vertices. Let $G^* = V^{*1} \vee V^{*2} \vee \cdots \vee V^{*r}$ be a digraph in $\widetilde{\mathcal{T}}_{n,r}^*$, where V^{*i} (i = 1, 2, ..., r) is an in-star with n_i vertices. Then $\rho_{\alpha}(G) \geq \rho_{\alpha}(G^*)$ with equality holds if and only if $G \cong G^*$.

Proof. For the digraph G^* , let the vertex ordering of in-star $V^{\star i}$ be $\{v_1^i, v_2^i, \dots, v_{n_i}^i\}$ such that $(v_j^i, v_{n_i}^i) \in \mathcal{A}(G^*)$, for all $i = 1, 2, \dots, r$ and $j = 1, 2, \dots, n_i - 1$. Then $d_{G^*}^+(v_i^i) = n - n_i + 1$ and $d_{G^*}^+(v_{n_i}^i) = n - n_i$. Suppose that

$$\mathbf{x} = (x_1^1, x_2^1, \dots, x_{n_1}^1, x_1^2, x_2^2, \dots, x_{n_2}^2, \dots, x_1^r, x_2^r, \dots, x_{n_r}^r)^T$$

is a Perron vector of G^* corresponding to the A_α spectral radius $\rho_\alpha^* = \rho_\alpha(G^*)$, where x_j^i is the characteristic component corresponding to v_j^i for each $1 \le i \le r$ and $1 \le j \le n_i$.

Since $A_{\alpha}(G^{\star})\mathbf{x} = \rho_{\alpha}^{\star}\mathbf{x}$, we have

$$\begin{cases} \alpha(n-n_i+1)x_j^i + (1-\alpha)x_{n_i}^i + (1-\alpha)\sum_{s=1,s\neq i}^r \sum_{t=1}^{n_s} x_t^s = \rho_{\alpha}^{\star} x_j^i, \\ \alpha(n-n_i)x_{n_i}^i + (1-\alpha)\sum_{s=1,s\neq i}^r \sum_{t=1}^{n_s} x_t^s = \rho_{\alpha}^{\star} x_{n_i}^i, \end{cases}$$

where i = 1, 2, ..., r and $j = 1, 2, ..., n_i - 1$. Then we have

$$((1-\alpha)+\rho_{\alpha}^{\star}-\alpha(n-n_i))x_{n_i}^i=(\rho_{\alpha}^{\star}-\alpha(n-n_i+1))x_{j'}^i$$

Obviously, $x_{n_i}^i < x_1^i = x_2^i = \dots = x_{n_i-1}^i$ for all $i = 1, 2, \dots, r$.

Next we prove $\rho_{\alpha}(G) \ge \rho_{\alpha}(G^{\star})$. Suppose that $G \ne G^{\star}$, we can get the digraph *G* by changing many arcs in G^{\star} . We first consider the transformation of one arc. We do the transformation of an arbitrary arc $(v_{j}^{i}, v_{n_{i}}^{i}) \in \mathcal{A}(G^{\star})$ for all i = 1, 2, ..., r and $j = 1, 2, ..., n_{i} - 1$. Without loss of generality, we consider the arc $(v_{j}^{i}, v_{n_{i}}^{i})$. Let

$$G = G^{\star} - (v_i^1, v_{n_1}^1) + (v_s^1, v_t^1).$$

By the structural property of directed trees, the arc (v_s^1, v_t^1) only has three cases: $(v_s^1, v_t^1) = (v_j^1, v_t^1)$ or $(v_s^1, v_t^1) = (v_s^1, v_j^1)$ or $(v_s^1, v_t^1) = (v_s^1, v_j^1)$, where $s, t = 1, 2, ..., n_1 - 1$. Since the outdegree sequence of the in-tree is (1, 1, ..., 1, 0), the case $(v_s^1, v_t^1) = (v_s^1, v_j^1)$ is impossible. So we only discuss the two cases: $(v_j^1, v_{n_1}^1) \rightarrow (v_j^1, v_t^1)$ or $(v_i^1, v_{n_1}^1) \rightarrow (v_{n_1}^1, v_j^1)$.

Case 1. If $(v_j^1, v_{n_1}^1) \to (v_j^1, v_t^1)$. Since $x_{n_1}^1 < x_j^1 = x_t^1$, we obtain

$$(A_{\alpha}(G) - A_{\alpha}(G^{\star}))\mathbf{x} = (0, \dots, 0, (1 - \alpha)(x_t^1 - x_{n_1}^1), 0, \dots, 0)^T > 0.$$

That is $A_{\alpha}(G)\mathbf{x} > A_{\alpha}(G^{\star})\mathbf{x} = \rho_{\alpha}(G^{\star})\mathbf{x}$. By Lemma 2.6, $\rho_{\alpha}(G) > \rho_{\alpha}(G^{\star})$.

Case 2. If $(v_j^1, v_{n_1}^1) \to (v_{n_1}^1, v_j^1)$. We can find a digraph G' such that $G' \cong G$. Without loss of generality, let $v_j^1 = v_1^1$. Then we have $d_G^+(v_1^1) = n - n_1$ and $d_{G^*}^+(v_{n_1}^1) = n - n_1$. Let G' be a digraph which switch the index of $v_{n_1}^1$ and v_1^1 in G. Then

$$G' = G - (v_{n_1}^1, v_1^1) - \{(v_i^1, v_{n_1}^1) | i = 2, 3, \dots, n_1 - 1\} + (v_1^1, v_{n_1}^1) + \{(v_i^1, v_1^1) | i = 2, 3, \dots, n_1 - 1\}.$$

Obviously, $G' \cong G$ and

$$G' = G^{\star} - \{(v_i^1, v_{n_1}^1) | i = 2, 3, \dots, n_1 - 1\} + \{(v_i^1, v_1^1) | i = 2, 3, \dots, n_1 - 1\}.$$

Then we obtain

$$(A_{\alpha}(G') - A_{\alpha}(G^{\star}))\mathbf{x} = (0, (1 - \alpha)(x_1^1 - x_{n_1}^1), \dots, (1 - \alpha)(x_1^1 - x_{n_1}^1), 0, \dots, 0)^T > 0.$$

That is $A_{\alpha}(G')\mathbf{x} > A_{\alpha}(G^{\star})\mathbf{x} = \rho_{\alpha}(G^{\star})\mathbf{x}$. By Lemma 2.6, $\rho_{\alpha}(G') > \rho_{\alpha}(G^{\star})$. So we have $\rho_{\alpha}(G) = \rho_{\alpha}(G') > \rho_{\alpha}(G^{\star})$.

For the transformation of many arcs, similar to Case 2, we can find a digraph *G* such that $d_G^+(v_{n_i}^i) = n - n_i$ and $d_G^+(v_j^i) = n - n_i + 1$ for all i = 1, 2, ..., r and $j = 1, 2, ..., n_i - 1$. Then the components of $(A_\alpha(G) - A_\alpha(G^*))\mathbf{x}$ are 0 or $(1 - \alpha)(x_j^i - x_{n_i}^i)$. So $(A_\alpha(G) - A_\alpha(G^*))\mathbf{x} > 0$ always holds and $\rho_\alpha(G) > \rho_\alpha(G^*)$.

To sum up the above, we have $\rho_{\alpha}(G) \ge \rho_{\alpha}(G^{\star})$ with equality holding if and only if $G \cong G^{\star}$. \Box

To illustrate the transformation for Theorem 3.1 better, we give the following example.

Example 3.2. Let $H = V^1 \vee V^2$ and $F = {V^1}^* \vee {V^2}^*$ be two digraphs shown in Figure 1. Then we can get the digraph H by changing many arcs in the digraph F: $(v_1^1, v_6^1) \to (v_1^1, v_2^1), (v_3^1, v_6^1) \to (v_3^1, v_2^1), (v_4^1, v_6^1) \to (v_4^1, v_3^1), (v_5^1, v_6^1) \to (v_5^1, v_3^1), (v_5^1, v_6^1) \to (v_1^2, v_2^2), (v_2^2, v_4^2) \to (v_2^2, v_3^2).$ From Theorem 3.1, we have $(A_\alpha(H) - A_\alpha(F))\mathbf{x} = \{(1 - \alpha)(x_2^1 - x_6^1), 0, (1 - \alpha)(x_2^1 - x_6^1), (1 - \alpha)(x_3^1 - x_6^1), 0, (1 - \alpha)(x_2^2 - x_4^2), (1 - \alpha)(x_3^2 - x_4^2), 0, 0\} > 0.$ So $\rho_\alpha(H) > \rho_\alpha(F)$.

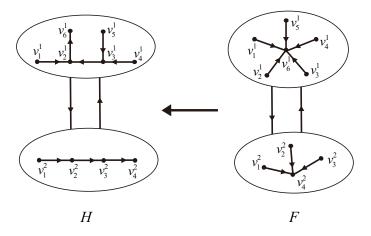


Figure 1: The digraphs H and F

Next we will prove the digraph $\widetilde{T}_{n,2}^{\star\star}$ has the minimal A_{α} spectral radius of the join of in-trees with dichromatic number 2 when $\alpha = 0$ or $\alpha = \frac{1}{2}$.

Theorem 3.3. The digraph $\widetilde{T}_{n,2}^{\star\star}$ is the unique digraph which has the minimal A_0 spectral radius among all digraphs in $\widetilde{\mathcal{T}}_{n,2}$.

Proof. Let *G* be an arbitrary digraph in $\widetilde{\mathcal{T}}_{n,2}$, $\rho_0(G)$ be the spectral radius of $A_0(G)$ and $\rho_A(G)$ be the spectral radius of adjacency matrix A(G). Obviously, $\rho_0(G) = \rho_A(G)$. Let $G = V^1 \vee V^2$, where V^i is an in-tree, $|V^i| = n_i$ and $n_1 \ge n_2$. Then $\lceil \frac{n}{2} \rceil \le n_1 \le n-1$, $1 \le n_2 \le \lfloor \frac{n}{2} \rfloor$ and $n_1 + n_2 = n$. By Theorem 3.1, we know that the digraph which has the mimimal A_α spectral radius of the join of in-trees with dichromatic number r must be in $\widetilde{\mathcal{T}}_{n,r}^*$. So we only need to consider the number of n_i of digraph G^* in $\widetilde{\mathcal{T}}_{n,2}^*$. That is $G^* = V^{*1} \vee V^{*2}$, where V^{*i} is an in-star, $|V^{*i}| = n_i$ and $n_1 \ge n_2$. Then $d_{G^*}^+(v_j^i) = n - n_i + 1$ and $d_{G^*}^+(v_{n_i}^i) = n - n_i$, where i = 1, 2 and $j = 1, 2, \ldots, n_i - 1$. Let $A_{11} = \{v_j^1 | j = 1, 2, \ldots, n_1 - 1\}$, $A_{12} = \{v_{n_1}^1\}$, $A_{21} = \{v_j^2 | j = 1, 2, \ldots, n_2 - 1\}$ and $A_{22} = \{v_{n_2}^2\}$. Let $B_A = B_A(G^*)$ be the quotient matrix of $A(G^*)$, where B_A corresponding to the vertex partition $A_{11}, A_{12}, A_{21}, A_{22}$. Then the quotient matrix B_A is equitable. Next we consider the cases when $n_1 > n_2 > 1$, $n_1 = n_2$ and $n_1 = n - 1$, $n_2 = 1$.

Case 1: If $n_1 > n_2 > 1$, then the equitable quotient matrix B_A as follow:

$$B_A = \begin{pmatrix} 0 & 1 & n_2 - 1 & 1 \\ 0 & 0 & n_2 - 1 & 1 \\ n_1 - 1 & 1 & 0 & 1 \\ n_1 - 1 & 1 & 0 & 0 \end{pmatrix}.$$

The characteristic polynomial of B_A is

$$|xI_4 - B_A| = x^4 - n_1 n_2 x^2 + (n - 2n_1 n_2) x + (n - n_1 n_2 - 1).$$

Let

$$f_A(x) = f_A(x; n_1, n_2) = x^4 - n_1 n_2 x^2 + (n - 2n_1 n_2) x + (n - n_1 n_2 - 1).$$

By using the Perron-Frobenius Theorem, $\rho_A(G^*)$ is an eigenvalue (multiplicity one) of $A(G^*)$ and there is a corresponding eigenvector whose coordinates are all positive. And from Lemma 2.4, $\rho_A^* = \rho_A(G^*)$ is the root of $f_A(x)$ with the largest modulus.

Next we prove $\rho_A(G^*) \ge \rho_A(\overline{T}_{n,2}^{**})$. We move one of the vertices in V^{*1} (except for the vertex $v_{n_1}^1$) to V^{*2} . Without loss of generality, let that vertex be v_1^1 . That is

$$G' = G^{\star} - (v_1^1, v_{n_1}^1) - \{(v_1^1, v_s^2) | s = 1, 2, \dots, n_2\} - \{(v_s^2, v_1^1) | s = 1, 2, \dots, n_2\}$$

3559

+
$$(v_1^1, v_{n_2}^2)$$
 + { $(v_t^1, v_1^1)|t = 2, ..., n_1$ } + { $(v_1^1, v_t^1)|t = 2, ..., n_1$ }

Let $\rho'_A = \rho_A(G')$ be the root of $\tilde{f}_A(x)$ with the largest modulus, where $\tilde{f}_A(x) = f_A(x; n_1 - 1, n_2 + 1) = x^4 - (n_1 - 1)(n_2 + 1)x^2 + (n - 2(n_1 - 1)(n_2 + 1))x + (n - (n_1 - 1)(n_2 + 1) - 1)$. Then

$$\tilde{f}_A(\rho_A^{\star}) = f_A(\rho_A^{\star}) + (n_2 + 1 - n_1)(\rho_A^{\star} + 1)^2$$

We know $f_A(\rho_A^*) = 0$ and $n_1 > n_2 > 1$. If $n_2 + 1 - n_1 = 0$, then n > 2 is odd and $n_1 = \frac{n+1}{2}$, $n_2 = \frac{n-1}{2}$. That is $G' = G^*$. If $n_2 + 1 - n_1 < 0$, then $\tilde{f}_A(\rho_A^*) < 0$.

As both $f_A(x)$ and $\tilde{f}_A(x)$ have the positive leading coefficients, $\tilde{f}_A(\rho_A^*) < 0$ implies that $\rho_A^* < \rho'_A$. So the A_0 spectral radius with n_1 and n_2 is smaller than the A_0 spectral radius with $n_1 - 1$ and $n_2 + 1$. That is when $n_1 = n - 2$ and $n_2 = 2$, the A_0 spectral radius is minimal.

Case 2: If $n_1 = n_2 > 1$, then n > 2 is even and $n_1 = n_2 = \frac{n}{2}$. By Case 1, we know the A_0 spectral radius with $n_1 = n_2 = \frac{n}{2}$ is bigger than the A_0 spectral radius with $n_1 = \frac{n}{2} + 1$ and $n_2 = \frac{n}{2} - 1$. So when $n_1 = n - 2$ and $n_2 = 2$, the A_0 spectral radius is minimal.

Case 3: If $n_1 = n - 1$ and $n_2 = 1$, then the equitable quotient matrix B'_A is

$$B'_A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 0 & 0 & 1 \\ n-2 & 1 & 0 \end{array}\right)$$

From Lemma 2.2, we have $\rho(B'_A) = \rho(B''_A) < \rho(B_A)$, where B_A with $n_1 = n - 1$, $n_2 = 1$ and

$$B_A^{\prime\prime} = \left(\begin{array}{rrrr} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ n-2 & 1 & 0 & 0 \end{array}\right).$$

By Case 1, the A_0 spectral radius with $n_1 = n - 2$ and $n_2 = 2$ is bigger than the A_0 spectral radius with $n_1 = n - 1$ and $n_2 = 1$. So when $n_1 = n - 1$ and $n_2 = 1$, the A_0 spectral radius is minimal.

Hence, the digraph $\overline{T}_{n,2}^{\star\star}$ is the unique digraph which has the minimal A_0 spectral radius among all digraphs in $\widetilde{T}_{n,2}$. \Box

Theorem 3.4. The digraph $\widetilde{T}_{n,2}^{\star\star}$ is the unique digraph which has the minimal $A_{\frac{1}{2}}$ spectral radius among all digraphs in $\widetilde{T}_{n,2}$.

Proof. Let *G* be an arbitrary digraph in $\mathcal{T}_{n,2}$, $\rho_{\frac{1}{2}}(G)$ be the spectral radius of $A_{\frac{1}{2}}(G)$ and $\rho_Q(G)$ be the spectral radius of signless Laplacian matrix Q(G). Obviously, $\rho_{\frac{1}{2}}(G) = \frac{1}{2}\rho_Q(G)$. So we only consider $\rho_Q(G)$. By Theorem 3.1, we only need to consider the number of n_i of digraph G^* in $\mathcal{T}_{n,2}^*$. Similar to the proof of Theorem 3.3, let $B_Q = B_Q(G^*)$ be the equitable quotient matrix of $Q(G^*)$, where B_Q corresponding to the vertex partition $A_{11}, A_{12}, A_{21}, A_{22}$. We also omit the category discussion about n_1 and n_2 .

If $n_1 > n_2 > 1$, then the equitable quotient matrix B_Q as follow:

$$B_Q = \begin{pmatrix} n_2 + 1 & 1 & n_2 - 1 & 1 \\ 0 & n_2 & n_2 - 1 & 1 \\ n_1 - 1 & 1 & n_1 + 1 & 1 \\ n_1 - 1 & 1 & 0 & n_1 \end{pmatrix}.$$

The characteristic polynomial of B_Q is

$$|xI_4 - B_Q| = x^4 - (2 + 2n)x^3 + (1 + 3n + n^2 + n_1n_2)x^2 + (n - n^2 - 4n_1n_2 - n_1n_2n)x + (-4 + 2n - 4n_1n_2 + 2n_1n_2n)x^2 + (n - n^2 - 4n_1n_2 - n_1n_2n)x + (-4 + 2n - 4n_1n_2 + 2n_1n_2n)x^2 + (n - n^2 - 4n_1n_2 - n_1n_2n)x + (-4 + 2n - 4n_1n_2 + 2n_1n_2n)x^2 + (n - n^2 - 4n_1n_2 - n_1n_2n)x + (-4 + 2n - 4n_1n_2 + 2n_1n_2n)x^2 + (n - n^2 - 4n_1n_2 - n_1n_2n)x + (-4 + 2n - 4n_1n_2 + 2n_1n_2n)x^2 + (n - n^2 - 4n_1n_2 - n_1n_2n)x + (n - 4n_1n_2 - n_1n_2n)x + (n - 4n_1n_2 - n_1n_2n)x^2 + (n - 4n_1n_2 - n_1n_2n)x + (n - 4n_1n_2n)x + (n - 4n$$

3560

$$\begin{split} f_Q(x) &= f_Q(x;n_1,n_2) = x^4 - (2+2n)x^3 + (1+3n+n^2+n_1n_2)x^2 \\ &+ (n-n^2-4n_1n_2-n_1n_2n)x + (-4+2n-4n_1n_2+2n_1n_2n). \end{split}$$

By the Perron-Frobenius Theorem, $\rho_Q(G^*)$ is an eigenvalue (multiplicity one) of $Q(G^*)$ and there is a corresponding eigenvector whose coordinates are all positive. And from Lemma 2.4, $\rho_Q^* = \rho_Q(G^*)$ is the root of $f_Q(x)$ with the largest modulus.

Next we prove $\rho_Q(G^*) \ge \rho_Q(\tilde{T}_{n,2}^{**})$. We move one of the vertices in V^{*1} (except for the vertex $v_{n_1}^1$) to V^{*2} . The operation is similar to the Theorem 3.3, so we omit it. Let $\rho'_Q = \rho_Q(G')$ be the root of $\tilde{f}_Q(x)$ with the largest modulus, where

$$\begin{split} \tilde{f}_Q(x) &= f_Q(x; n_1 - 1, n_2 + 1) = x^4 - (2 + 2n)x^3 + (1 + 3n + n^2 + (n_1 - 1)(n_2 + 1))x^2 \\ &+ (n - n^2 - 4(n_1 - 1)(n_2 + 1) - (n_1 - 1)(n_2 + 1)n)x \\ &+ (-4 + 2n - 4(n_1 - 1)(n_2 + 1) + 2(n_1 - 1)(n_2 + 1)n). \end{split}$$

Then

$$\tilde{f}_{Q}(\rho_{Q}^{\star}) = f_{Q}(\rho_{Q}^{\star}) + (n_{1} - n_{2} - 1)\left((\rho_{Q}^{\star})^{2} - (4 + n)\rho_{Q}^{\star} + 2(n - 2)\right).$$

Since $n_1 > n_2 > 1$ and $f_Q(\rho_Q^*) = 0$, to prove $\tilde{f}_Q(\rho_Q^*) < 0$ implies that $(\rho_Q^*)^2 - (4+n)\rho_Q^* + 2(n-2) < 0$. That is

$$\frac{4+n-\sqrt{32+n^2}}{2} < \rho_Q^{\star} < \frac{4+n+\sqrt{32+n^2}}{2}$$

Since $f_Q(n + 2) = 4(3n + n_1^2 + n_2^2) > 0$ and $f_Q(n) = -2(n + 2)(n_1 - 1)(n_2 - 1) < 0$, we get $n < \rho_Q^* < n + 2$. Because $\frac{4+n-\sqrt{32+n^2}}{2} < n$ and $n + 2 < \frac{4+n+\sqrt{32+n^2}}{2}$ are always true, $\tilde{f}_Q(\rho_Q^*) < 0$. Then $\rho_Q' > \rho_Q^*$. Therefore, similar to the proof of Theorem 3.3, when $n_1 = n - 1$ and $n_2 = 1$, the $A_{\frac{1}{2}}$ spectral radius is

Therefore, similar to the proof of Theorem 3.3, when $n_1 = n - 1$ and $n_2 = 1$, the $A_{\frac{1}{2}}$ spectral radius is minimal. That is, the digraph $\tilde{T}_{n,2}^{\star\star}$ is the unique digraph which has the minimal $A_{\frac{1}{2}}$ spectral radius among all digraphs in $\tilde{\mathcal{T}}_{n,2}$. \Box

From Theorems 3.1, 3.3, 3.4, we get our main result.

Theorem 3.5. Let $G = V^1 \lor V^2 \lor \cdots \lor V^r$ be a digraph with dichromatic number 2 which each V^i (i = 1, 2) is an *in-tree.* Then the digraph $\widetilde{T}_{n,2}^{\star\star}$ is the unique digraph which has the minimal A_0 or $A_{\frac{1}{2}}$ spectral radius of the join of *in-trees with dichromatic number 2.*

Example 3.6. From the proof of Theorems 3.3 and 3.4, we know the equitable quotient matrix B_{α} of A_{α} matrix of a digraph in $\widetilde{\mathcal{T}}_{n,2}^{\star}$ as follow:

$$B_{\alpha} = \begin{pmatrix} \alpha(n_2+1) & 1-\alpha & (1-\alpha)(n_2-1) & 1-\alpha \\ 0 & n_2\alpha & (1-\alpha)(n_2-1) & 1-\alpha \\ (1-\alpha)(n_1-1) & 1-\alpha & \alpha(n_1+1) & 1-\alpha \\ (1-\alpha)(n_1-1) & 1-\alpha & 0 & \alpha n_1 \end{pmatrix}.$$

From Tables 1 and 2, we take an example about the A_{α} spectral radius of the digraphs in $\widetilde{\mathcal{T}}_{7,2}^{\star}$ and $\widetilde{\mathcal{T}}_{10,2}^{\star}$ when $\alpha = \frac{1}{6}, \frac{3}{10}, \frac{1}{2}, \frac{11}{20}, \frac{3}{5}, \frac{8}{11}, \frac{6}{7}$.

From Table 1, we find in $\widetilde{\mathcal{T}}_{7,2}^{\star}$, with n_1 increases and n_2 decreases, the A_{α} spectral radius of the digraph is decreasing when $\alpha = \frac{1}{6}, \frac{3}{10}, \frac{1}{2}, \frac{11}{20}$. But when $\alpha = \frac{3}{5}, \frac{8}{11}, \frac{6}{7}$, it has no such property. From Table 2, we find in $\widetilde{\mathcal{T}}_{10,2}^{\star}$, with n_1 increases and n_2 decreases, the A_{α} spectral radius of the digraph is decreasing when $\alpha = \frac{1}{6}, \frac{3}{10}, \frac{1}{2}$. But when $\alpha = \frac{11}{20}, \frac{3}{5}, \frac{8}{11}, \frac{6}{7}$, it has no such property. So we give the following problem.

3561

$n = n_1 + n_2 = 7$		$n_1 = 4, n_2 = 3$	$n_1 = 5, n_2 = 2$	$n_1 = 6, n_2 = 1$					
	$\alpha = \frac{1}{6}$	4.0838	3.7847	2.9626					
ρα	$\alpha = \frac{3}{10}$	4.1024	3.8660	3.1616					
	$\alpha = \frac{1}{2}$	4.1475	4.0685	3.6309					
	$\alpha = \frac{11}{20}$	4.1646	4.1463	3.85					
	$\alpha = \frac{3}{5}$	4.1856	4.2420	4.2					
	$\alpha = \frac{8}{11}$	4.2699	4.6040	5.0909					
	$\alpha = \frac{6}{7}$	4.4674	5.1892	6					

Table 1: The A_{α} spectral radius of the join of in-stars in $\tilde{\mathcal{T}}_{\tau_{\alpha}}^{\star}$

Table 2: The A_{α} spectral radius of the join of in-stars in $\widetilde{\mathcal{T}}_{10,2}^{\star}$

					10,2	
$n = n_1 + n_2 = 10$		$n_1 = 5, n_2 = 5$	$n_1 = 6, n_2 = 4$	$n_1 = 7, n_2 = 3$	$n_1 = 8, n_2 = 2$	$n_1 = 9, n_2 = 1$
ρα	$\alpha = \frac{1}{6}$	5.7080	5.6181	5.3333	4.7906	3.7203
	$\alpha = \frac{3}{10}$	5.7152	5.6472	5.4314	5.0168	4.1378
	$\alpha = \frac{1}{2}$	5.7321	5.7183	5.6715	5.5649	5.0958
	$\alpha = \frac{11}{20}$	5.7382	5.7454	5.7615	5.7619	5.5
	$\alpha = \frac{3}{5}$	5.7457	5.7789	5.8704	5.9916	6
	$\alpha = \frac{8}{11}$	5.7737	5.9142	6.2727	6.7479	7.2727
	$\alpha = \frac{6}{7}$	5.8307	6.2256	6.9544	7.7523	8.5714

Problem 3.7. There exists a number $\alpha_0 \in [0, 1)$ such that when $\alpha \leq \alpha_0$, the digraph $\widetilde{T}_{n,2}^{\star\star}$ is the unique digraph which has the minimal A_{α} spectral radius of the join of in-trees with dichromatic number 2.

Furthermore, from Theorem 3.1, we only find the digraph which has the mimimal A_{α} spectral radius of the join of in-trees with dichromatic number *r* must be in $\widetilde{\mathcal{T}}_{n,r}^{\star}$. But for the join of any directed trees, whether the same conclusion can be obtained. So we give the following problem.

Problem 3.8. Among the join of directed trees with dichromatic number r, does the digraph in $\widetilde{\mathcal{T}}_{n,r}^{\star}$ attain the mimimal A_{α} spectral radius?

4. The maximal A_{α} spectral radius of digraphs with given dichromatic number

In this section, we will consider the maximal A_{α} spectral radius of digraphs with given dichromatic number. Using the Perron-Frobenius Theorem, this result has been proved by Liu et al. [18], but we give a new proof by using the equitable quotient matrix.

Let $\mathcal{T}_{n,r} = V^1 \vee V^2 \vee \cdots \vee V^r$ denote the set of digraphs which each V^i (i = 1, 2, ..., r) is a transitive tournament. Let $T^*_{n,r}$ denote the digraph in $\mathcal{T}_{n,r}$ with $||V^i| - |V^j|| \leq 1$. By Lemma 2.8, we know that adding the arcs will increase the A_α spectral radius. So the transitive tournament has the maximum A_α spectral radius in acyclic digraphs. Hence we know that the digraph which has the maximal A_α spectral radius with dichromatic number r must be in $\mathcal{T}_{n,r}$. Next we will use the equitable quotient matrix to prove the digraph $T^*_{n,r}$ has the maximal A_α spectral radius in $\mathcal{T}_{n,r}$.

Theorem 4.1. Let $G = V^1 \vee V^2 \vee \cdots \vee V^r$ be a digraph in $\mathcal{T}_{n,r}$, where V^i (i = 1, 2, ..., r) is a transitive tournament with n_i vertices and $n_1 \ge n_2 \ge \cdots \ge n_r$. Then $\rho_{\alpha}(G) \le \rho_{\alpha}(T^*_{n,r})$ with equality holds if and only if $G \cong T^*_{n,r}$.

Proof. Let *G* be an arbitrary digraph in $\mathcal{T}_{n,r}$. By Lemma 2.7, we obtain a vertex ordering $\{v_1^i, v_2^i, \dots, v_{n_i}^i\}$ of each transitive tournament V^i such that $(v_s^i, v_t^i) \in \mathcal{A}(G)$, for all s < t and $i = 1, 2, \dots, r$. Then $d_G^+(v_j^i) = n - j$. For each $j = 1, 2, \dots, n_1$, let $A_j = \{v_j^i | i = 1, 2, \dots, r\}$ and $|A_j| = a_j$. Then the vertices in A_j have the same outdegree n - j. Let B = B(G) be the quotient matrix of $A_\alpha(G)$, where B corresponding to the vertex partition A_1, A_2, \dots, A_{n_1} . Then the quotient matrix B is equitable and

$$B_{ij} = \begin{cases} \alpha(n-j) + (1-\alpha)(a_j-1), & \text{if } i = j, \\ (1-\alpha)a_j, & \text{if } i < j, \\ (1-\alpha)(a_j-1), & \text{if } i > j. \end{cases}$$

The characteristic polynomial of *B* is

$$|xI_{n_1} - B| = \prod_{i=1}^{n_1} (x - \alpha(n-i)) - \sum_{j=1}^{n_1} \left((1 - \alpha)(a_j - 1) \prod_{i=1}^{j-1} (x - \alpha(n-i)) \prod_{i=j+1}^{n_1} ((1 - \alpha) + x - \alpha(n-i)) \right).$$

Note: if $j = n_1$, let $\prod_{i=j+1}^{n_1} ((1 - \alpha) + x - \alpha(n - i)) = 1$. (See Appendix for detailed calculation.) Let

$$f(x) = f(x; n_1, \dots, n_r)$$

= $\prod_{i=1}^{n_1} (x - \alpha(n-i)) - \sum_{j=1}^{n_1} \left((1 - \alpha)(a_j - 1) \prod_{i=1}^{j-1} (x - \alpha(n-i)) \prod_{i=j+1}^{n_1} ((1 - \alpha) + x - \alpha(n-i)) \right).$

By Lemma 2.5 (Perron-Frobenius Theorem), $\rho_{\alpha}(G)$ is an eigenvalue (multiplicity one) of $A_{\alpha}(G)$ and there is a corresponding eigenvector whose coordinates are all positive. And from Lemma 2.4, $\rho_{\alpha} = \rho_{\alpha}(G)$ is the root of f(x) with the largest modulus. From Lemma 2.8, we know $\rho_{\alpha} > \alpha \Delta^+(G) = \alpha(n-1)$. For convenience, let

$$X_{j}^{n_{1}}(x) = \prod_{i=1}^{j-1} (x - \alpha(n-i)) \prod_{i=j+1}^{n_{1}} ((1-\alpha) + x - \alpha(n-i)).$$

Next we prove $\rho_{\alpha}(G) \leq \rho_{\alpha}(T_{n,r}^*)$. We assume that $G \neq T_{n,r}^*$, then we have $n_1 \geq n_r + 2$. Let p be the largest index such that $n_1 = \cdots = n_p > n_{p+1} \geq \cdots \geq n_r$. We do the following operation:

$$G' = G + \{(v_{n_p}^p, v_i^p) | i = 1, 2, \dots, n_p - 1\} - \{(v_{n_p}^p, v_j^p) | j = 1, 2, \dots, n_r\}.$$

Let $\rho'_{\alpha} = \rho_{\alpha}(G')$ be the root of $\tilde{f}(x)$ with the largest modulus, where $\tilde{f}(x) = f(x; n_1, ..., n_p - 1, ..., n_r + 1)$. Next, we will prove $\tilde{f}(\rho_{\alpha}) < 0$ by the following two cases.

Case 1: If $p \ge 2$, that is $n_1 = n_2 = \cdots = n_p$. Let

$$\tilde{f}(x) = f(x; n_1, \dots, n_p - 1, \dots, n_r + 1) = \prod_{i=1}^{n_1} (x - \alpha(n-i)) - \sum_{j=1}^{n_1} \left((1 - \alpha)(a'_j - 1)X_j^{n_1}(x) \right),$$

where

$$a'_{j} = \begin{cases} a_{j} + 1, & \text{if } j = n_{r} + 1, \\ a_{j} - 1, & \text{if } j = n_{1}, \\ a_{j}, & \text{otherwise.} \end{cases}$$

Then

$$\begin{split} \tilde{f}(\rho_{\alpha}) &= \prod_{i=1}^{n_{1}} (\rho_{\alpha} - \alpha(n-i)) - \sum_{j=1, j \neq n_{r}+1}^{n_{1}-1} \left((1-\alpha)(a_{j}-1)X_{j}^{n_{1}}(\rho_{\alpha}) \right) \\ &- (1-\alpha)(a_{n_{r}+1}+1-1)X_{n_{r}+1}^{n_{1}}(\rho_{\alpha}) - (1-\alpha)(a_{n_{1}}-1-1)X_{n_{1}}^{n_{1}}(\rho_{\alpha}) \\ &= \prod_{i=1}^{n_{1}} (\rho_{\alpha} - \alpha(n-i)) - \sum_{j=1}^{n_{1}} \left((1-\alpha)(a_{j}-1)X_{j}^{n_{1}}(\rho_{\alpha}) \right) - (1-\alpha)X_{n_{r}+1}^{n_{1}}(\rho_{\alpha}) + (1-\alpha)X_{n_{1}}^{n_{1}}(\rho_{\alpha}) \\ &= f(\rho_{\alpha}) - (1-\alpha)(X_{n_{r}+1}^{n_{1}}(\rho_{\alpha}) - X_{n_{1}}^{n_{1}}(\rho_{\alpha})). \end{split}$$

Next,

$$\begin{split} X_{n_r+1}^{n_1}(\rho_{\alpha}) &= \prod_{i=1}^{n_r} (\rho_{\alpha} - \alpha(n-i)) \prod_{i=n_r+2}^{n_1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) - \prod_{i=1}^{n_1-1} (\rho_{\alpha} - \alpha(n-i)) \prod_{i=n_1+1}^{n_1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) \\ &= \prod_{i=1}^{n_r} (\rho_{\alpha} - \alpha(n-i)) \left(\prod_{i=n_r+2}^{n_1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) - \prod_{i=n_r+1}^{n_1-1} (\rho_{\alpha} - \alpha(n-i)) \right). \end{split}$$

Since $n_1 \ge n_r + 2$, we have

$$\rho_{\alpha} - \alpha(n-i) > \alpha \Delta^{+}(G) - \alpha(n-i) = \alpha(n-1) - \alpha(n-i) = \alpha(i-1) \ge 0 \ (i \ge 1),$$

(1-\alpha) + \rho_{\alpha} - \alpha(n-i) > (1-\alpha) + \alpha(i-1) = \alpha(i-2) + 1 \ge 1 \le 1 \le i \ge n_r + 2\right),

and

$$((1 - \alpha) + \rho_{\alpha} - \alpha(n - n_1)) - (\rho_{\alpha} - \alpha(n - (n_r + 1))) = \alpha(n_1 - n_r - 2) + 1 \ge 1.$$

Obviously,

$$(1-\alpha) + \rho_{\alpha} - \alpha(n-i) > \rho_{\alpha} - \alpha(n-i).$$

Then

$$\prod_{i=n_r+2}^{n_1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) - \prod_{i=n_r+1}^{n_1-1} (\rho_{\alpha} - \alpha(n-i))$$

$$= \prod_{i=n_r+2}^{n_1-1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) - \prod_{i=n_r+2}^{n_1-1} (\rho_{\alpha} - \alpha(n-i)) + ((1-\alpha) + \rho_{\alpha} - \alpha(n-n_1)) - (\rho_{\alpha} - \alpha(n-(n_r+1)))$$

$$> 0.$$

Hence $X_{n_r+1}^{n_1}(\rho_\alpha) - X_{n_1}^{n_1}(\rho_\alpha) > 0$. Since $f(\rho_\alpha) = 0$, we have $\tilde{f}(\rho_\alpha) < 0$. **Case 2:** If p = 1, that is $n_1 > n_2$. Let

$$\tilde{f}(x) = f(x; n_1 - 1, \dots, n_r + 1) = \prod_{i=1}^{n_1 - 1} (x - \alpha(n - i)) - \sum_{j=1}^{n_1 - 1} \left((1 - \alpha)(a'_j - 1)X_j^{n_1 - 1}(x) \right),$$

where

$$a'_{j} = \begin{cases} a_{j} + 1, & \text{if } j = n_{r} + 1, \\ a_{j}, & \text{otherwise.} \end{cases}$$

Then

$$\begin{split} \tilde{f}(\rho_{\alpha}) &= \prod_{i=1}^{n_{1}-1} (\rho_{\alpha} - \alpha(n-i)) - \sum_{j=1, j \neq n_{r}+1}^{n_{1}-1} \left((1-\alpha)(a_{j}-1)X_{j}^{n_{1}-1}(\rho_{\alpha}) \right) - (1-\alpha)(a_{n_{r}+1}+1-1)X_{n_{r}+1}^{n_{1}-1}(\rho_{\alpha}) \\ &= \prod_{i=1}^{n_{1}-1} (\rho_{\alpha} - \alpha(n-i)) - \sum_{j=1}^{n_{1}-1} \left((1-\alpha)(a_{j}-1)X_{j}^{n_{1}-1}(\rho_{\alpha}) \right) - (1-\alpha)X_{n_{r}+1}^{n_{1}-1}(\rho_{\alpha}). \end{split}$$

Since

$$f(\rho_{\alpha}) = \prod_{i=1}^{n_1} (\rho_{\alpha} - \alpha(n-i)) - \sum_{j=1}^{n_1} \left((1-\alpha)(a_j-1) X_j^{n_1}(\rho_{\alpha}) \right),$$

and

$$X_j^{n_1}(\rho_\alpha) = ((1-\alpha) + \rho_\alpha - \alpha(n-n_1))X_j^{n_1-1}(\rho_\alpha),$$

we have

$$\begin{split} \tilde{f}(\rho_{\alpha})\left((1-\alpha)+\rho_{\alpha}-\alpha(n-n_{1})\right) \\ &= f(\rho_{\alpha})+(1-\alpha)\prod_{i=1}^{n_{1}-1}(\rho_{\alpha}-\alpha(n-i))+(1-\alpha)(a_{n_{1}}-1)X_{n_{1}}^{n_{1}}(\rho_{\alpha})-(1-\alpha)X_{n_{r}+1}^{n_{1}}(\rho_{\alpha}) \\ &= f(\rho_{\alpha})+(1-\alpha)\prod_{i=1}^{n_{1}-1}(\rho_{\alpha}-\alpha(n-i))-(1-\alpha)\prod_{i=1}^{n_{r}}(\rho_{\alpha}-\alpha(n-i))\prod_{i=n_{r}+2}^{n_{1}}((1-\alpha)+\rho_{\alpha}-\alpha(n-i))) \\ &= f(\rho_{\alpha})+(1-\alpha)\prod_{i=1}^{n_{r}}(\rho_{\alpha}-\alpha(n-i))\left(\prod_{i=n_{r}+1}^{n_{1}-1}(\rho_{\alpha}-\alpha(n-i))-\prod_{i=n_{r}+2}^{n_{1}}((1-\alpha)+\rho_{\alpha}-\alpha(n-i))\right). \end{split}$$

Since $n_1 \ge n_r + 2$, we have

$$(\rho_{\alpha} - \alpha(n - n_r - 1)) - ((1 - \alpha) + \rho_{\alpha} - \alpha(n - n_1)) = \alpha(n_r + 2 - n_1) - 1 < 0$$

Obviously,

$$(1-\alpha) + \rho_{\alpha} - \alpha(n-i) > \rho_{\alpha} - \alpha(n-i)$$

Then we have

$$\begin{split} &\prod_{i=n_r+1}^{n_1-1} (\rho_{\alpha} - \alpha(n-i)) - \prod_{i=n_r+2}^{n_1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) \\ &= \prod_{i=n_r+2}^{n_1-1} (\rho_{\alpha} - \alpha(n-i)) - \prod_{i=n_r+2}^{n_1-1} ((1-\alpha) + \rho_{\alpha} - \alpha(n-i)) + (\rho_{\alpha} - \alpha(n-n_r-1)) - ((1-\alpha) + \rho_{\alpha} - \alpha(n-n_1)) \\ &< 0. \end{split}$$

So $\tilde{f}(\rho_{\alpha}) < 0$.

As both f(x) and $\tilde{f}(x)$ have the positive leading coefficients, $\tilde{f}(\rho_{\alpha}) < 0$ implies that $\rho_{\alpha} < \rho'_{\alpha}$. We perform the above operation as many times as possible until $|n_1 - n_r| \le 1$, which means the maximal A_{α} spectral radius in $\mathcal{T}_{n,r}$ is achieved only at $T^*_{n,r}$. \Box

From Lemma 2.8 and Theorem 4.1, we get the following theorem.

Theorem 4.2. The digraph $T_{n,r}^*$ is the unique digraph which has the maximal A_{α} spectral radius among all digraphs in $\mathcal{G}_{n,r}$.

Appendix

Let $b_i = x - \alpha(n - i)$, $c_i = -(1 - \alpha)(a_i - 1)$, $d = b_{n_1} + c_{n_1} = x - \alpha(n - n_1) - (1 - \alpha)(a_{n_1} - 1)$, $\beta = -(1 - \alpha)$ and $\gamma = -b_{n_1} + \beta = -x + \alpha(n - n_1) - (1 - \alpha)$, where $i = 1, 2, ..., n_1$. Let

$$Q_{n_{1}} = \begin{vmatrix} b_{1} & \beta & \beta & \cdots & \beta & \gamma \\ 0 & b_{2} & \beta & \cdots & \beta & \gamma \\ 0 & 0 & b_{3} & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & b_{n_{1}-1} & \gamma \\ c_{1} & c_{2} & c_{3} & \cdots & c_{n_{1}-1} & d \end{vmatrix}, P_{n_{1}-1} = \begin{vmatrix} \beta & \beta & \cdots & \beta & \gamma \\ b_{2} & \beta & \cdots & \beta & \gamma \\ b_{2} & \beta & \cdots & \beta & \gamma \\ b_{3} & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n_{1}-1} & \gamma \end{vmatrix},$$

and Q_{n_1-i} be the determinant obtained by deleting the pre-*i* rows and the pre-*i* columns of Q_{n_1} , P_{n_1-1-i} be the determinant obtained by deleting the pre-*i* rows and the pre-*i* columns of P_{n_1-1} .

Then

$$|xI_{n_1} - B| = \begin{vmatrix} b_1 + c_1 & c_2 + \beta & c_3 + \beta & \cdots & c_{n_1-1} + \beta & c_{n_1} + \beta \\ c_1 & b_2 + c_2 & c_3 + \beta & \cdots & c_{n_1-1} + \beta & c_{n_1} + \beta \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_1 & c_2 & c_3 & \cdots & b_{n_1-1} + c_{n_1-1} & c_{n_1} + \beta \\ c_1 & c_2 & c_3 & \cdots & c_{n_1-1} & b_{n_1} + c_{n_1} \end{vmatrix}$$
$$= \begin{vmatrix} b_1 & \beta & \beta & \cdots & \beta & \gamma \\ 0 & b_2 & \beta & \cdots & \beta & \gamma \\ 0 & b_2 & \beta & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & b_{n_1-1} & \gamma \\ c_1 & c_2 & c_3 & \cdots & c_{n_1-1} & d \end{vmatrix}$$
$$+ (-1)^{n_1+1}c_1 \begin{vmatrix} \beta & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ 0 & b_3 & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & b_{n_1-1} & \gamma \\ c_2 & c_3 & \cdots & c_{n_1-1} & d \end{vmatrix}$$
$$+ (-1)^{n_1+1}c_1 \begin{vmatrix} \beta & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ 0 & b_3 & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n_1-1} & \gamma \\ c_2 & c_3 & \cdots & c_{n_1-1} & d \end{vmatrix}$$
$$+ (-1)^{n_1+1}c_1 \begin{vmatrix} \beta & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n_1-1} & \gamma \\ c_1 & c_2 & c_3 & \cdots & c_{n_1-1} & d \end{vmatrix}$$
$$+ (-1)^{n_1+1}c_1 \begin{vmatrix} \beta & \beta & \cdots & \beta & \gamma \\ b_2 & \beta & \cdots & \beta & \gamma \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n_1-1} & \gamma \\ c_1 & c_2 & c_3 & \cdots & c_{n_1-1} & d \end{vmatrix}$$
$$+ (-1)^{n_1+1}c_1 \begin{vmatrix} \beta & \beta & \cdots & \beta & \gamma \\ b_1 & b_1 & b_1 & c_1 \\ 0 & 0 & \cdots & b_{n_1-1} & \gamma \\ = b_1 Q_{n_1-1} + (-1)^{n_1+1}c_1 (\beta - b_2)P_{n_1-2} \\ = b_1 Q_{n_1-1} + (-1)^{n_1+1}c_1 \prod_{i=2}^{n_1-1} (\beta - b_i)\gamma$$

$$\begin{split} &= b_1 \left(b_2 Q_{n_1-2} + (-1)^{n_1} c_2 \prod_{i=3}^{n_1-1} (\beta - b_i) \gamma \right) + (-1)^{n_1+1} c_1 \prod_{i=2}^{n_1-1} (\beta - b_i) \gamma \\ &= \prod_{i=1}^2 b_i Q_{n_1-2} + b_1 (-1)^{n_1} c_2 \prod_{i=3}^{n_1-1} (\beta - b_i) \gamma + (-1)^{n_1+1} c_1 \prod_{i=2}^{n_1-1} (\beta - b_i) \gamma \\ &= \prod_{i=1}^2 b_i \left(b_3 Q_{n_1-3} + (-1)^{n_1-1} c_3 \prod_{i=4}^{n_1-1} (\beta - b_i) \gamma \right) + b_1 (-1)^{n_1} c_2 \prod_{i=3}^{n_1-1} (\beta - b_i) \gamma + (-1)^{n_1+1} c_1 \prod_{i=2}^{n_1-1} (\beta - b_i) \gamma \\ &= \prod_{i=1}^3 b_i Q_{n_1-3} + \prod_{i=1}^2 b_i (-1)^{n_1-1} c_3 \prod_{i=4}^{n_1-1} (\beta - b_i) \gamma + b_1 (-1)^{n_1} c_2 \prod_{i=3}^{n_1-1} (\beta - b_i) \gamma + (-1)^{n_1+1} c_1 \prod_{i=2}^{n_1-1} (\beta - b_i) \gamma \\ &= \prod_{i=1}^3 b_i Q_{n_1-3} + \sum_{i=1}^2 b_i (-1)^{n_1-1} c_3 \prod_{i=4}^{n_1-1} (\beta - b_i) \gamma + b_1 (-1)^{n_1} c_2 \prod_{i=3}^{n_1-1} (\beta - b_i) \gamma + (-1)^{n_1+1} c_1 \prod_{i=2}^{n_1-1} (\beta - b_i) \gamma \\ &= \prod_{i=1}^3 b_i Q_{n_1-3} + \sum_{t=0}^2 \left(\prod_{i=1}^t b_i (-1)^{n_1+1-t} c_{t+1} \prod_{i=t+2}^{n_1-1} (\beta - b_i) \gamma \right) \\ &= \prod_{i=1}^{n_1-1} b_i d + \sum_{t=0}^{n_1-2} \left((-1)^{n_1+1-t} c_{t+1} \gamma \prod_{i=1}^t b_i \prod_{i=t+2}^{n_1-1} (\beta - b_i) \right). \end{split}$$

Note: if t = 0, let $\prod_{i=1}^{t} b_i = 1$; if $t = n_1 - 2$, let $\prod_{i=t+2}^{n_1-1} (\beta - b_i) = 1$. Hence, we get

$$|xI_{n_1} - B| = \prod_{i=1}^{n_1} (x - \alpha(n-i)) - \sum_{j=1}^{n_1} \left((1 - \alpha)(a_j - 1) \prod_{i=1}^{j-1} (x - \alpha(n-i)) \prod_{i=j+1}^{n_1} ((1 - \alpha) + x - \alpha(n-i)) \right).$$

Note: if $j = n_1$, let $\prod_{i=j+1}^{n_1} ((1 - \alpha) + x - \alpha(n - i)) = 1$.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors thank the anonymous referees for carefully reading and valuable comments.

References

- [1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- [2] D. Bokal, G. Fijavž, M. Juvan, P.M. Kayll, B. Mohar, The circular chromatic number of a digraph, J. Graph Theory, 46 (2004), 227–240.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [4] A.E. Brouwer, W.H. Haemers, Spectra of Graphs-Monograph, Springer, 2011.
- [5] R. Brualdi, Spectra of digraphs, Linear Algebra Appl. 432 (2010), 2181–2213.
- [6] S. Drury, H.Q. Lin, Colorings and spectral radius of digraphs, Discrete Math. 339 (2016), 327–332.
- [7] H.A. Ganie, M. Baghipur, On the generalized adjacency spectral radius of digraphs, Linear Multilinear Algebra, 70 (2022), 3497-3510.
- [8] I. Gutman, X.L. Li, Energies of Graphs-Theory and Applications, in: Mathematical Chemistry Monographs, No. 17, University of
- Kragujevac, Kragujevac, 2016.
- [9] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
- [10] J. Kim, S. Kim, S. O, S. Oh, A Cvetković-type Theorem for coloring of digraphs, Linear Algebra Appl. 634 (2022), 30-36.
- [11] S.C. Li, W.T. Sun, Some spectral inequalities for connected bipartite graphs with maximum A_{α} -index, Discrete Appl. Math. 287 (2020), 97–109.

- [12] S.C. Li, W. Wei, *The multiplicity of an* A_{α} *-eigenvalue: A unified approach for mixed graphs and complex unit gain graphs,* Discrete Math. **343** (2020), 111916.
- [13] J.X. Li, L.H. You, The (distance) signless Laplacian spectral radii of digraphs with given dichromatic number, Ars Combin. 132 (2017), 257–267.
- [14] H.Q. Lin, X.G. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math. 342 (2019), 441–450.
- [15] H.Q. Lin, J. Xue, J.L. Shu, On the A_{α} -spectra of graphs, Linear Algebra Appl. 556 (2018), 210–219.
- [16] H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl. 434 (2011), 2462–2467.
- [17] S.T. Liu, K.C. Das, J.L. Shu, On the eigenvalues of A_{α} -matrix of graphs, Discrete Math. 343 (2020), 111917.
- [18] J.P. Liu, X.Z. Wu, J.S. Chen, B.L. Liu, The A_α spectral radius characterization of some digraphs, Linear Algebra Appl. 563 (2019), 63–74.
- [19] B. Mohar, Eigenvalues and colorings of digraphs, Linear Algebra Appl. 432 (2010), 2273–2277.
- [20] V. Neumann-Lara, *The dichromatic number of a digraph*, J. Combin. Theory Ser. B, **33** (1982), 265–270.
- [21] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017), 81–107.
- [22] V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the A_{α} -spectra of trees, Linear Algebra Appl. **520** (2017), 286–305.
- [23] W.G. Xi, W. So, L.G. Wang, On the A_{α} spectral radius of digraphs with given parameters, Linear Multilinear Algebra, **70** (2022), 2248–2263.
- [24] W.G. Xi, L.G. Wang, The signless Laplacian and distance signless Laplacian spectral radius of digraphs with some given parameters, Discrete Appl. Math. 227 (2017), 136–141.
- [25] W.G. Xi, L.G. Wang, The A_{α} spectral radius and maximum outdegree of irregular digraphs, Discrete Optim. **38** (2020), 100592.
- [26] L.H. You, M. Yang, W. So, W.G. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019), 21–40.