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Abstract. This article delves into the investigation of simplex codes of types α, β, and γ over the ring
Z3Z6. It examines the fundamental properties of these codes, including their covering radius, association
schemes, and practical applications in multi-secret sharing schemes. The covering radius analysis sheds
light on the error-correcting capabilities of Z3Z6-simplex codes, crucial for reliable communication sys-
tems. Additionally, association schemes for Z6-simplex codes provide insights into efficient encoding and
decoding strategies, enhancing their performance in various applications. Furthermore, the development
of a multi-secret sharing scheme based on these codes highlights their versatility beyond traditional error
correction, offering promising avenues for secure multi-party communication and data storage. This explo-
ration of simplex codes overZ3Z6 not only contributes to theoretical coding theory but also opens up new
opportunities in practical cryptography, advancing the realm of secure information exchange protocols.

1. Introduction

The covering radius, association schemes for linear codes over finite rings, and multi-secret sharing
schemes based on linear codes over finite rings are interconnected concepts within the realms of coding
theory and cryptography. The covering radius of a linear code over a finite ring defines the maximum radius
within which any codeword can be covered by a sphere centered at another codeword. This parameter is
crucial in assessing the error-correction capabilities of the code. Association schemes for linear codes over
finite rings provide a systematic approach to understanding the relationships between codewords within
the code. These schemes categorize the vertices or codewords based on specific properties or configurations,
aiding in the analysis of the code’s algebraic and geometric structures. The association schemes help in
designing efficient encoding and decoding algorithms. Multi-secret sharing schemes based on linear codes
over finite rings utilize the properties and configurations established by association schemes to securely
distribute multiple secrets among parties. By leveraging the structure of the code, these schemes enable the
distribution, combination, and reconstruction of secrets in a manner that ensures only authorized subsets of
parties can access the secret information. Overall, the covering radius, association schemes, and multi-secret
sharing schemes are integral components of coding theory and cryptography, working together to enable
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efficient error correction and secure communication in various practical applications. For more detailed
information, refer to the following references [1, 4–8, 14].

The aim of this article is to provide a comprehensive exploration of simplex codes of types α, β, and γ
over the ringZ3Z6, focusing particularly on their covering radius, association schemes, and applications in
multi-secret sharing schemes. The covering radius of Z3Z6-simplex codes of types α, β, and γ will be ana-
lyzed to understand the maximum radius within which any codeword can be covered by a sphere centered
at another codeword. Furthermore, the article will delve into association schemes tailored for Z6-simplex
codes of types α, β, and γ, aiming to elucidate the structural properties and relationships between code-
words within the code. Finally, the article will explore the implementation of multi-secret sharing schemes
based onZ3Z6-simplex codes of types α, β, and γ, demonstrating how these cryptographic protocols lever-
age the properties of simplex codes to securely distribute, combine, and reconstruct multiple secrets among
authorized parties. Through a thorough examination of these topics, the article aims to contribute to the
understanding and advancement of coding theory and cryptography, with practical implications for error
correction and secure communication systems.

The article is organized as follows: Section 2 provides background information and preliminaries
regarding the different weights inZ3Z6 and the covering radius, including discussions on upper and lower
bounds. In Section 3, the focus shifts to simplex codes of types α, β, and γ over Z3Z6, exploring their
construction and properties. Following that, Section 4 delves into an in-depth analysis of the covering
radius of Z3Z6-simplex codes of types α, β, and γ, examining various factors influencing this critical
parameter. In Section 5, attention is directed towards association schemes tailored for Z6-simplex codes
of types α, β, and γ, shedding light on the structural relationships between codewords within the code.
Finally, Section 6 presents a discussion on multi-secret sharing schemes based on Z3Z6-simplex codes of
types α, β, and γ, detailing their implementation and cryptographic implications in securely distributing
and managing multiple secrets among authorized parties. Through this structured approach, the article
aims to provide a comprehensive understanding of simplex codes, covering radius analysis, association
schemes, and multi-secret sharing schemes, thereby contributing to advancements in coding theory and
cryptography.

2. Some Background and Preliminaries

This section presents preliminary findings based on references [2, 3]. Here, Z3 and Z6 represent the
rings of integers modulo 3 and 6 respectively, andZn

3 andZn
6 denote the space of n-tuples over these rings.

We define a ring

Z3Z6 = {00, 01, 02, 03, 04, 05, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25},

with integers modulo 3 and 6. An non-empty set C is termed a Z3Z6-additive code if it forms a subgroup
of Zγ3 ×Z

δ
6. In such cases, C is isomorphic to an abelian structure Zλ3 ×Z

µ
6 for some λ and µ, with the type

of C being 3λ6µ as a group. Consequently, C comprises |C| = 3λ × 6µ codewords, and the number of order
for any two codewords in C is also |C| = 3λ × 6µ. Furthermore, a linear code C of length n over Z6 is an
additive subgroup of Zn

6 , where an element of C is called a codeword of C.

2.1. The Different Weights in Z3Z6

The Hamming weight wH(c) of a vector c in (Z3Z6)n counts the number of non-zero components within
the vector. In addition to the Hamming weight, three other weight measures are commonly used: the Lee
weight wL(c), the Euclidean weight wE(c), and the Chinese Euclidean weight wCE(c). These weights provide
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alternative perspectives on the structure of the vector c within the space (Z3Z6)n.

ci, 0 ≤ i ≤ n wL(ci)
00 0
01,05,10 1
02,04,20,11,15 2
03,12,21,14,25 3
13,22,24 4
23 5

ci, 0 ≤ i ≤ n wE(ci)
00 0
01,05,10 1
11,15 2
02,04,20 4
14,12,21,25 5
22,24 8
03 9
13 10
23 13

ci, 0 ≤ i ≤ n wCE(ci)
00 0
01,05,10 1
11,15 2
02,20,04 3
12,21,14,03,25 4
13 5
22,24 6
23 7

(1)

2.2. Covering Radius: Upper and Lower Bounds

In this subsection, we will explore upper and lower bounds on the covering radius of a code. The
covering radius is a crucial parameter in coding theory, quantifying the maximum distance between a
codeword and its nearest neighbor outside the code. According to [9, 13], the covering radii of a code C
over Z3Z6, concerning the Lee, Euclidean, and Chinese Euclidean distances, are provided as follows:

rD(C) = max
x∈Zη3×Z

δ
6

{
min
c∈C

dL(x, c)
}
, (2)

and

Z
η
3 ×Z

δ
6 = ∪c∈CSrD (c), (3)

where SrD (x) =
{
y ∈ Zη3 ×Z

δ
6; d(x, y) ≤ rD

}
.

Definition 2.1. For a ternary linear code C without a zero coordinate,rD(C) = ⌊ n
3 ⌋.

Proposition 2.2. Let C be a code over Zγ3 ×Z
δ
6 and ρ(C) be the Gray image of C, then rD (C) = r

(
ρ(C)

)
.

The subsequent result proves to be valuable in determining the covering radius of codes over the ringZ3Z6.

Proposition 2.3. If C0 and C1 are codes overZ3Z6 has length n0 and n1, of minimum distance d0 and d1, generated
by matrices G0 and G1, respectively, and if C is the code generated by

G =
(

0 G1
G0 A

)
,

then rd(C) ≤ rd(C0) + rd(C1), and the covering radius of the concatenation of C0 and C1, denoted Cc, satisfies the
following

rd(Cc) ≥ rd(C0) + rd(C1)

for all distances d over Z3Z6.

3. Simplex Codes of Types α, β, and γ over Z3Z6

In this section, according to [5, 6, 12, 14] we delve into the construction of Simplex Codes of Types α,
β, and γ over the ring Z3Z6. Simplex codes, a class of linear error-correcting codes, play a pivotal role in
various communication and data storage systems due to their simplicity and efficiency.
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Definition 3.1. The generator matrix of Sαk , the simplex code of type α over Z3Z6 is constructed by concatenating
6k copies of the generator matrix of Sα3,k and 3k copies of the generator matrix of Sα6,k, given by

Gα =
(

16k ⊗ Tα3,k 13k ⊗ Gα6,k
)
, f or k ≥ 1, (4)

with

Tα3,k =
(

00 · · · 0 11 · · · 1 22 · · · 2
Tα3,k−1 Tα3,k−1 Tα3,k−1

)
, f or k ≥ 2, (5)

and

Gα6,k =
(

00 . . . 0 11 . . . 1 22 . . . 2 33 . . . 3 44 . . . 4 555 . . . 5
Gα6,k−1 Gα6,k−1 Gα6,k−1 Gα6,k−1 Gα6,k−1 Gα6,k−1

)
, f or k ≥ 2. (6)

Remark 3.2. The simplex code of type α overZ3Z6 has a length equal to 2k+1
×32k, and the total number of codewords

is given by 3k0 6k1 , where k0 and k1 are certain exponents.

Example 3.3. When k = 1 and k0 = 0, k1 = 1, all codewords of the simplex codes Sα1 are

c1 = 000000000000000000000000000000000000,
c2 = 000102030405101112131415202122232425,
c3 = 000204000204202224202224101214101214,
c4 = 000300030003000300030003000300030003,
c5 = 000402000402101412101412202422202422,
c6 = 000504030201202524232221101514131211.

The type β of the simplex codes Sβk over Z3Z6 is a punctured version of Sαk . The number of codewords is

3k0 6k1 and its length is (2k
−1)(3k

−1)2

2 .

Definition 3.4. The generator matrix of Sβk is the concatenation of (2k
−1)(3k

−1)
2 copies of the generator matrix of the

ternary simplex code Sβ3,k and (3k
−1)
2 copies of the generator matrix of the simplex code Sβ6,k over Z6, given by

Gβ =
[

1 (2k−1)(3k−1)2
2

⊗ Tβ3,k 1 (3k−1)
2
⊗ Gβ6,k

]
, f or k ≥ 1, (7)

where

Tβ3,k =
(

11 · · · 1 00 · · · 0
Tα3,k−1 Tβ3,k−1

)
, f or k ≥ 3, with Tβ3,2 =

(
111 0
012 1

)
(8)

and

Gβ6,k =
(

11 · · · 1 00 · · · 0 22 · · · 2 33 · · · 3
Gα6,k−1 Gβ6,k−1 Λk−1 µk−1

)
,Gβ6,2 =

(
111111 0 222 33
012345 1 135 12

)
, (9)

where Λk is a k × 3k(2k
− 1) matrix defined inductively by Λ1 = (135) and

Λk =

(
00 · · · 0 11 · · · 1 22 · · · 2 33 · · · 3 44 · · · 4 55 · · · 5
Λk−1 Gα6,k−1 Λk−1 Gα6,k−1 Λk−1 Gα6,k−1

)
, (10)

for k ≥ 2, and µk is a k × 2k−1(3k
− 1) matrix defined inductively by µ1 = (12) and

µk =

(
00 · · · 0 11 · · · 1 22 · · · 2 33 · · · 3
µk−1 Gα6,k−1 Gα6,k−1 µk−1

)
. (11)
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In the following we define the simplex code Sγk of type γ overZ3Z6. As in [12], let Gγ6,k be the k×2k−1(3k
−2k)

matrix defined inductively by

Gγ6,k =
(

11 · · · 1 00 · · · 0 22 . . . 2 33 · · · 3 44 · · · 4
Gα6,k−1 Gγ6,k−1 Gγ6,k−1 Gγ6,k−1 Gγ6,k−1

)
, (12)

with

Gγ6,2 =
(

111111 0 2 3 4
012345 1 1 1 1

)
. (13)

Note that Gγ6,k is obtained from Gα6,k by deleting 2k−1(2k + 3k) columns. By induction it is easy to verify that
no two columns of Gγ6,k are multiples of each other.

Proposition 3.5. Let Sγ6,k be the code of type γ overZ6 generated by Gγ6,k. Note that the length of Sγ6,k is 2k−1(3k
− 2k).

Definition 3.6. The generator matrix of the simplex code Sγk over Z3Z6 is the concatenation of 2k−1(3k
− 2k) copies

of the generator matrix of Sα3,k and 2 × 3k copies of the generator matrix of Sγ6,k, given by

Gγ =
[

12k−1(2k−3k) ⊗ Tα3,k 13k ⊗ Gγ6,k
]
, f or k ≥ 2, (14)

Note that the length of the simplex code Sγk over Z3Z6 of type γ is 6k(3k
− 2k).

3.1. The Different Weight Distribution of Z3Z6-Simplex Codes of Types α, β and γ

From the structure of the generator matrices associated with the linear codes Z3Z6-linear codes Sαk , Sβk
and Sγk , we can deduce the ensuing outcomes, shedding light on the different distribution weights.

Hamming Weight

Sαk 0, 3k−1
(
3 × 2k−1 + 1

)
, 3k−1

(
4 × 2k−1 + 1

)
, 3k−1

(
5 × 2k−1 + 1

)
Sβk 0,

(
2k−2 + 1

) (
3k
− 1

)
,

6k

3
+

2 × 3k

3
− 1,

5 × 6k

2
+

2 × 3k

3
− 2k−2

− 1

Sγk 0, 5 × 6k−1
− 3 × 22k−2 + 3k

− 1

Table 1: Hamming Weight of Sαk , Sβk , and Sγk .

Lee Weight
Sαk 0, 2k+2

× 32k−2, 2k−1
× 32k

Sβk 0, 3 × 2k−2
(
3k
− 1

)2
, 2 × 3k−1

(
2k
− 1

) (
3k
− 1

)
,(

3k
− 1

) [
3 × 2k−2

(
3k
− 1

)
+ 2 × 3k−1

(
2k
− 1

)]
Sγk 0, 2k−2

(
3k+1
− 7 × 2k−1

)
+ 3k−1

Table 2: Lee Weight of Sαk , Sβk , and Sγk .
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Euclidean Weight
Sαk 0, 2k−1

× 32k+1, 2k+3
× 32k−2, 19 × 2k−1

× 32k−2

Sβk 0, 9 × 2k−2
(
3k
− 1

)2
, 4 × 3k−1

(
2k
− 1

) (
3k
− 1

)
,(

3k
− 1

) [
3k−1

(
19 × 2k−2

− 4
)
− 9 × 2k−2

]
Sγk 0, 2k−2

(
19 × 3k−1

− 17 × 2k−1
)
+ 3k−1

Table 3: Euclidean Weight of Sαk , Sβk , and Sγk .

Chinese Euclidean Weight
Sαk 0, 2k

× 32k−1

Sβk 0,
(
2k + 1

) (
3k
− 1

)
, 6k
− 1, 2k

(
3k
− 1

)
− 1

Sγk 0, 6k
− 5 × 4k−1 + 3k−1

Table 4: Chinese Euclidean Weight of Sαk , Sβk , and Sγk .

4. The Covering Radius of Z3Z6-Simplex Codes of Types α, β and γ

In this section, we explore the calculation of the covering radius for these specific codes. To achieve this,
it is crucial to have a thorough understanding of the covering radius of repetition codes, see [4, 10, 12]. This
knowledge forms the foundation for determining the covering radius of simplex codes of types α, β and γ.

Theorem 4.1. The covering radii of the Z3Z6-simplex codes of type α are given by

1. rL(Sαk ) ≤ 31 × 2k
× 32k−1

− 3k+2,
2. (13 × 2k+2

× 32k−1
− 24

× 3k
≤ rE(Sαk ) ≤ 85 × 2k

× 32k−1
− 3k+3,

3. rCE(Sαk ) ≤ 5 × 2k+1
× 32k−1

− 2 × 3k.

Proof. According to [4, 10, 12], from Definition 2.1 and Proposition 2.3 the the covering radius rL(Sαk ), rE(Sαk )
and rCE(Sαk ) are given by

1. Regarding the code Sαk and its association with the Lee weight, we have

rL(Sαk ) ≤ rL(6kSα3,k) + rL(3kSα6,k)

≤ 6krL(Sα3,k) + 3krL(Sα6,k)

≤ 6krH(Sα3,k) + 3krL(Sα6,k)

≤ 6k
(

4 × 3k

3

)
+ 3k

(
5 × 9 × 6k−1 + 5 × 9 × 6k−2 + . . . + 5 × 9 × 60

)
≤ 2k+232k−1 + 3k+2

(
6k
− 1

)
≤ ≤ 31 × 2k

× 32k−1
− 3k+2.

2. For the code Sαk with respect to the Euclidean weight, we have

rE(Sαk ) ≥ 4 × 3k−1
× 6k + 16 × 3k(6k

− 1)

≥ 13 × 2k+2
× 32k−1

− 24
× 3k.

On the other hand,

rE(Sαk ) ≤ 4 × 3k−1
× 6k + 33

× 3k(6k
− 1)

≤ 85 × 2k
× 32k−1

− 3k+3.
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3. In reference to the code Sαk and its correlation with the Chinese Euclidean weight, we have

rCE(Sαk ) ≤ rCE(6kSα3,k) + rCE(3kSα6,k)

≤ 6krCE(Sα3,k) + 3krCE(Sα6,k)

≤ 6krH(Sα3,k) + 3krCE(Sα6,k)

≤ 6k
(

4 × 3k

3

)
+ 2 × 3k

(
6k
− 1

)
≤ 5 × 2k+1

× 32k−1
− 2 × 3k.

The following theorem presents the covering radius of Z3Z6-simplex codes of type β.

Theorem 4.2. The covering radius of the Z3Z6-simplex codes of type β is given by

(1) rL(Sβk) ≤ (3k
− 1)

[
(2k
−1)2(3k

−1)2

3 +
[
2k−2(3k+2

− 15) − 6
]]

,

(2) rE(Sβk) ≤ (3k
− 1)

[
(2k
−1)2(3k

−1)2

3 +
[
2k−2(3k+2

− 45) − 36
]]

,

(3) rCE(Sβk) ≤ (3k
− 1)

[
(2k
−1)2(3k

−1)2

3 +
[
2k(3k+1

− 5) − 8
]]
.

Proof. 1. Regarding the code Sβk and its association with the Lee weight, we have

rL(Sβk) ≤ rL

(
(2k
− 1)(3k

− 1)
2

Sβ3,k

)
+ rL

(
(3k
− 1)
2

Sβ6,k

)
≤

(2k
− 1)(3k

− 1)
2

rL(Sβ3,k) +
(3k
− 1)
2

rL(Sβ6,k)

≤
(2k
− 1)(3k

− 1)
2

rH(Sβ3,k) +
(3k
− 1)
2

rL(Sβ6,k)

≤
(2k
− 1)2(3k

− 1)3

3
+

[540
20

(
6k−1
− 1

)
−

60
4

(
2k−1
− 1

)]
≤ (3k

− 1)
[

(2k
− 1)2(3k

− 1)2

3
+

[
2k−2(3k+2

− 15) − 6
]]
.

2. For the code Sβk with respect to the Euclidean weight, we have

rE(Sβk) ≤ rE

(
(2k
− 1)(3k

− 1)
2

Sβ3,k

)
+ rE

(
(3k
− 1)
2

Sβ6,k

)
≤

(2k
− 1)(3k

− 1)
2

rE(Sβ3,k) +
(3k
− 1)
2

rE(Sβ6,k)

≤
(2k
− 1)(3k

− 1)
2

rH(Sβ3,k) +
(3k
− 1)
2

rE(Sβ6,k)

≤
(2k
− 1)2(3k

− 1)3

3
+

[
34

(
6k−1
− 1

)
− 45

(
2k−1
− 1

)]
≤ (3k

− 1)
[

(2k
− 1)2(3k

− 1)2

3
+

[
2k−2(3k+2

− 45) − 36
]]
.
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3. For the code Sβk with respect to the Chinese Euclidean weight, we have

rCE(Sβk) ≤ rCE

(
(2k
− 1)(3k

− 1)
2

Sβ3,k

)
+ rCE

(
(3k
− 1)
2

Sβ6,k

)
≤

(2k
− 1)(3k

− 1)
2

rCE(Sβ3,k) +
(3k
− 1)
2

rCE(Sβ6,k)

≤
(2k
− 1)(3k

− 1)
2

rH(Sβ3,k) +
(3k
− 1)
2

rCE(Sβ6,k)

≤
(2k
− 1)2(3k

− 1)3

3
+

[
36

(
6k−1
− 1

)
− 20

(
2k−1
− 1

)]
≤ (3k

− 1)
[

(2k
− 1)2(3k

− 1)2

3
+

[
2k(3k+1

− 5) − 8
]]
.

Theorem 4.3. The covering radius of the simplex codes of types γ is given by

(1) rL(Sγk ) ≤ 6k
(

32
15 3k
−

21
3 2k

)
−

194
5 3k,

(2) rE(Sγk ) ≤ 3k
[

85
3 6k
− 2k

(
4
3 2k + 45

)
− 72

]
,

(3) rCE(Sγk ) ≤ 2k+2
(

10
3 32k

− 5 × 3k
)
− 3k

(
22k+2

3 − 32
)
.

Proof. 1. Regarding the code Sγk and its association with the Lee weight, we have

rL(Sγk ) ≤ rL(2k−1
(
3k
− 2k

)
Sγ3,k) + rL(2 × 3kSγ6,k)

≤ 2k−1
(
3k
− 2k

)
rL(Sγ3,k) + 2 × 3krL(Sγ6,k)

≤ 2k−1
(
3k
− 2k

)
rH(Sγ3,k) + 2 × 3krL(Sγ6,k)

≤ 8 × 6k−1
(
3k
− 2k

)
+ 2 × 3k

[27
5

(
6k−1
− 1

)
− 14

(
22k−2

)]
≤ 6k

(32
15

3k
−

21
3

2k
)
−

194
5

3k.

2. For the code Sγk with respect to the Euclidean weight, we have

rE(Sγk ) ≤ rE(2k−1
(
3k
− 2k

)
Sγ3,k) + rE(2 × 3kSγ6,k)

≤ 2k−1
(
3k
− 2k

)
rE(Sγ3,k) + 2 × 3krE(Sγ6,k)

≤ 2k−1
(
3k
− 2k

)
rH(Sγ3,k) + 2 × 3krE(Sγ6,k)

≤ 8 × 6k−1
(
3k
− 2k

)
+

45
2
× 3k

[
36

(
6k−1
− 1

5

)
− 4

(
2k−1
− 1

)]
≤ 3k

[85
3

6k
− 2k

(4
3

2k + 45
)
− 72

]
.

3. For the code Sγk with respect to the Chinese Euclidean weight, we have

rCE(Sγk ) ≤ rCE(2k−1
(
3k
− 2k

)
Sγ3,k) + rCE(2 × 3kSγ6,k)

≤ 2k−1
(
3k
− 2k

)
rCE(Sγ3,k) + 2 × 3krCE(Sγ6,k)

≤ 2k−1
(
3k
− 2k

)
rH(Sγ3,k) + 2 × 3krCE(Sγ6,k)

≤ 8 × 6k−1
(
3k
− 2k

)
+ 2 × 5 × 3k

[
36

(
6k−1
− 1

5

)
− 4

(
2k−1
− 1

)]
≤ 2k+2

(10
3

32k
− 5 × 3k

)
− 3k

(
22k+2

3
− 32

)
.
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5. Association Schemes for Z6-Simplex Codes of Types α, β and γ

As indicated by references [11, 15, 16], linear codes find application in the construction of association
schemes. An association scheme characterized by d classes, defined on a set B, entails partitioning the
Cartesian productB×B into (d+1) distinct classes denoted as Σ = {Σ0,Σ1, . . . ,Σd}. These classes are subject
to the following properties: The pair (B,Σ) is called a d-class association scheme if

1. Σ0 = {(x, x), x ∈ B}
2. B ×B is a disjoint union of Σ0,Σ1, . . . ,Σd

3. For each integer 0 ≤ i ≤ d, there exists an integer 0 ≤ j ≤ d such that Σ j = Σ
t
i , where Σt

i ={
(x, y), (y, x) ∈ Σi

}
4. For any 0 ≤ i, j, k ≤ d and each pair (x, y) ∈ Σk, assuming that pk

i, j is an integer, then

|

{
c ∈ B; (x, z) ∈ Σi, (z, y) ∈ Σ j

}
| = pk

i, j.

Remark 5.1. [11] ForB = Zn
p , define Σi as the set

{
(x, y) ∈ Zn

p ×Z
n
p | d(x, y) = i

}
. The pair (Zn

p ,Σ) forms an i-class
association scheme known as the Hamming association scheme.

We have the following lemma that clarifies the relationship between linear codes and association
schemes, highlighting their connection.

Lemma 5.2. [15] Consider a linear code C over Zp with nonzero weights w1 and w2. Let c1 and c2 be two linearly
independent codewords of C such that w(c1) = w(c2) = w1. For any a, b ∈ Z∗p, if w(ac1 + bc2) = w2, then the
restriction of the Hamming association scheme to C forms a i-class association scheme if and only if w2 , w1 + i − 1.

While Z3 is a subset of Z6, every code defined over Z3Z6 extends naturally to being defined over Z6.
Consequently, the following results hold true.

Theorem 5.3. Let Sαk and Sβk are a linear code over the ring Z6. Then the restriction to Sαk and Sβk of the Hamming
association scheme is a 3-class association scheme.

Proof. By Lemma 5.2, if ci, c j be two codewords of Sαk such that ci, c j, for 1 ≤ i , j ≤ 3k0 × 6k1 are linear
independent. According to [6, 12], we have w(ci) = w(c j) = w1, for 1 ≤ i , j ≤ pk and for any a, b ∈ F∗p we
have w(ac1 + bc2) = w2, for 1 ≤ i , j ≤ 3k0 × 6k1 , where

w1 ∧ w2 =


3 × 6k−1 i f ci, c j ∈ Sαk , f or 1 ≤ i , j ≤ 3k0 × 6k1 ,

4 × 6k−1 i f ci, c j ∈ Sαk , f or 1 ≤ i , j ≤ 3k0 × 6k1 ,

5 × 6k−1 i f ci, c j ∈ Sαk , f or 1 ≤ i , j ≤ 3k0 × 6k1 .

It is clear that w2 , w1 + 2.
The proof for the code βk is obtained using a similar approach.

Theorem 5.4. Let Sγk is a linear code over the ringZ6. Then the restriction to Sγk of the Hamming association scheme
is a 2-class association scheme.

Proof. According to [6, 12] and Lemma 5.2, if ci and c j are two codewords of Sγk such that ci and c j, for
1 ≤ i , j ≤ pk, are linearly independent, then w(ci) = w(c j) = w1 = 3 × 2k−2[5 × 3k−2

− 2k−2] for 1 ≤ i , j ≤ pk,
and for any a, b ∈ F∗p, we have w(aci + bc j) = w2 = 3 × 2k−2[5 × 3k−2

− 2k−2] for 1 ≤ i , j ≤ pk. It is evident that
w2 , w1 + 1.
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Example 5.5. Let Sβ2 be a linear code over Z6 with parameters [16, 2, 11], generated by

Gβ =

(
1110111111022233
0121012345113512

)
, (15)

all codewords of Sβ2 are given by

0000000000000000, 0121012345113512, 0242024024220424, 0303030303333330,
0424042042440242, 0545054321553154, 1110111111022233, 1231123450135145,
1352135135242051, 1413141414355503, 1534153153402415, 1055105432515321,
2220222222044400, 2341234501151312, 2402240240204224, 2523252525311130,
2044204204424042, 2105210543531554, 3330333333000033, 3451345012113545,
3512351351220451, 3033303030333303, 3154315315440215, 3215321054553121,
4440444444022200, 4501450123135112, 4022402402242024, 4143414141355530,
4204420420402442, 4325432105515354, 5550555555044433, 5011501234151345,
5132513513204251, 5253525252311103, 5314531531424015, 5435543210531521.

If, c1 = 0545054321553154 and c2 = 1110111111022233 are linear independent and w(c1) = w(c2) = w1 = 14,
w(c1 + c2) = w2 = 14, we have w(c2) , w(c1) + 2, . Then, the restriction to Sβ2 of the Hamming scheme is a 3-class
association scheme.

Example 5.6. Let Sγ3 be a linear code over Z6 with parameters [76, 3, 46], generated by 1111111111111111111111111111111111110000000000222222222233333333334444444444
0000001111112222223333334444445555551111110234111111023411111102341111110234
0123450123450123450123450123450123450123451111012345111101234511110123451111

 ,
some codewords of Sγ3 are given by

0000000000000000000000000000000000000000000000000000000000000000000000000000,
1111111111111111111111111111111111110000000000222222222233333333334444444444,
0000001111112222223333334444445555551111110234111111023411111102341111110234,
0123450123450123450123450123450123450123451111012345111101234511110123451111,
1234501234501234501234501234501234500123451111234501333334501244444501235555,
2402405135132402405135132402405135133513512252135135003035135122525135134414,
3513510240243513510240243513510240243513512252351351225202402455253513512252,

...
5315314204203153152042041531530420425315314210315315205420420415431531530432
5432104321053210542105431054320543215432105321321054310521054320541054321543.

If,
c1 = 240240513513240240513513240240513513351351225213513500303513512252513

5134414

and
c2 = 351351024024351351024024351351024024351351225235135122520240245525351

3512252

are linear independent and w(c1) = w(c2) = w1 = 68, w(c1 + c2) = w2 = 68, we have w(c2) , w(c1) + 1. Then, the
restriction to Sγ3 of the Hamming scheme is a 2-class association scheme.
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6. MSSS Based on Z3Z6-Simplex Codes of Types α, β, and γ

In this section, we introduce a multi-secret sharing scheme that relies on linear codes and employs
Blakley’s method, as outlined in the work by Alahmadi et al. [1]. The steps for this multi-secret sharing

scheme are as follows: Consider subcodes of codes Sαk , Sβk and Sγk denoted as Ŝαk , Ŝβk , and Ŝγk over Z3Z6 with

a generator matrix Ĝα, Ĝβ, and Ĝγ respectively. This approach builds upon the principles presented in [1],
offering a robust framework for secret sharing through linear codes. By leveraging the properties of linear
codes and Blakley’s method, this scheme provides an effective means of securely distributing multiple
secrets among authorized parties while ensuring confidentiality and integrity.

The secret distribution process occurs within the secret space denoted as (Z3Z6)n, where each codeword
represents a secret s = (s1, s2, . . . , sn). Executed by the dealer, who possesses knowledge of the secret s, the
share ϖ for a user with the associated codeword c is computed using the scalar product: ϖ = hc(s) = c · st,
where t indicates transposition. For secret recovery, a system is constructed involving the private secret
s and the coalition corresponding to the rows of Ĝϑ, where ϑ ∈ {α, β, γ}. This system of equations is
represented as Ĝϑ · st = ϖt, where ϖ = (ϖ1, ϖ2, . . . , ϖk), and ϖi represents the share linked to the ith row of

Ĝϑ, with ϑ ∈ {α, β, γ}. The solution set forms an affine space with the associated vector spaces Ŝαk
⊥

, Ŝβk
⊥

, and

Ŝγk
⊥

. Assuming Ŝαk , Ŝβk , and Ŝγk are Linearly Complementary Dual, meaning

rank
(
Ĝϑ

)
= rank

[(
Ĝϑ

) (
Ĝϑ

)⊥]
= rank

[(
Ĝϑ

)⊥ (
Ĝϑ

)]
, 0, (16)

for ϑ ∈ {α, β, γ}, the system admits a unique solution within C. The secret retrieval involves solving the
linear system:Ĝϑ · st = ϖt, ϑ ∈ {α, β, γ}

H(Ĝϑ) · st = 0, ϑ ∈ {α, β, γ},
(17)

where H(Ĝϑ) signifies the parity-check matrix of Ĝϑ.

6.1. Properties of the System and Information Pertaining to Coalitions

The proposed scheme’s characteristics underscore its resilience and efficiency in multi-secret sharing.
By harnessing the power of linear codes and Blakley’s method, the scheme establishes a sturdy framework
for secure information distribution. Particularly, parameters like C = [n,M, d] shed light on the scheme’s
capacity for error detection and correction. Furthermore, information pertaining to potential coalitions
is crucial for assessing the scheme’s security implications. Understanding these aspects contributes to a
comprehensive evaluation of the scheme’s effectiveness and reliability in real-world applications.

Theorem 6.1. The multi-secret sharing scheme yields the following insights:

1. The access structure comprises a M-tuple of codewords that exhibit linear independence.
2. A minimum of M elements are required to recover the secret.

Theorem 6.2. Consider C as an C = [n,M, d]-code over Z3Z6 with a generator matrix Ĝϑ, where ϑ ∈ {α, β, γ}. In
a multi-secret-sharing scheme built upon C, the count of minimal coalitions is determined by:

6k
k−1∏
j=0

(6k
− 6 j)

k!
. (18)
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6.2. Applications Examples

Example 6.3. When k = 2, the generator matrix of Ŝα2 is provided as follows:

Gα =

[
10111111333333555555
01012345012345012345

]
. (19)

Following Equation 16, we have

rank
(
Ĝα

)
= rank

[(
Ĝα

) (
Ĝα

)⊥]
= rank

[(
Ĝα

)⊥ (
Ĝα

)]
= 2 , 0. (20)

If s = (45432105054321210543) belongs to Ŝα2 , we authenticate a multi-secret-sharing framework using Equation 17.
This entails computing the shares according to Ŝα2 as described below:

ϖ = (12), (21)

let s = (s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20) ∈ Ŝα2 . After closely examining the system of equations
presented in Equation 17, we deduce:

10111111333333555555
01012345012345012345
10000000000000000052
01000000000000000015
00100000000000000052
00010000000000000001
00001000000000000010
00000100000000000025
00000010000000000034
00000001000000000043
00000000100000000030
00000000010000000045
00000000001000000054
00000000000100000003
00000000000010000012
00000000000001000021
00000000000000100014
00000000000000010023
00000000000000001032
00000000000000000141





s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15
s16
s17
s18
s19
s20



=



1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



(22)

A unique solution exists for the system of equations, yielding s = (45432105054321210543). Additionally, the count
of minimal coalitions is 18900.

Example 6.4. For k = 4, the generator matrix of Ŝγ4 is presented as follows:

Gγ =


33333333333333333333333333333333333333333333333333
11111111110000000000222222222233333333334444444444
11111102341111110234111111023411111102341111110234
01234511110123451111012345111101234511110123451111

 . (23)

Following Equation 16, we have

rank
(
Ĝα

)
= rank

[(
Ĝα

) (
Ĝα

)⊥]
= rank

[(
Ĝα

)⊥ (
Ĝα

)]
= 4 , 0. (24)
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Should the vector s = (21054344140543212252432105003005432122522105434414) be a member of the code Ŝγ4 , we
proceed to authenticate a multi-secret-sharing framework using Equation 17. This process involves computing shares

in accordance with Ŝγ4 as delineated below:

ϖ = (0204),

Consider

s = (s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20s21s22s23s24s25s26s27s28s29s30s31s32

s33s34s35s36s37s38s39s40s41s42s43s44s45s46s47s48s49s50) ∈ Ŝγ4 .

Upon thorough analysis of the equations outlined in Equation 17, we infer:



33333333333333333333333333333333333333333333333333
11111111110000000000222222222233333333334444444444
11111102341111110234111111023411111102341111110234
01234511110123451111012345111101234511110123451111
10000000000000000000000000000000000000010000100043
01000000000000000000000000000000000000010000020015
00100000000000000000000000000000000000010000110015
00010000000000000000000000000000000000010000000011
00001000000000000000000000000000000000010000120041
00000100000000000000000000000000000000010000010043
00000010000000000000000000000000000000010000020000
00000001000000000000000000000000000000010000020024
00000000100000000000000000000000000000010000020033
00000000010000000000000000000000000000010000020042
00000000001000000000000000000000000000000000100044
00000000000100000000000000000000000000000000020010
00000000000010000000000000000000000000000000110010
00000000000001000000000000000000000000000000000012
00000000000000100000000000000000000000000000120042
00000000000000010000000000000000000000000000010044
00000000000000001000000000000000000000000000020001
00000000000000000100000000000000000000000000020025
00000000000000000010000000000000000000000000020034
00000000000000000001000000000000000000000000020043
00000000000000000000100000000000000000000000120022
00000000000000000000010000000000000000000000010024
00000000000000000000001000000000000000000000100024
00000000000000000000000100000000000000000000020050
00000000000000000000000010000000000000000000110050
00000000000000000000000001000000000000000000000052
00000000000000000000000000100000000000000000010015
00000000000000000000000000010000000000000000010033
00000000000000000000000000001000000000000000010042
00000000000000000000000000000100000000000000010051
00000000000000000000000000000010000000010000120021
00000000000000000000000000000001000000010000010023
00000000000000000000000000000000100000010000100023
00000000000000000000000000000000010000010000020055
00000000000000000000000000000000001000010000110055
00000000000000000000000000000000000100010000000051
00000000000000000000000000000000000010010000010014
00000000000000000000000000000000000001010000010032
00000000000000000000000000000000000000110000010041
00000000000000000000000000000000000000020000010050
00000000000000000000000000000000000000001000110030
00000000000000000000000000000000000000000100000032
00000000000000000000000000000000000000000010120002
00000000000000000000000000000000000000000001010004
00000000000000000000000000000000000000000000001023
00000000000000000000000000000000000000000000000141





s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15
s16
s17
s18
s19
s20
s21
s22
s23
s24
s25
s26
s27
s28
s29
s30
s31
s32
s33
s34
s35
s36
s37
s38
s39
s40
s41
s42
s43
s44
s45
s46
s47
s48
s49
s50



=



0
2
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



(25)

The system of equations admits a solitary solution, resulting in

s = (21054344140543212252432105003005432122522105434414).

Furthermore, the tally of minimal coalitions amounts to 171400800.

The importance of applying the covering radius of Z3Z6-Simplex Codes of types α, β, and γ, association
schemes forZ6-Simplex Codes of the same types, and the multi-secret sharing scheme based on these codes
lies in their collective ability to ensure reliability, efficiency, and security in various communication and
information sharing scenarios. The covering radius serves as a fundamental measure of the error-correction
capabilities of these codes, providing crucial insights into their robustness against noise and interference in
communication channels. By accurately assessing the maximum distance between codewords, it enables
the design and evaluation of codes optimized for specific error-correction requirements, thus enhancing
the overall performance of communication systems. Association schemes complement this by offering a
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structured framework for analyzing the relationships and symmetries within the codes, facilitating the
development of efficient encoding and decoding algorithms tailored to exploit these properties. Moreover,
association schemes aid in identifying subsets of codewords with desirable properties, which can further op-
timize error-correction performance and decoding efficiency. Additionally, the multi-secret sharing scheme
based onZ3Z6-Simplex Codes of types α, β, and γ leverages their inherent error-correction capabilities and
algebraic structure to securely distribute multiple secrets among participants while ensuring confidentiality
and resilience against eavesdropping and malicious attacks. By integrating these concepts and techniques,
communication systems can achieve enhanced reliability, efficiency, and security, thereby addressing the
diverse needs of modern information exchange and storage applications.

7. Conclusion

In conclusion, this article has explored the properties and applications of simplex codes of types α, β,
and γ over the ring Z3Z6. It has investigated various aspects including the covering radius of these codes,
association schemes for Z6-simplex codes, and a multi-secret sharing scheme based on them. The analysis
of the covering radius provides insights into the error-correcting capabilities of these codes, crucial for their
practical implementation in communication systems. Understanding association schemes for Z6-simplex
codes aids in constructing efficient encoding and decoding algorithms, enhancing their performance in
various applications. Moreover, the development of a multi-secret sharing scheme demonstrates the
versatility and security potential of these codes beyond traditional error correction. By leveraging the
algebraic structure of Z3Z6-simplex codes, novel cryptographic primitives can be designed for secure
multi-party communication and data storage. Overall, the study of simplex codes overZ3Z6 offers valuable
contributions to both theoretical coding theory and practical cryptography, paving the way for advanced
communication systems and secure information exchange protocols.
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[10] M. Cruz, C. Durairajan, P. Solé, On the covering radius of codes over Zpk , Mathematics 8 (2020), 328.
[11] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973), 97.
[12] M. Gupta, D. Glynn, T.A. Gulliver, On senary simplex codes, In International Symposium on applied Algebra, algebraic algorithm

and Error-correcting Codes (Springer, berlin Heidelberg), (2001), 112-121.
[13] M. Gupta, C. Durairajan, On the covering radius of some modular codes, arXiv:1206.3038 v2 [cs.IT] Jun, (2012).
[14] A. Melakhessou, K. Chatouh, and K. Guenda, DNA multi-secret sharing schemes based on linear codes over Z4 × R, J. Appl.

Math. Comput., 96(6) (2023), 4833-4853.
[15] G. Luo, X. Cao, G. Xu, S. Xu, A new class of optimal linear codes with flexible parameters, Discr. Appl. Math., 237 (2018), 126-131.
[16] Y. Wang, J. Gao, MacDonald codes over the ring Fp + vFp + v2Fp, Comp. Appl. Math., 38 (2019), 1-15.


