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Abstract. The paper focuses on a new generalized inverse, Bott-Duffin core inverse, which is a general-
ization of the Bott-Duffin inverse. Several properties, characterizations and representations of Bott-Duffin
core inverse are presented. We discuss the constrained matrix approximation problem in the Frobenius
norm by using the Bott-Duffin core inverse.

1. Introduction

In this paper, Cm×n is the set of m × n complex matrices. If L is a subspace of Cn, we use the notation
L ⩽ Cn. Bott and Duffin, in their famous paper [3], introduced the “constrained inverse” of a square matrix
as an important tool in the electrical network theory. This inverse is called in their honor the Bott-Duffin
inverse in [2]. Let A ∈ Cn×n, L ⩽ Cn and let PL be the orthogonal projection on L. If APL +PL⊥ is nonsingular,
then the Bott-Duffin inverse of A with respect to L, denoted by A(−1)

(L) , is defined by A(−1)
(L) = PL(APL + PL⊥ )−1.

In [4], Chen defined the generalized Bott-Duffin inverse of A (denoted by A(†)
(L)) . It is particularly worth

noting that the form of definition, A(†)
(L) = PL(APL + PL⊥ )†, is a natural extension of A(−1)

(L) = PL(APL + PL⊥ )−1.
It is interesting to consider that if APL + PL⊥ is core invertible, can a new generalized inverse be formed?

Let CCM
n be the set of n × n matrices of index one, that is,

CCM
n =

{
A ∈ Cn×n

∣∣∣ rank(A2) = rank(A)
}
.

Let us recall that A ∈ Cn×n has the core inverse if and only if A ∈ CCM
n . For the convenience of describing

the article, we first provide the following definition:

Definition 1.1. Let A ∈ Cn×n, L ⩽ Cn. If (APL + PL⊥ ) ∈ CCM
n , then

A( #O)
(L) = PL(APL + PL⊥ ) #O, (1)

is called the Bott-Duffin core inverse of A with respect to L.
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Our main contributions can be summarized as below:

(1) We give some properties of Bott-Duffin core inverse, especially showing Bott-Duffin core inverse is
an outer inverse with prescribed range and null space.

(2) Some characterizations of Bott-Duffin core inverse are provided by using range space, projections,
matrix equations and EP-property.

(3) Though a appropriate matrix decomposition, we conclude the explicit representations of Bott-Duffin
core inverse. Moreover, we give the limit expression for Bott-Duffin core inverse.

(4) We study the constrained matrix approximation problem in the Frobenius norm by using the Bott-
Duffin core inverse. Moreover, we give the unique solution to two classes of matrix equation, and
provide a Cramer’s rule for the unique solution.

This paper is organized as follows. In Section 2, we introduce some necessary notations, definitions and
lemmas. In Section 3, we give some properties of Bott-Duffin core inverse. In Section 4, we present several
characterizations of the Bott-Duffin core inverse in terms of range space, projections, matrix equations
and EP-property. In Section 5, some representations of the Bott-Duffin core inverse are provided. The
applications of Bott-Duffin core inverse in solving two classes of matrix equation are given in Section 6.

2. Notations and Preliminaries

The symbolsR(A), N(A), A∗, AT and rank(A) represent the range space, null space, conjugate transpose,
transpose and rank of A ∈ Cm×n, respectively. We denote the identity matrix in Cn×n by In. The symbol
O stands for the null matrix. L⊥ means the orthogonal complement subspace of L. The dimension of L is
denoted by dim(L). PL,M stands for the oblique projection onto L along M, where L,M ⩽ Cn and L⊕M = Cn.

Additionally, the Moore–Penrose inverse A† ∈ Cn×m of A ∈ Cm×n is the unique matrix verifying the
following matrix equations (see [2, 9, 11])

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

A matrix X ∈ Cn×m that satisfies XAX = X is called an outer inverse of A and is denoted by A(2). Let
L ⩽ Cn, dim L = l ⩽ rank(A) and S ⩽ Cm, dim S = m − l. There exists a unique outer inverse X of A such
that R(X) = T andN(X) = S if and only if AT ⊕ S = Cm. In this case, the matrix X is called the outer inverse
with prescribed range and null space and is denoted by A(2)

T,S” (see [2, 11]).
The group inverse of A ∈ CCM

n is the unique matrix A#
∈ Cn×n verifying the following matrix equations

(see [2, 8, 11])

AA#A = A, A#AA# = A#, AA# = A#A. (2)

For a given matrix A ∈ CCM
n , the core inverse of A is defined to be the unique matrix A #O

∈ Cn×n satisfying
(see [1])

AA #O = AA† , R(A #O) ⊂ R(A). (3)

Moreover, Wang and Liu [12] prove that the core inverse of A ∈ CCM
n is the unique matrix satisfying

AA #OA = A, A(A #O)2 = A #O, (AA #O)∗ = AA #O. (4)

Henceforth, the symbol CEP
n will stand for the set of n × n EP matrices, i.e.

CEP
n = {A|A ∈ C

n×n,AA† = A†A} = {A|A ∈ Cn×n,R(A) = R(A∗)}.
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Lemma 2.1. [10] Let A ∈ CCM
n . Then:

(a) A #O = A(2)
R(A),N(A∗);

(b) A #OA = A#A = AA# = PR(A),N(A).

Lemma 2.2. Let A ∈ CCM
n and let U ∈ Cn×n be a unitary matrix. Then,

(i) (UAU∗)# = UA#U∗;

(ii) (UAU∗) #O = UA #OU∗.

Proof. (i). It can be verified directly by (2).
(ii). From [1, Theorem 1], we have

A #O = A#AA†. (5)

Then, (UAU∗) #O = (UAU∗)#UAU∗(UAU∗)† = UA#U∗UAU∗UA†U∗ = UA #OU∗.

Lemma 2.3. [4, Lemma 1] For any A ∈ Cn×n and L ⩽ Cn, we have

R(APL + PL⊥ ) = R(PLAPL + PL⊥ ) = AL + L⊥ = PLAL ⊕ L⊥,

and

N(PLA + PL⊥ ) = N(PLAPL + PL⊥ ) = (A∗L)⊥ ∩ L = N(PLAPL) ∩ L.

Lemma 2.4. [11, Theorem 1.3.2] Let P1 be the projection on R1 along N1, P2 the projection on R2 along N2, then
P = P1 + P2 is a projection if and only if

P1P2 = P2P1 = O.

In this case, P is a projection on R = R1 ⊕ R2 = R(P1) ⊕ R(P2) along N = N1 ∩N2 = N(P1) ∩N(P2).

Lemma 2.5. [6, Theorem 1] Let T =
[

A O
B D

]
be a partitioned matrix of Cm×m, where A ∈ Cn×n, B ∈ C(m−n)×n

and D ∈ C(m−n)×(m−n). Suppose A #O and D #O exist. Set ED = Im−n −DD† and FA = In −A†A. Then, T #O exists if and
only if EDBFA = O. In this case

T #O =

(
T11 T12
T21 T22

)
,

where

T11 = A #O
(
I + (EDBA†)

∗
EDBA†

)−1
,

T12 = A #O
(
EDBA†

)∗(
I + EDBA†

(
EDBA†

)∗)−1
,

T21 =
((

I −DD#
)

BA† −D #OB
)

A #O
(
I +

(
EDBA†

)∗
EDBA†

)−1
,

T22 = D #O +
((

I −DD#
)

BA† −D #OB
)

A #O
(
EDBA†

)∗(
I + EDBA†

(
EDBA†

)∗)−1
.

Lemma 2.6. [6, Theorem 2] Let S =
[

A C
O D

]
be a partitioned matrix of Cm×m, where A ∈ Cn×n, C ∈ Cn×(m−n)

and D ∈ C(m−n)×(m−n). Suppose A #O and D #O exist. Set EA = In −AA† and FD = Im−n −D†D. Then, S #O exists if and
only if EACFD = O. In this case

S #O =

(
S11 S12
S21 S22

)
,
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where

S11 = A #O +
((

I − AA#
)

CD† − A #OC
)

D #O
(
I +

(
EACD†

)∗
EACD†

)−1(
EACD†

)∗
,

S12 =
((

I − AA#
)

CD† − A #OC
)

D #O
(
I +

(
EACD†

)∗
EACD†

)−1
,

S21 = D #O
(
I + (EACD†)

∗
EACD†

)−1(
EACD†

)∗
,

S22 = D #O
(
I +

(
EACD†

)∗
EACD†

)−1
.

3. The properties of Bott-Duffin core inverse

Let A ∈ Cn×n and L ⩽ Cn. In order to discuss some properties of the Bott-Duffin core inverse, we will
consider an appropriate matrix decomposition of A with respect to L. Since there exists a unitary matrix
U ∈ Cn×n such that

PL = U
[

Il O
O O

]
U∗, (6)

where l = dim(L). On the basis of (6), the decomposition of PL, a matrix A can be written as

A = U
[

AL BL
CL DL

]
U∗, (7)

where AL ∈ Cl×l, BL ∈ Cl×(n−l), CL ∈ C(n−l)×l, DL ∈ C(n−l)×(n−l).
Using this decomposition, we give the necessary and sufficient condition for the existence of A( #O)

(L) as

well as the representation of A( #O)
(L) .

Theorem 3.1. Let PL and A be given by (6) and (7), respectively. Then A( #O)
(L) exists if and only if AL ∈ C

CM
l . In this

case,

A( #O)
(L) = U

[
AL

#O O
O O

]
U∗. (8)

Proof. From (6) and (7), we have

APL + PL⊥ = U
[

AL O
CL In−l

]
U∗. (9)

In [1], Baksalary pointed out that (APL + PL⊥ ) #O exists if and only if (APL + PL⊥ ) ∈ CCM
n . Using (9), we can

verify (APL + PL⊥ ) ∈ CCM
n if and only if AL ∈ CCM

n . From Lemma 2.2, (9) and Lemma 2.5, we have

(APL + PL⊥ ) #O = U
[

AL
#O O

−CLAL
#O In−l

]
U∗.

By using (1), we can get (8).

The basic properties of A( #O)
(L) are given in the following theorem.

Theorem 3.2. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL). If (APL+PL⊥ ) ∈ CCM
n , then the following

statements hold:

(i) A( #O)
(L) = PLA( #O)

(L) = A( #O)
(L) PL = PLA( #O)

(L) PL;
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(ii) R(A( #O)
(L) ) = T andN(A( #O)

(L) ) = T⊥;

(iii) A( #O)
(L) AA( #O)

(L) = A( #O)
(L) ;

(iv) AA( #O)
(L) = PAT,T⊥ and A( #O)

(L) A = PT,(A∗T)⊥ ;

(v) PLAA( #O)
(L) = PT and A( #O)

(L) APL = PT,S;

(vi) A( #O)
(L) = PTA( #O)

(L) = A( #O)
(L) PT = PT,SA( #O)

(L) ;

(vii) PT(A − AA( #O)
(L) A) = (A − AA( #O)

(L) A)PT,S = O;

(viii) A( #O)
(L) = A(2)

T,T⊥ = (APL)(2)
T,T⊥ = (PLA)(2)

T,T⊥ ;

(ix) A( #O)
(L) = (PLAPL) #O.

Proof. (i). From (1), multiplying A( #O)
(L) = PL(APL + PL⊥ ) #O by PL from the left, we have PLA( #O)

(L) = A( #O)
(L) . By

Lemma 2.3, we get L⊥ ⊂ R(APL + PL⊥ ), then it follows that PR(APL+PL⊥ ),N(APL+PL⊥ )PL⊥ = PL⊥ . Note the fact that

PL(APL + PL⊥ ) #OPL⊥ = PL(APL + PL⊥ ) #O(APL + PL⊥ )PL⊥

= PL(APL + PL⊥ )(APL + PL⊥ )#PL⊥

= PLPR(APL+PL⊥ ),N(APL+PL⊥ )PL⊥

= PLPL⊥

= O.

Then, by (1),

A( #O)
(L) PL = PL(APL + PL⊥ ) #OPL + PL(APL + PL⊥ ) #OPL⊥

= PL(APL + PL⊥ ) #O(PL + PL⊥ )

= A( #O)
(L) .

Consequently,

PLA( #O)
(L) PL = PLA( #O)

(L) = A( #O)
(L) .

(ii). It follows from (1) and Lemma 2.1 (a) that R(A( #O)
(L) ) = R(PL(APL + PL⊥ ) #O) = PLR((APL + PL⊥ ) #O) =

PLR(APL + PL⊥ ) = R(PLAPL) = T. By (1) and (4), we have

N(A( #O)
(L) ) = N(PL(APL + PL⊥ ) #O) ⊂ N(PLAPL(APL + PL⊥ ) #O) = N(PL(APL + PL⊥ )(APL + PL⊥ ) #O)

= [R((APL + PL⊥ )(APL + PL⊥ ) #OPL)]⊥.

From (3), Lemma 2.3 and Lemma 2.4, we get (APL + PL⊥ )(APL + PL⊥ ) #O = PR(APL+PL⊥ ) = PT⊕L⊥ = PT + PL⊥ .
Since PTPL = PT, it follows that N(A( #O)

(L) ) ⊂ [R((APL + PL⊥ )(APL + PL⊥ ) #OPL)]⊥ = [R((PT + PL⊥ )PL)]⊥ = T⊥.

Since dim(N(A( #O)
(L) )) = n − dim(R(A( #O)

(L) )) = n − dim(T) = dim(T⊥), we can obtainN(A( #O)
(L) ) = T⊥.
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(iii). From the proof of (i), we have PL(APL + PL⊥ ) #OPL⊥ = O. Thus,

A( #O)
(L) AA( #O)

(L) = PL (APL + PL⊥ ) #O APL (APL + PL⊥ ) #O

= PL (APL + PL⊥ ) #O (APL + PL⊥ ) (APL + PL⊥ ) #O

= PL (APL + PL⊥ ) #O

= A( #O)
(L) .

(iv). From (ii) and (iii), note the facts that R(AA( #O)
(L) ) = AR(A( #O)

(L) ) = AT, N(AA( #O)
(L) ) = N(A( #O)

(L) ) = T⊥ and

AA( #O)
(L) AA( #O)

(L) = AA( #O)
(L) , we have AA( #O)

(L) = PAT,T⊥ . The proof of A( #O)
(L) A = PT,(A∗T)⊥ is similar.

(v). Since PLPT = PT, premultiplying the equation (APL + PL⊥ )(APL + PL⊥ ) #O = PT + PL⊥ with PL gives

PLAPL(APL + PL⊥ ) #O = PT.

Thus, PLAA( #O)
(L) = PT. By (i), (ii), (1), Lemma 2.1 (b) and Lemma 2.3,

A( #O)
(L) APLA( #O)

(L) APL = PL(APL + PL⊥ ) #O(APL + PL⊥ )PL(APL + PL⊥ ) #OAPL

= PL(APL + PL⊥ )#(APL + PL⊥ )A( #O)
(L) APL

= PLPR(APL+PL⊥ ),N(APL+PL⊥ )A
( #O)
(L) APL

= PLP(PLAL⊕L⊥),N(APL+PL⊥ )A
( #O)
(L) APL

= PLA( #O)
(L) APL

= A( #O)
(L) APL.

We can also derive from the above equation that A( #O)
(L) AA( #O)

(L) = A( #O)
(L) . Then R(A( #O)

(L) ) = R(A( #O)
(L) APLA( #O)

(L) ) ⊂

R(A( #O)
(L) APL). It is clear that R(A( #O)

(L) APL) ⊂ R(A( #O)
(L) ). By (ii), R(A( #O)

(L) APL) = R(A( #O)
(L) ) = T. Since S ⊂

N(A( #O)
(L) PLAPL) = N(A( #O)

(L) APL) and rank(A( #O)
(L) APL) = rank(PLAPL), it follows thatN(A( #O)

(L) APL) = S.
(vi). From (i) and (v), (vi) can be directly derived.
(vii). By (v), (vii) can be directly derived.
(viii). By (ii) and (iii), we have A( #O)

(L) = A(2)
T,T⊥ . From (i), we have A( #O)

(L) APLA( #O)
(L) = A( #O)

(L) . Thus, A( #O)
(L) =

(APL)(2)
T,T⊥ . The proof of A( #O)

(L) = (PLA)(2)
T,T⊥ is similar.

(ix). From (i) and (v), we get PLAPLA( #O)
(L) PLAPL = PTAPL. Since PT = PTPL and T = R(PLAPL), PTAPL =

PTPLAPL = PLAPL. By (i), (v) and (vi), PLAPL(A( #O)
(L) )2 = PTA( #O)

(L) = A( #O)
(L) . In terms of (i) and (v), we can obtain

(PLAPLA( #O)
(L) )∗ = PLAPLA( #O)

(L) . It follows from (4) that A( #O)
(L) = (PLAPL) #O.

4. Some characterizations of the Bott-Duffin core inverse

In this section, we provide several characterizations of the BD-inverse core inverse of A ∈ Cn×n (in the
case when it exists) mainly in terms of range space, projections, matrix equations and EP-property. In the
following theorem, using Theorem 3.2 (ii), we present some characterizations of Bott-Duffin core inverse.

Theorem 4.1. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL) be such that A( #O)
(L) exists and let X ∈ Cn×n.

The following statements are equivalent:

(a) X = A( #O)
(L) ;



J. Zhou et al. / Filomat 39:12 (2025), 3873–3889 3879

(b) R(X) = T and AX = PAT,T⊥ ;

(c) R(X) = T and PLAX = PT;

(d) R(X) = T, XAX = X and XPT = X;

(e) R(X) = T, XA = PT,(A∗T)⊥ and XPT = X.

Proof. (a)⇒ (b). This follows directly by Theorem 3.2 (ii) and (iv).
(b)⇒ (c). From Theorem 3.2 (iv) and (v), we have PLAX = PLPAT,T⊥ = PT.
(c) ⇒ (d). Since R(X) = T and PLAX = PT, we have rank(X) = dim(T) and N(X) = T⊥, which implies

XPT = X. From L⊥ ⊂ T⊥, we get XPL = X. Thus XAX = XPLAX = XPT = X.
(d) ⇒ (e). From XAX = X, it is clear that XAXA = XA. Since R(X) = T and XAX = X, it follows

that R(XA) = R(X) = T. By R(X) = T and XPT = X, we get rank(X) = dim(T) and T⊥ ⊂ N(X), which
implies N(X) = T⊥. It follows from N(X) = T⊥ that N(XA) = [R(XA)∗]⊥ = (A∗N(X)⊥)⊥ = (A∗T)⊥. Thus,
XA = PT,(A∗T)⊥ .

(e) ⇒ (a). Since R(X) = T and XA = PT,(A∗T)⊥ , it follows that XAX = X. From rank(X) = dim(T) and

XPT = X, we haveN(X) = T⊥. Thus by Theorem 3.2 (viii), we get X = A( #O)
(L) .

Remark 4.2. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL) be such that A( #O)
(L) exists and let X ∈ Cn×n.

The following statements are equivalent:

(a) X = A( #O)
(L) ;

(b) R(X∗) = T and XA = PT,(A∗T)⊥ ;

(c) R(X∗) = T and XAPL = PT,S;

(d) R(X∗) = T, XAX = X and PTX = X;

(e) R(X∗) = T, AX = PAT,T⊥ and PTX = X.

Proof. It is similar to the proof of the Theorem 4.1. We only provide the proof of (e)⇒ (a).
(e) ⇒ (a). It is well known that R(X∗) = T if and only if N(X) = T⊥. Since N(X) = T⊥ and AX = PAT,T⊥ ,

it follows that XAX = X. From rank(X) = dim(T) and PTX = X, we have R(X) = T. Therefore, by Theorem
3.2 (viii), we get X = A( #O)

(L) .

By Theorem 3.2, we know that A( #O)
(L) is an outer inverse of A. Using this property, some characterizations

of A( #O)
(L) are given in the following theorem.

Theorem 4.3. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL) be such that A( #O)
(L) exists and let X ∈ Cn×n.

The following statements are equivalent:

(a) X = A( #O)
(L) ;

(b) XAX = X, XPT = X and XA = PT,(A∗T)⊥ ;

(c) XAX = X, XAPL = PT,S and AX = PAT,T⊥ ;

(d) XAX = X, PTX = X and AX = PAT,T⊥ ;

(e) XAX = X, PLAX = PT and XA = PT,(A∗T)⊥ ;

(f) XAX = X, PTXPT = X and rank(X) = dim(T).
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Proof. (a)⇒ (b). This follows directly by Theorem 3.2 (iii), (vi) and (iv).
(b) ⇒ (c). From Theorem 3.2 (iv) and (v) , we have XAPL = PT,(A∗T)⊥PL = PT,S. It follows from XAX = X

that AXAX = AX, R(XA) = R(X) and N(AX) = N(X). In terms of XA = PT,(A∗T)⊥ , we have R(X) = T, which
implies R(AX) = AT. From XPT = X and R(X) = T, we getN(X) = T⊥. Thus, AX = PAT,T⊥ .

(c) ⇒ (d). From XAX = X and AX = PAT,T⊥ , we have N(X) = N(AX) = T⊥, which implies rank(X) =
dim(T). Since XAX = X and XAPL = PT,S, it follows that T ⊂ R(XA) = R(X). Therefore, R(X) = T holds ,
which means PTX = X.

(d)⇒ (e). Similar to (b)⇒ (c).
(e) ⇒ ( f ). From XAX = X and XA = PT,(A∗T)⊥ , we have R(X) = T, which means PTX = X and

rank(X) = dim(T). It follows from PLAX = PT and rank(X) = dim(T) that N(X) = L⊥ implies XPT = X.
Thus, PTXPT = X.

( f ) ⇒ (a). In terms of PTXPT = X and rank(X) = dim(T), it clear that R(X) = T and N(X) = T⊥. By
Theorem 3.2 (viii), we can obtain X = A( #O)

(L) .

From Theorem 3.2 (iv), we have

X = A( #O)
(L) ⇒ AX = PAT,T⊥ , XA = PT,(A∗T)⊥ . (10)

It is interesting to remark that the reverse of (10) is invalid as will be illustrated in the following example.

Example 4.4. Let

A =


1 2 0 0
1 1 0 0
0 3 0 0
0 0 0 0

 ,L = R


1 0 0
0 1 0
0 0 1
0 0 0

 ,X =


8
19

11
19 −

9
19 0

1
19 −

1
19

6
19 0

21
19

36
19 −

45
19 0

0 0 0 1

 .
Then, we have

PAT,T⊥ =


10
19

9
19

3
19 0

9
19

10
19 −

3
19 0

3
19 −

3
19

18
19 0

0 0 0 0

 ,PT,(A∗T)⊥ =


1 0 0 0
0 1 0 0
3 −3 0 0
0 0 0 0

 ,

A( #O)
(L) =


8

19
11
19 −

9
19 0

1
19 −

1
19

6
19 0

21
19

36
19 −

45
19 0

0 0 0 0

 .
We can directly verify AX = PAT,T⊥ and XA = PT,(A∗T)⊥ , but X , A( #O)

(L) .

In the following theorem, we add other conditions in AX = PAT,T⊥ and XA = PT,(A∗T)⊥ to characterize the
Bott-Duffin core inverse.

Theorem 4.5. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) be such that A( #O)
(L) exists and let X ∈ Cn×n. The following

statements are equivalent:

(a) X = A( #O)
(L) ;

(b) AX = PAT,T⊥ , XA = PT,(A∗T)⊥ and XAX = X;

(c) AX = PAT,T⊥ , XA = PT,(A∗T)⊥ and rank(X) = dim(T);

(d) AX = PAT,T⊥ , XA = PT,(A∗T)⊥ and XPT = X;



J. Zhou et al. / Filomat 39:12 (2025), 3873–3889 3881

(e) AX = PAT,T⊥ , XA = PT,(A∗T)⊥ and PTX = X.

Proof. (a)⇒ (b). This follows directly by Theorem 3.2 (iii) and (iv).
(b)⇒ (c). From XA = PT,(A∗T)⊥ and XAX = X, we have R(X) = R(XA) = T. Thus, rank(X) = dim(T).
(c)⇒ (d). From AX = PAT,T⊥ and rank(X) = dim(T), we haveN(X) = T⊥, which implies that XPT = X.
(d) ⇒ (e). Since AX = PAT,T⊥ and XPT = X, it follows that N(X) = L⊥, which means rank(X) = dim(T).

In terms of XA = PT,(A∗T)⊥ , we have T = R(XA) ⊂ R(X). Thus, R(X) = T, it can derive PTX = X.
(e) ⇒ (a). It follows from XA = PT,(A∗T)⊥ and PTX = X that R(X) = T, rank(X) = dim(T) and XAX = X.

From AX = PAT,T⊥ , we haveN(X) = L⊥. By Theorem 3.2 (viii), we can obtain X = A( #O)
(L) .

Motivated by Theorem 4.5, we consider characterizing Bott-Duffin core inverse just using two conditions
which are one of AX = PAT,T⊥ and XA = PT,(A∗T)⊥ and another matrix equation.

Theorem 4.6. Let A ∈ Cn×n, L ⩽ Cn and T = R(PLAPL) be such that A( #O)
(L) exists and let X ∈ Cn×n. The following

statements are equivalent:

(a) X = A( #O)
(L) ;

(b) AX = PAT,T⊥ and PTXPT = X;

(c) AX = PAT,T⊥ and PTAX2PT = X;

(d) XA = PT,(A∗T)⊥ and PTXPT = X;

(e) XA = PT,(A∗T)⊥ and PTX2APT = X.

Proof. (a)⇒ (b). This follows directly by Theorem 3.2 (iv) and (vi).
(b)⇒ (c). It is clear that PTPAT,T⊥ = PT, then PTAX2PT = PTXPT = X.
(c) ⇒ (a). From AX = PAT,T⊥ and PTXPT = X, we have XAX = X and R(X) ⊂ T which mean N(X) =

N(AX) = L⊥ and R(X) = T. By Theorem 3.2 (viii), X = A( #O)
(L) .

The rest of the proof follows similarly.

Using the Theorem 3.2 (ii), we can conclude that A( #O)
(L) ∈ C

EP
n . In the following theorem, we discuss other

characterizations of the Bott-Duffin core inverse.

Theorem 4.7. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL) be such that A( #O)
(L) exists and let X ∈ Cn×n.

The following statements are equivalent:

(a) X = A( #O)
(L) ;

(b) X ∈ CEP
n , XA = PT,(A∗T)⊥ and PTX = X;

(c) X ∈ CEP
n , XAPL = PT,S and PTX = X;

(d) X ∈ CEP
n , AX = PAT,T⊥ and XPT = X;

(e) X ∈ CEP
n , PLAX = PT and XPT = X.

Proof. (a)⇒ (b). This follows directly by Theorem 3.2 (ii), (iv) and (vi).
(b)⇒ (c). From T ⊂ L, we have PLX = PLPTX = PTX = X, then XAPLXAPL = XAPL. Since XA = PT,(A∗T)⊥ ,

it follows that R(XA) ⊃ R(XAPL) ⊃ R(XAPLXA) = R(XA). Therefore, R(XAPL) = T. Note the fact that
N(XAPL) = [R(PL(XA)∗)]⊥ = (PLN(XA)⊥)⊥ = (PLA∗T)⊥ = N(PTAPL), it follows form PLPT = PT and
A( #O)

(L) PL = A( #O)
(L) that S ⊂ N(PTAPL) ⊂ N(A( #O)

(L) APL) = N(PT,S) = S, which means N(PTAPL) = S. Thus,
XAPL = PT,S.
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(c) ⇒ (d). Since PTX = X and T ⊂ L, multiplying XAPL by X from the right, we get XAX = X. Then
N(AX) = N(X) and AX is idempotent. From XAPL = PT,S and PTX = X, we get R(X) = T. Hence
R(AX) = AT. Since X ∈ CEP

n and R(X) = T, we haveN(X) = T⊥. Thus, XPT = X and AX = PAT,T⊥ .
(d)⇒ (e). From AX = PAT,T⊥ and Theorem 3.2 (v), it is clear that PLAX = PT.
(e)⇒ (a). Since XPT = X and PLAX = PT, it follows that N(X) = T⊥. From X ∈ CEP

n and N(X) = T⊥, we
have R(X) = T. From XPT = X and L⊥ ⊂ T⊥, multiplying PLAX by X from the left, we get XAX = X. Thus
X = A(2)

T,T⊥ = A( #O)
(L) .

5. Different representations of the Bott-Duffin core inverse

In this section, we give some representations of the Bott-Duffin core inverse.

Theorem 5.1. Let A ∈ Cn×n and L ⩽ Cn. Let a, b ∈ C be such that ab , 0. If A( #O)
(L) exists, then

A( #O)
(L) = aPL(aAPL + bPL⊥ ) #O

= aPL(aPLAPL + bPL⊥ ) #O

= a(aPLAPL + bPL⊥ ) #OPL

= a(aPLAPL + bPL⊥ ) #O
−

a
b

PL⊥ .

Proof. Let PL and A be given by (6) and (7), respectively. We have

aAPL + bPL⊥ = U
[

aAL O
aCL bIn−l

]
U∗. (11)

Using Lemma 2.2, (11) and Lemma 2.5, it follows that

(aAPL + bPL⊥ ) #O = U
[

1
a AL

#O O
−

a
b CLAL

#O 1
b In−l

]
U∗. (12)

From (6), (8) and (12),

aPL(aAPL + bPL⊥ ) #O = U
[

aIn O
O O

] [
1
a AL

#O O
−

a
b CLAL

#O 1
b In−l

]
U∗

= U
[

AL
#O O

O O

]
U∗

= A( #O)
(L) .

The rest of proof follows similar.

Theorem 5.2. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL). Let a, b, c, d ∈ C be such that a + b , 0
and cd , 0. If A( #O)

(L) exists, then

A( #O)
(L) = (a + b)PT(aAPT,S + dPL⊥ + bPTAPT,S) #O

= (a + b)(aPTA + dPL⊥ + bPTAPT,S) #OPT

= c(cPTAPT,S + dPL⊥ ) #O
−

c
d

PL⊥ .
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Proof. Let PL and A be given by (6) and (7), respectively. We have

PT = U
[

ALA #O
L O

O O

]
U∗ (13)

and

PT,S = U
[

A #O
L AL O
O O

]
U∗. (14)

By Lemma 2.5, it follows that

(a + b)PT(aAPT,S + dPL⊥ + bPTAPT,S) #O

= U
[

(a + b)ALAL
#O O

O O

] [
(a + b)AL O
aCLA #O

L AL dIn−l

] #O

U∗

= U
[

(a + b)ALAL
#O O

O O

]  1
(a+b) AL

#O O
−

a
d(a+b) CLAL

#O 1
d In−l

 U∗

= U
[

AL
#O O

O O

]
U∗ = A( #O)

(L) .

Similar, from Lemma 2.6, we have

(a + b)(aPTA + dPL⊥ + bPTAPT,S) #OPT

= (a + b)

U
[

(a + b)AL aALAL
#OBL

O dIn−l

] #O [
ALAL

#O O
O O

]
U∗


= (a + b)

(
U

[
1

(a+b) AL
#O
−

a
d(a+b) AL

#OBL

O 1
d In−l

] [
ALAL

#O O
O O

]
U∗

)
= U

[
AL

#O O
O O

]
U∗ = A( #O)

(L) .

The rest of the proof follows similarly.

Remark 5.3. Under the hypotheses of Theorem 5.2 and additional assumption a = 0, we have the following equation:

A( #O)
(L) = bPT(dPL⊥ + bPTAPT,S) #O

= b(dPL⊥ + bPTAPT,S) #OPT,

while b = 0, we have the following equation:

A( #O)
(L) = aPT(aAPT,S + dPL⊥ ) #O

= a(aPTA + dPL⊥ ) #OPT.

In the next theorem, we present representations for the Bott-Duffin core inverse, using the projections
P = PT⊥,AT and Q = P(A∗T)⊥,T.

Theorem 5.4. Let A ∈ Cn×n, L ⩽ Cn, T = R(PLAPL) and S = N(PLAPL) be such that A( #O)
(L) exists. For any

a, b, c, d ∈ C such that cd , 0 and a + b , 0, the following statements hold:

(a) A( #O)
(L) = PT,S(aAPT,S + bPTAPT,S + cPPL⊥ ) #O(a + b)(In − P);
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(b) A( #O)
(L) = (a + b)(In −Q)PT,S(aAPT,S + bPTAPT,S + cPL⊥Q) #O;

(c) A( #O)
(L) = cPT,S(cPTAPT,S + dPT,SQ) #O;

(d) A( #O)
(L) = c(cPTAPT,S + dPT,SQ) #OPT,

where P = PT⊥,AT and Q = P(A∗T)⊥,T.

Proof. (a). From (7), (8) and Theorem 3.2 (iv), we have

P = In − PAT,T⊥ = U
[

Il − ALAL
#O O

−CLAL
#O In−l

]
U∗. (15)

Using (6), (7), (13), (14), (15) and Lemma 2.5, we can obtain

(aAPT,S + bPTAPT,S + cPPL⊥ ) #O =

(
U

[
(a + b)AL O

aCLAL
#OAL cIn−l

]
U∗

) #O

= U

 1
a+b AL

#O O
−

a
c(a+b) CLAL

#O 1
c In−l

 U∗.

Hence,

PT,S(aAPT,S + bPTAPT,S + cPPL⊥ ) #O(a + b)(In − P)

= U
[

AL
#OAL O
O O

]  1
a+b AL

#O O
−

a
c(a+b) CLAL

#O 1
c In−l

 [ (a + b)ALAL
#O O

(a + b)CLAL
#O O

]
U∗

= U
[

AL
#O O

O O

]
U∗

= A( #O)
(L) .

(b). From (7), (8) and Theorem 3.2 (iv), we have

Q = In − PT,(A∗T)⊥ = U
[

Il − AL
#OAL −AL

#OBL
O In−l

]
U∗. (16)

The rest of the proof follows similarly.

Example 5.5. Let

A =


1 0 2 0
1 1 2 1
0 2 0 0
2 0 1 0

 and L = R




1 0 0
0 1 0
0 0 1
0 0 0


 .

From (15) and (16), we have

P = I − PAT,T⊥ =


4
9 −

4
9

2
9 0

−
4
9

4
9 −

2
9 0

2
9 −

2
9

1
9 0

2
9 −

2
9 −

8
9 1

 , Q = I − PT,(A∗T)⊥ =


4
3 −

4
3

2
3 0

0 0 0 −
1
9

−
2
3

2
3 −

1
3 −

2
9

0 0 0 1

 .
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By the direct calculation,

PT,S(aAPT,S + bPTAPT,S + cPPL⊥ ) #O(a + b)(In − P)

=


−

1
3

4
3 −

2
3 0

0 1 0 0
2
3 −

2
3

4
3 0

0 0 0 0




−1
3(a+b) 0 2

3(a+b) 0
−1

9(a+b)
1

9(a+b)
4

9(a+b) 0
4

9(a+b)
2

9(a+b)
−4

9(a+b) 0
2a

9c(a+b)
−2a

9c(a+b)
−8a

9c(a+b)
1
c




5(a+b)
9

4(a+b)
9

−2(a+b)
9 0

4(a+b)
9

5(a+b)
9

2(a+b)
9 0

−2(a+b)
9

2(a+b)
9

8(a+b)
9 0

−2(a+b)
9

2(a+b)
9

8(a+b)
9 0


=


−

1
3 0 2

3 0
−

1
9

1
9

4
9 0

4
9

2
9 −

4
9 0

0 0 0 0


= A( #O)

(L) .

In [14], Yuan and Zuo present several limit expressions for some generalized inverses. Motivated by
this result, in the following theorem we give some similar expressions for Bott-Duffin core inverse.

Theorem 5.6. Let A ∈ Cn×n and L ⩽ Cn be such that A( #O)
(L) exists. Then

(a) A( #O)
(L) = lim

λ→0
PLAPLA∗(λIn + (PLA)2PLA∗)−1PL;

(b) A( #O)
(L) = lim

λ→0
PLA(λIn + PLA∗(PLA)2)−1PLA∗PL;

(c) A( #O)
(L) = lim

λ→0
(λIn + PLAPLA∗PLA)−1PLAPLA∗PL.

Proof. Let AL be given in (7). From [14, Corollary 2.3], it follows that

AL
#O = lim

λ→0
ALAL

∗(λIn + AL
2AL

∗)−1. (17)

Let M = PLAPLA∗(λIn + (PLA)2PLA∗)−1PL. By (6) and (7), we have

M = U
[

ALAL
∗ ALCL

∗

O O

] [
λIl + AL

2AL
∗ AL

2CL
∗

O λIn−l

]−1 [
Il O
O O

]
U∗

= U
[

ALAL
∗ ALCL

∗

O O

] [
(λIl + AL

2AL
∗)
−1
−(λIl + AL

2AL
∗)
−1

AL
2CL

∗

O 1
λ In−l

] [
Il O
O O

]
U∗

= U
[

ALAL
∗(λIl + AL

2AL
∗)
−1

O
O O

]
U∗.

Hence, from (8) and (17), we have

lim
λ→0

M = lim
λ→0

U
[

ALAL
∗(λIl + AL

2AL
∗)
−1

O
O O

]
U∗

= U
[

AL
#O O

O O

]
U∗

= A( #O)
(L) .

Assertions (b) and (c) can be proved similarly.
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Example 5.7. Let the matrix A and the subspace L be given as in the Example 5.5. By simple calculation, we have

M =


5λ2+45λ

λ3+24λ2−135λ
5λ2

λ3+24λ2−135λ
−90λ

λ3+24λ2−135λ 0
5λ2+15λ

λ3+24λ2−135λ
6λ2
−15λ

λ3+24λ2−135λ
2λ2
−60λ

λ3+24λ2−135λ 0
−60λ

λ3+24λ2−135λ
2λ2
−30λ

λ3+24λ2−135λ
4λ2+60λ

λ3+24λ2−135λ 0
0 0 0 0

 .
Thus,

lim
λ→0

M =


−

1
3 0 2

3 0
−

1
9

1
9

4
9 0

4
9

2
9 −

4
9 0

0 0 0 0

 = A( #O)
(L) .

6. The Bott-Duffin core inverse and constrained matrix approximation problem

The Frobenius norm is a matrix form of an m × n matrix A defined by

∥A∥F =

√√√ m∑
i=1

n∑
j=1

∣∣∣ai, j

∣∣∣2,
where ai, j represents the elements in the i-th row and j-th column of matrix A. In the following theorem,
we study the constrained matrix approximation problem in the Frobenius norm by using the Bott-Duffin
core inverse. Consider the following equation:

PLAx = b, (18)

where PLAPL ∈ CCM
n , L ⩽ Cn and T = R(PLAPL). When b < R(PLA), (18) is unsolvalble, it has least-squares

solutions. Therefore, we consider the least-squares solutions of (18) under the certain condition x ∈ T, i.e.,

∥PLAx − b∥F = min subject to x ∈ T. (19)

Theorem 6.1. Let A ∈ Cn×n and L ⩽ Cn be such that A( #O)
(L) exists. And let b ∈ Cn. Then,

x = A( #O)
(L) b (20)

is the unique solution of (19).

Proof. Since x ∈ T, it follows that there exists y ∈ Cn for which x = PLAPLy. Then, x is the solution of (19) if
and only if y is the solution of∥∥∥PLAPLAPLy − b

∥∥∥
F = min .

Denote

U∗y =
[

y1
y2

]
and U∗b =

[
b1
b2

]
,

where y1, b1 ∈ Cl. From (6) and (7), we have

∥PLAx − b∥2F =

∥∥∥∥∥∥
[

AL
2y1 − b1
−b2

]∥∥∥∥∥∥2

F

=
∥∥∥AL

2y1 − b1

∥∥∥2

F + ∥b2∥
2
F .
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Since A( #O)
(L) exists, we have AL ∈ C

CM
l . According to [5, Corollary 6], in (7), matrix AL ∈ Cl×l of rank r can

be represented in the form

AL = V
[
ΣK ΣL
O O

]
V∗, (21)

where l = dim(L), V ∈ Cl×l is unitary, Σ = diag(σ1Ir1 , . . . , σtIrt ) is the diagonal matrix of singular values of
AL, σ1 > σ2 > · · · > σt > 0, r1 + r2 + · · · + rt = r, and K ∈ Cr×r, L ∈ Cr×(l−r) satisfy

KK∗ + LL∗ = Ir

In [1, Lemma 2], Baksalary and Trenkler point out that if AL ∈ C
CM
l be of the form (21). Then

AL
#O = V

[
(ΣK)−1 O

O O

]
V∗. (22)

Denote

V∗y1 =

[
y1
′

y2
′

]
and V∗b1 =

[
b1
′

b2
′

]
,

where y1
′, b1

′
∈ Cr. It follows from (21) that∥∥∥AL

2y1 − b1

∥∥∥2

F =

∥∥∥∥∥∥
[

(ΣK)2y1
′ + ΣKΣLy2

′
− b1

′

−b2
′

]∥∥∥∥∥∥2

F

=
∥∥∥(ΣK)2y1

′ + ΣKΣLy2
′
− b1

′
∥∥∥2

F +
∥∥∥b2
′
∥∥∥2

F .

Since ΣK is invertible, we have miny1,y2

∥∥∥(ΣK)2y1
′ + ΣKΣLy2

′
− b1

′
∥∥∥2

F = 0, that is, ∥PLAPLx − b∥F = min =√
∥b2∥

2
F +

∥∥∥b2
′
∥∥∥2

F, in which y2
′
∈ Cl−r is arbitrary, and y1

′ = −(ΣK)−1ΣLy2
′ + (ΣK)−2b1

′. It follows from (22)
that

x = PLAPLy = U
[

AL O
O O

]
U∗y = U

[
ALy1

O

]
= U

 V
[

(ΣK)−1b1
′

O

]
O


= U

[
AL

#Ob1
O

]
= A( #O)

(L) b,

that is, (20) is the unique solution of (19).

When M ∈ Cn×n is nonsingular, it is well known that the solution of Mx = b is unique and x = M−1b,
where b ∈ Cn. Let x = (x1, x2, . . . , xn)T. Then,

x j =
det(M(i→ b))

det(M)
, i = 1, 2, . . . ,n (23)

is called Cramer’s rule for solving Mx = b. In the following Theorem, we give the unique least-square
solution of (19).

Theorem 6.2. Let A ∈ Cn×n, L ⩽ Cn, b ∈ Cn, T = R(PLAPL) and rank(PLAPL) = r be such that A( #O)
(L) exists, and let

F ∈ Cn×(n−r) with rank(F) = n− r and R(F) = T⊥. Then, (19) has the unique solution x = (x1, x2, . . . , xn)T satisfying

xi =

det
([

PLAPL(i→ b) F
F∗(i→ 0) O

])
det

([
PLAPL F

F∗ O

]) , (24)
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where i = 1, 2, . . . ,n.

Proof. From [13, Lemma 3.3], we have

G =
[

PLAPL F
F∗ O

]
is invertible and

G−1 =

 A( #O)
(L) (In − A( #O)

(L) PLAPL)F(F∗F)−1

(F∗F)−1F∗ O

 . (25)

Then we get the unique solution x̂ = G−1b̂ of Gx̂ = b̂, in which x̂∗ =
[

x∗ y∗
]∗

and b̂∗ =
[

b∗ O
]∗

. In terms
of (25), it follows that[

x
y

]
=

 A( #O)
(L) (In − A( #O)

(L) PLAPL)F(F∗F)−1

(F∗F)−1F∗ O

 [ b
O

]
=

 A( #O)
(L) b

(F∗F)−1F∗b

 .
Applying (23), we can obtain (24).

Example 6.3. Let the matrix A and the subspace L be as in Example 5.5, and let

b =
[

2 1 3 1
]T
, F =

[
2 −2 1 0
0 0 0 1

]T

.

It is clear that b < T, then (18) is unsolvable. Therefore, by using Theorem 6.1 and Theorem 6.2, we consider the

least-squares solutions of (18). We can check rank(F) = 2 and R(F) = T⊥. Let x =
[

x1 x2 x3 x4

]T
is the

unique solution of (19). By A( #O)
(L) in Example 5.5, applying (20) or (24), we can derive the components of x directly,

i.e.

x1 =
4
3
, x2 =

11
9
, x3 = −

2
9
, x4 = 0

In [3], let A ∈ Cn×n, b ∈ Cn and L ⩽ Cn, the constrained linear equation

Ax + y = b, x ∈ L, y ∈ L⊥ (26)

arise in electrical network theory. When APL + PL⊥ is nonsingular, the constrained linear equation (26) has
a unique solution

x = A(−1)
(L) b, y = (In − AA(−1)

(L) )b,

for any b ∈ Cn. In the following theorem, we discuss the solution of (26) when APL + PL⊥ ∈ CCM
n .

Theorem 6.4. Let A ∈ Cn×n, L ⩽ Cn and b ∈ R(APL+PL⊥ ) be such that A( #O)
(L) exists. The constrained linear equation

(26) has a unique solution

x = A( #O)
(L) b, y = (In − AA( #O)

(L) )b.

Proof. Let z = x+ y, we have PLz = PL(x+ y) = PLx+PLy = x and PL⊥z = PL⊥ (x+ y) = PL⊥x+PL⊥ y = y. Thus,

Ax + y = b ⇔ APLz + PL⊥z = b
⇔ (APL + PL⊥ )z = b. (27)

From Theorem 3.1, A( #O)
(L) exists if and only if APL + PL⊥ ∈ CCM

n . If b ∈ R(APL + PL⊥ ), then the core-inverse

solution of (27) is unique (see [7]), i.e. z = (APL + PL⊥ ) #Ob. Thus, x = PLz = A( #O)
(L) b and y = (In − AA( #O)

(L) )b.
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Example 6.5. Let the matrix A and the subspace L be as in Example 5.5, and let

bT =
[

5 8 6 5
]T
.

It is easy to check b ∈ R(APL + PL⊥ ). By Theorem 6.4 and A( #O)
(L) in Example 5.5, we can obtain the unique solution of

equation (26):

x = A( #O)
(L) b =

[
7
3 3 4

3 0
]T

and y = (I4 − AA( #O)
(L) ) =

[
0 0 0 −1

]T
.

7. Conclusion

The paper introduces a new generalized inverse, Bott-Duffin core inverse, which is a generalization of the
Bott-Duffin inverse. We study its properties, characterizations and representations. Moreover, we discuss
the application of Bott-Duffin core inverse, which is about constrained matrix approximation problem. On
a basis of the current research background, there are many topics on the Bott-Dufiin core inverse which can
be discussed. Some ideas are given as follows:

(1) It is possible to discuss the algebraic perturbation theory of Bott-Duffin core inverse and the expression
of the algebraic perturbation of Bott-Duffin core inverse.

(2) Consider the relationships between the Bott-Duffin core inverse and other generalized inverses.

(3) The integral representation, continuity, and iterative calculation of the Bott-Duffin core inverse all can
be discussed.
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