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Lie triple centralizers and generalized Lie triple derivations on
triangular operator algebras by local actions

Xinzhuo Liua,∗, Jianhua Zhanga
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Abstract. Let U be a triangular operator algebra, and ϕ : U → U be a linear map. In this paper, under
some mild conditions onU, we prove that if ϕ satisfies

ϕ([[U,V],W]) = [[ϕ(U),V],W] = [[U, ϕ(V)],W]

for any U,V,W ∈ U with UV = UW = P being the standard idempotent(resp. UV = UW = 0), then there
exist λ ∈ Z(U) and a linear map τ : U → Z(U) satisfying τ([[U,V],W]) = 0 for any U,V,W ∈ U with
UV = UW = P(resp.UV = UW = 0) such that ϕ(U) = λU + τ(U) for U ∈ U. As an application, we give a
characterization of generalized Lie triple derivations onU.

1. Introduction

Let X and Y be Banach spaces over the complex field C. By B(X) we denote the algebra of all bounded
linear operators on X. LetA and B be unital subalgebras of B(X) and B(Y), respectively. LetM ⊂ B(Y,X)
be a faithful (A,B)-bimodule, that is, for a ∈ A, aM = 0 implies a = 0, and for b ∈ B,Mb = 0 implies b = 0.
Under the usual matrix operations,

U = Tri(A,M,B) =
{(

a m
0 b

)
: a ∈ A,m ∈ M, b ∈ B

}
⊂ B(X ⊕Y)

is a triangular operator algebra with the unit I =
(

IA 0
0 IB

)
, where IA and IB are the units of the algebraA

and B, respectively. Denote

P1 =

(
IA 0
0 0

)
,P2 =

(
0 0
0 IB

)
,Ui j = PiUP j(1 ≤ i ≤ j ≤ 2),
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and P1 is called the standard idempotent. It is clear thatU can be represented asU =U11 +U12 +U22 and
U12 is a faithful (U11,U22)-bimodule. LetZ(U) be the center ofU. It follows from [7] that

Z(U) =
{(

a 0
0 b

)
: am = mb for all m ∈ M

}
.

Let us define two natural projections πA :U →A and πB :U → B by

πA

(
a m
0 b

)
= a and πB

(
a m
0 b

)
= b.

ThenπA(Z(U)) ⊆ Z(A) andπB(Z(U)) ⊆ Z(B). There exists a unique algebra isomorphismη : πA(Z(U))→
πB(Z(U)) such that am = mη(a) for all m ∈ M.

Recall that a linear map ϕ : U → U is called a centralizer if ϕ(UV) = ϕ(U)V = Uϕ(V) for all U,V ∈ U,
a linear map ϕ : U → U is called a Lie centralizer if ϕ([U,V]) = [ϕ(U),V] for all U,V ∈ U, where
[U,V] = UV − VU is the Lie product of U and V. The structure of Lie centralizers on rings and operator
algebras, has attracted some attention over past years. The relationship between a Lie centralizerϕ :U →U
and the sum of a centralizer φ : U → U and a map ζ : U → Z(U) has been studied(see [4], [8], [11] and
references therein). For example, in [4], Fošner and Jing proved that under mild assumptions, every Lie
centralizer ϕ from a triangular ring ℜ to itself is of standard form, that is, ϕ can be expressed through a
centralizer φ : ℜ → ℜ and a linear mapping ζ : ℜ → Z(ℜ) vanishing at commutators. Jabeen in [8]
considered Lie centralizers on generalized matrix algebras.

There exist some important classes of mappings on algebras, such as Lie triple centralizers and Lie triple
derivations, and their generalizations. A linear map ϕ :U →U is called a Lie triple centralizer if

ϕ([[U,V],W]) = [[ϕ(U),V],W]

for all U,V,W ∈ U. It can be easily checked thatϕ is a Lie triple centralizer onU if and only ifϕ([[U,V],W]) =
[[U, ϕ(V)],W] for all U,V,W ∈ U. Obviously every Lie centralizer is a Lie triple centralizer, but the converse
is generally not true. We say that a linear map σ :U →U is a Lie triple derivation if

σ([[A,B],C]) = [[σ(A),B],C] + [[A, σ(B)],C] + [[A,B], σ(C)]

for all A,B,C ∈ U. A linear map ∆ : U → U is called a generalized Lie triple derivation associated with
the Lie triple derivation σ

∆([[A,B],C]) = [[∆(A),B],C] + [[A, σ(B)],C] + [[A,B], σ(C)]

for all A,B,C ∈ U if and only if∆−σ is a Lie triple centralizer(see [2]). In [2], Fadaee et al. gave the necessary
and sufficient conditions for a Lie triple centralizer to be standard, and as an application, they characterized
generalized Lie triple derivations. Xiao [13] proved that under mild assumptions, every Lie triple derivation
δ onU is of standard form, that is, δ = d + τ, where d is a derivation fromU to itself and τ is a linear map
fromU toZ(U) vanishing on all second commutators ofU. Recently, there have been a great interest in the
study by local actions of Lie triple derivations and Lie triple centralizers. Liu[9] considered that Lie triple
derivations on zero product on factor von Neumann algebras. Liu[10] showed that Lie triple derivations
on projection product on von Neumann algebras. LetM be an arbitrary von Neumann algebra, Fadaee[3]
proved that if an additive map ϕ : M → M satisfies ϕ([[A,B],C]) = [[ϕ(A),B],C] = [[A, ϕ(B)],C] for any
A,B,C ∈ M with AB = 0, then ϕ(A) = WA + ξ(A) for any A ∈ M, where W ∈ Z(M) and ξ :M→ Z(M) is
an additive mapping such that ξ([[A,B],C]) = 0 for any A,B,C ∈ Mwith AB = 0.

In this paper, we will consider the structure of a kind of Lie triple centralizer by local actions on triangular
operator algebras. As an application, we give a characterization of generalized Lie triple derivations onU.



X. Liu, J. Zhang / Filomat 39:12 (2025), 4033–4042 4035

2. Main result

The main result is the following theorem.

Theorem 2.1 LetU = Tri(A,M,B) be a triangular operator algebra satisfying
•πA(Z(U)) = Z(A), πB(Z(U)) = Z(B)
•Z(A) = {A ∈ A|[[A,T],T] = 0,T ∈ A},Z(B) = {B ∈ B|[[B,T],T] = 0,T ∈ B}

If ϕ :U →U is a linear map satisfying

ϕ([[U,V],W]) = [[ϕ(U),V],W] = [[U, ϕ(V)],W]

for all U,V,W ∈ U with UV = UW = P1, then there exist λ ∈ Z(U) and τ : U → Z(U) such that
ϕ(U) = λU + τ(U) for U ∈ U, where τ([[U,V],W]) = 0 for all U,V,W ∈ U with UV = UW = P1.

Proof: We will complete the proof by several claims.

Claim 1 ϕ(P1) ∈ U11 +U22.
Since P1P1 = P1P1 = P1, we have

0 =ϕ([[P1,P1],P1]) = [[ϕ(P1),P1],P1] = ϕ(P1)P1 + P1ϕ(P1) − 2P1ϕ(P1)P1 = P1ϕ(P1)P2,

and hence ϕ(P1) ∈ U11 +U22.
Claim 2 ϕ(U12) ⊆ U12.

For any U12 ∈ U12, since (P1 +U12)P1 = (P1 +U12)P1 = P1, we have

ϕ(U12) =ϕ([[P1 +U12,P1],P1]) = [[P1 +U12, ϕ(P1)],P1]
=[[P1, ϕ(P1)],P1] + [[U12, ϕ(P1)],P1] = [[U12, ϕ(P1)],P1] = P1ϕ(P1)U12 −U12ϕ(P1)P2.

This implies that P1ϕ(U12)P1 = P2ϕ(U12)P2 = 0. Consequently, ϕ(U12) ⊆ U12.

Claim 3 ϕ(Uii) ⊆ U11 +U22(i = 1, 2).
For any invertible A11 ∈ U11, since A−1

11 A11 = A−1
11 A11 = P1, we get

0 =ϕ([[A−1
11 ,A11],A11]) = [[A−1

11 , ϕ(A11)],A11] = A−1
11ϕ(A11)A11 − ϕ(A11)P1 − P1ϕ(A11) + A11ϕ(A11)A−1

11 .

Multiplying the above equation by P2 from the right, we obtain that P1ϕ(A11)P2 = 0, and henceϕ(A11) ∈ U11+
U22. For any U11 ∈ U11, there exists an integer n such that nP1−U11 is invertible. Let U11 = nP1− (nP1−U11),
by the above and Claim 1, we have ϕ(U11) ∈ U11 +U22, U11 ∈ U11.

For any U22 ∈ U22, since (P1 +U22)P1 = (P1 +U22)P1 = P1, we get

0 =ϕ([[P1 +U22,P1],P1]) = ϕ([[P1,P1],P1]) + ϕ([[U22,P1],P1])
=ϕ([[U22,P1],P1]) = [[ϕ(U22),P1],P1] = ϕ(U22)P1 + P1ϕ(U22) − 2P1ϕ(U22)P1 = P1ϕ(U22)P2,

and so ϕ(U22) ∈ U11 +U22, U22 ∈ U22.

Claim 4 There exists a map τ :U →Z(U) such that ϕ(Uii) − τ(Uii) ∈ Uii, for all Uii ∈ Uii, i = 1, 2.
For any invertible element A11 ∈ U11 and A22 ∈ U22, since (A−1

11 +A22)A11 = (A−1
11 +A22)A11 = P1, we have

0 =ϕ([[A−1
11 + A22,A11],A11]) = [[ϕ(A−1

11 + A22),A11],A11] = [[ϕ(A−1
11 ),A11],A11] + [[ϕ(A22),A11],A11]

=[[ϕ(A22),A11],A11] = [[P1ϕ(A22)P1 + P2ϕ(A22)P2,A11],A11] = [[P1ϕ(A22)P1,A11],A11]. (2.1)

Since A11(A−1
11 + A22) = A11(A−1

11 + A22) = P1, we have

0 =ϕ([[A11,A−1
11 + A22],A−1

11 + A22]) = [[ϕ(A11),A−1
11 + A22],A−1

11 + A22]

=[[ϕ(A11),A−1
11 ],A−1

11 + A22] + [[ϕ(A11),A22],A−1
11 + A22]. (2.2)
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Since A11A−1
11 = A11(A−1

11 + A22) = P1, we have

0 =ϕ([[A11,A−1
11 ],A−1

11 + A22]) = [[ϕ(A11),A−1
11 ],A−1

11 + A22]. (2.3)

By Eqs. (2.2) and (2.3), then

0 =[[ϕ(A11),A22],A−1
11 + A22] = [[ϕ(A11),A22],A−1

11 ] + [[ϕ(A11),A22],A22] = [[P2ϕ(A11)P2,A22],A22]. (2.4)

By the condition of theorem 2.1 and Eqs. (2.1) and (2.4), we have P1ϕ(A22)P1 ∈ Z(U11) = P1Z(U)P1,
P2ϕ(A11)P2 ∈ Z(U22) = P2Z(U)P2. For any U11 ∈ U11, there exists some numbers n such that nP1 −U11 is
invertible. Then P1ϕ(U22)P1 ∈ Z(U11) = P1Z(U)P1, P2ϕ(U11)P2 ∈ Z(U22) = P2Z(U)P2.

For Uii ∈ Uii, i = 1, 2, let τ1(U11) = P2ϕ(U11)P2, τ2(U22) = P1ϕ(U22)P1. For U ∈ U, define the map
τ :U →Z(U) as

τ(U) = τ1(U11) + η−1(τ1(U11)) + τ2(U22) + η(τ2(U22)).

It is obvious that τ(U) ⊆ Z(U). Then for any U11 ∈ U11, it follows that

ϕ(U11) − τ(U11) =P1ϕ(U11)P1 + P2ϕ(U11)P2 − τ1(U11) − η−1(τ1(U11)) = P1ϕ(U11)P1 − η
−1(τ1(U11)) ∈ U11.

Similarly, we can obtain ϕ(U22) − τ(U22) ∈ U22.
Define a map φ :U →U as

φ(U) = ϕ(U) − τ(U)

for any U ∈ U. It follows from claims 2 and 4 that φ(U12) ⊆ U12, φ(Uii) = ϕ(Uii) − τ(Uii) ⊆ Uii with i = 1, 2
for all Uii ∈ Uii, meanwhile, φ(U12) = ϕ(U12), for all U12 ∈ U12.

Claim 5 For any Uii ∈ Uii (i = 1, 2), we have
(a) φ(U11U12) = φ(U11)U12 = U11φ(U12);
(b) φ(U12U22) = φ(U12)U22 = U12φ(U22).
(a) For any invertible element A11 ∈ U11, and U12 ∈ U12. Since (A−1

11 +A−1
11 U12)A11 = (A−1

11 +A−1
11 U12)A11 =

P1, we have

φ(A11U12) = ϕ(A11U12) = ϕ([[A−1
11 + A−1

11 U12,A11],A11]) = [[ϕ(A−1
11 + A−1

11 U12),A11],A11]

=[[ϕ(A−1
11 ),A11],A11] + [[ϕ(A−1

11 U12),A11],A11] = [[ϕ(A−1
11 U12),A11],A11]. (2.5)

Replace U12 with A11U12 in Eqs. (2.5), then

φ(A11A11U12) =[[ϕ(A−1
11 A11U12),A11],A11] = [[ϕ(U12),A11],A11] = A11A11ϕ(U12) = A11A11φ(U12).

For any U11 ∈ U11, there exists some numbers n such that we have nP1 −U11 is invertible. So

φ((nP1 −U11)(nP1 −U11)U12) = (nP1 −U11)(nP1 −U11)φ(U12),

and hence
φ(U11U12) = U11φ(U12) (2.6)

for all Ui j ∈ Ui j.
For any invertible element A11 ∈ U11 and U12 ∈ U12. We have

φ(A11U12) = ϕ(A11U12) = ϕ([[A−1
11 + A−1

11 U12,A11],A11])

=[[A−1
11 + A−1

11 U12, ϕ(A11)],A11] = [[A−1
11 , ϕ(A11)],A11] + [[A−1

11 U12, ϕ(A11)],A11] = [[A−1
11 U12, ϕ(A11)],A11]

=[[A−1
11 U12, φ(A11)],A11] = A11φ(A11)A−1

11 U12.

Replace U12 with A11U12, then φ(A11A11U12) = A11φ(A11)U12.
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For any U11 ∈ U11, we may find some numbers n such that nP1 −U11 is invertible. So

φ((nP1 −U11)(nP1 −U11)U12) = (nP1 −U11)φ(nP1 −U11)U12.

Thus,

n2φ(U12) − 2nφ(U11U12) + φ(U11U11U12) = n2φ(P1)U12 − nφ(U11)U12 − nU11φ(P1)U12 +U11φ(U11)U12.
(2.7)

Replace n with n + 1

(n + 1)2φ(U12) − 2(n + 1)φ(U11U12) + φ(U11U11U12)

=(n + 1)2φ(P1)U12 − (n + 1)φ(U11)U12 − (n + 1)U11φ(P1)U12 +U11φ(U11)U12. (2.8)

By Eqs.(2.6) (2.7) and (2.8), then

2nφ(U12) + φ(U12) − 2φ(U11U12) = 2nφ(P1)U12 + φ(P1)U12 − φ(U11)U12 −U11φ(P1)U12. (2.9)

Replace n with n + 1 in Eqs. (2.9)

2(n + 1)φ(U12) + φ(U12) − 2φ(U11U12) = 2(n + 1)φ(P1)U12 + φ(P1)U12 − φ(U11)U12 −U11φ(P1)U12.
(2.10)

By Eqs. (2.9) and (2.10), then
φ(U12) = φ(P1)U12. (2.11)

By Eqs. (2.6), (2.7), (2.8), (2.11), then
φ(U11U12) = φ(U11)U12.

We can prove that (a) is true.

(b) For any U22 ∈ U22, and U12 ∈ U12. Since (P1 + U12)(P1 + U22 − U12U22) = (P1 + U12)P1 = P1, we
have

φ(U12) = ϕ(U12) = ϕ([[P1 +U12,P1 +U22 −U12U22],P1]) = [[P1 +U12, ϕ(P1) + ϕ(U22) − ϕ(U12U22)],P1]
=[[P1 +U12, ϕ(P1)],P1] + [[P1 +U12, ϕ(U22)],P1] − [[P1 +U12, ϕ(U12U22)],P1]
=[[U12, ϕ(P1)],P1] + [[U12, ϕ(U22)],P1] − [[P1, ϕ(U12U22)],P1]
=[[U12, φ(P1)],P1] + [[U12, φ(U22)],P1] − [[P1, φ(U12U22)],P1] = P1φ(P1)U12 −U12φ(U22) + φ(U12U22).

Then, φ(U12U22) = U12φ(U22) and φ(U12U22) = φ(P1U12U22) = φ(P1)U12U22 = φ(U12)U22. We can prove that
(b) is true.

Claim 6 For any Aii ∈ Uii,Bii ∈ Uii,S12 ∈ U12(i = 1, 2), we have
(a) φ(A11B11) = φ(A11)B11 = A11φ(B11);
(b) φ(A22B22) = φ(A22)B22 = A22φ(B22);
(a) For any S12 ∈ U12, by claim 5, on the one hand,

φ(A11B11S12) = φ(A11B11)S12.

On the other hand,
φ(A11B11S12) = A11φ(B11S12) = A11φ(B11)S12.

Combining the above two equations, we have

(A11φ(B11) − φ(A11B11))S12 = 0.
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SinceM is faithful (A,B)-bimodule, we get φ(A11B11) = A11φ(B11).

φ(A11B11S12) = φ(A11)B11S12 = φ(A11B11)S12

that φ(A11B11) = φ(A11)B11 = A11φ(B11). We can show that (a) holds.
(b) It follows from Claims 5 that

φ(S12A22B22) = S12φ(A22B22).

On the other hand,
φ(S12A22B22) = φ(S12A22)B22 = S12φ(A22)B22

Combining the above two equations, we have

S12(φ(A22B22) − A22φ(B22)) = 0

SinceM is faithful (A,B)-bimodule, we getφ(A22B22) = A22φ(B22). Similarly, we can obtain thatφ(A22B22) =
φ(A22)B22, and hence φ(A22B22) = φ(A22)B22 = A22φ(B22).

We can show that (b) holds.

So, from steps 1-6, it follows that
φ(AB) = Aφ(B) = φ(A)B.

for all A,B ∈ U, then
φ(A) = λA(λ ∈ Z(U)).

Claim 7 τ([[U,V],W]) = 0 for all U,V,W ∈ U with UV = UW = P1.
For UV = UW = P1, it follows that

τ([[U,V],W]) = ϕ([[U,V],W]) − φ([[U,V],W]) = [[ϕ(U),V],W] − φ([[U,V],W])
=[[φ(U) + τ(U),V],W] − φ([[U,V],W]) = [[φ(U),V],W] − φ([[U,V],W]) = 0.

It follows from claim 1-7 that there exists a λ ∈ Z(U) and a linear map τ : U → Z(U) such that
ϕ(U) = λU + τ(U)(U ∈ U), where τ([[U,V],W]) = 0 for any U,V,W ∈ U with UV = UW = P1.
Theorem 2.2 LetU = Tri(A,M,B) be a triangular operator algebra satisfying
•πA(Z(U)) = Z(A), πB(Z(U)) = Z(B).
•Z(A) = {A ∈ A|[[A,X],Y] = 0,X,Y ∈ A},Z(B) = {B ∈ B|[[B,X],Y] = 0,X,Y ∈ B}.

If ϕ :U →U is a linear map satisfying

ϕ([[U,V],W]) = [[ϕ(U),V],W] = [[U, ϕ(V)],W]

for all U,V,W ∈ U with UV = UW = 0, then there exist λ ∈ Z(U) and τ : U → Z(U) such that
ϕ(U) = λU + τ(U) for U ∈ U, where τ([[U,V],W]) = 0 for all U,V,W ∈ U with UV = UW = 0.

Proof: We will use the same symbols with that in Theorem 2.1. We organize the proof in a series of
claims.

Claim 1 ϕ(P1) ∈ U11 +U22.
Since P1P2 = P1P2 = 0, we have

0 =ϕ([[P1,P2],P2]) = [[ϕ(P1),P2],P2] = P1ϕ(P1)P2.

We obtain that ϕ(P1) ∈ U11 +U22.

Claim 2 ϕ(U12) ⊆ U12.
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For any U12 ∈ U12, since U12P1 = U12P1 = 0, we have

ϕ(U12) =ϕ([[U12,P1],P1]) = [[U12, ϕ(P1)],P1] = −U12ϕ(P1) + P1ϕ(P1)U12.

This implies that P1ϕ(U12)P1 = P2ϕ(U12)P2 = 0. Consequently, ϕ(U12) ⊆ U12.

Claim 3 ϕ(Uii) ⊆ U11 +U22(i = 1, 2).
For any U11 ∈ U11, since U11P2 = U11P2 = 0, we get

0 =ϕ([[U11,P2],P2]) = [[ϕ(U11),P2],P2] = P1ϕ(U11)P2,

and hence ϕ(U11) ∈ U11 +U22. Similarly, ϕ(U22) ∈ U11 +U22, U22 ∈ U22.

Claim 4 There exists a map τ :U →Z(U) such that ϕ(Uii) − τ(Uii) ∈ Uii, for all Uii ∈ Uii, i = 1, 2.
For any Uii ∈ Uii, since U22U11 = U22U12 = 0, we have

0 =ϕ([[U22,U11],U12]) = [[ϕ(U22),U11],U12],

so [ϕ(U22),U11] ∈ Z(U). Then, we obtain that [P1ϕ(U22)P1,U11] ∈ Z(U11). Similarly, we obtain that
[U22,P2ϕ(U11)P2] ∈ Z(U22). By the condition of theorem 2.2, we have P1ϕ(U22)P1 ∈ Z(U11) = P1Z(U)P1,
P2ϕ(U11)P2 ∈ Z(U22) = P2Z(U)P2.

For Uii ∈ Uii, i = 1, 2, let τ1(U11) = P2ϕ(U11)P2, τ2(U22) = P1ϕ(U22)P1. For U ∈ U, define the map
τ :U →Z(U) as

τ(U) = τ1(U11) + η−1(τ1(U11)) + τ2(U22) + η(τ2(U22)).

It is obvious that τ(U) ⊆ Z(U). Then for any U11 ∈ U11, it follows that

ϕ(U11) − τ(U11) =P1ϕ(U11)P1 + P2ϕ(U11)P2 − τ1(U11) − η−1(τ1(U11)) = P1ϕ(U11)P1 − η
−1(τ1(U11)) ∈ U11.

Similarly, we can obtain ϕ(U22) − τ(U22) ∈ U22.
Define a map φ :U →U as

φ(U) = ϕ(U) − τ(U)

for any U ∈ U. It follows from claims 2 and 4 that φ(U12) ⊆ U12, φ(Uii) = ϕ(Uii) − τ(Uii) ⊆ Uii with i = 1, 2
for all Uii ∈ Uii, meanwhile, φ(U12) = ϕ(U12), for all U12 ∈ U12.

Claim 5 For any Uii ∈ Uii (i = 1, 2), we have
(a) φ(U11U12) = φ(U11)U12 = U11φ(U12);
(b) φ(U12U22) = φ(U12)U22 = U12φ(U22).
(a) For any invertible element U11 ∈ U11, and U12 ∈ U12. Since U12U11 = U12P1 = 0, we have

φ(U11U12) = ϕ(U11U12) = ϕ([[U12,U11],P1]) = [[ϕ(U12),U11],P1] = U11ϕ(U12) = U11φ(U12)

and,

φ(U11U12) = ϕ(U11U12) = ϕ([[U12,U11],P1]) = [[U12, ϕ(U11)],P1] = [[U12, φ(U11)],P1] = φ(U11)U12

We can show that (a) holds.
(b) Similarly, we can show that (b) holds.

Claim 6 For any Aii ∈ Uii,Bii ∈ Uii,S12 ∈ U12(i = 1, 2), we have
(a) φ(A11B11) = φ(A11)B11 = A11φ(B11);
(b) φ(A22B22) = φ(A22)B22 = A22φ(B22);
(a)For any S12 ∈ U12, by claim 5, on the one hand,

φ(A11B11S12) = φ(A11B11)S12.
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on the other hand,
φ(A11B11S12) = A11φ(B11S12) = A11φ(B11)S12.

Combining the above two equations, we have

(A11φ(B11) − φ(A11B11))S12 = 0.

SinceM is faithful (A,B)-bimodule, we get φ(A11B11) = A11φ(B11).

It follows from
φ(A11B11S12) = φ(A11)B11S12 = φ(A11B11)S12

that φ(A11B11) = φ(A11)B11 = A11φ(B11). We can show that (a) holds.

(b) Similarly, we can show that (b) holds.

So, from steps 1-6, it follows that
φ(AB) = Aφ(B) = φ(A)B.

for all A,B ∈ U, then
φ(A) = λA(λ ∈ Z(U)).

Claim 7 τ([[U,V],W]) = 0 for all U,V,W ∈ U with UV = UW = 0.
For UV = UW = 0, it follows that

τ([[U,V],W]) = ϕ([[U,V],W]) − φ([[U,V],W]) = [[ϕ(U),V],W] − φ([[U,V],W])
=[[φ(U) + τ(U),V],W] − φ([[U,V],W]) = [[φ(U),V],W] − φ([[U,V],W]) = 0.

Hence there exists a λ ∈ Z(U) and a linear map τ : U → Z(U) such that ϕ(U) = λU + τ(U)(U ∈ U),
where τ([[U,V],W]) = 0 for any U,V,W ∈ U with UV = UW = 0.

3. Application

Application 1: characterization of generalized Lie triple derivations by acting on idempotent products.
Theorem 3.1

LetU = Tri(A,M,B) be a triangular operator algebra satisfying
(1)πA(Z(U)) = Z(A), πB(Z(U)) = Z(B),
(2)Z(A) = {A ∈ A|[[A,T],T] = 0,T ∈ A},Z(B) = {B ∈ B|[[B,T],T] = 0,T ∈ B}.

Suppose that a linear map σ :U →U

σ([[A,B],C]) = [[σ(A),B],C] + [[A, σ(B)],C] + [[A,B], σ(C)]

for all A,B,C ∈ U with AB = AC = P1, then σ is of the form σ = φ + h, where φ : U → U is a derivation, a
linear map h :U →Z(U) vanishing on [[A,B],C] for all A,B,C ∈ U with AB = AC = P1.
Theorem 3.2 LetU = Tri(A,M,B) be a triangular operator algebra satisfying
•πA(Z(U)) = Z(A), πB(Z(U)) = Z(B),
•Z(A) = {A ∈ A|[[A,T],T] = 0,T ∈ A},Z(B) = {B ∈ B|[[B,T],T] = 0,T ∈ B}.

Suppose that a linear map ∆ :U →U

∆([[A,B],C]) = [[∆(A),B],C] + [[A, σ(B)],C] + [[A,B], σ(C)]

for all A,B,C ∈ U with AB = AC = P1. Then, there exist λ ∈ Z(U), a derivation φ and h1 :U →Z(U) such
that

∆(A) = φ(A) + h1(A) + λA
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for A ∈ U, where h1([[A,B],C]) = 0 for all A,B,C ∈ U with AB = AC = P1.
Proof: According to the theorem 3.1, there are linear maps φ and h onU,

φ :U →U h :U →Z(U)

h([A,B],C]) = 0 with AB = AC = P1. By assumption, for a Lie triple centralizer ϕ = ∆ − σ onU, we have

A,B,C ∈ U,AB = AC = P1 ⇒ ϕ([[A,B],C]) = [[ϕ(A),B],C] = [[A, ϕ(B)],C]

It follows from the result of this paper that there exist λ ∈ Z(U) and a linear map τ on U such that
ϕ(A) = λA + τ(A), where τ(A) ∈ Z(U) for all A ∈ U and τ([[A,B],C]) = 0,AB = AC = P1. Suppose
that h1 = τ + h, thus h1 : U → Z(U) is a linear map where h1([[A,B],C]) = 0 for all A,B,C ∈ U with
AB = AC = P1. Thus, we have

∆(A) =σ(A) + ϕ(A) = φ(A) + h(A) + λA + τ(A) = φ(A) + h1(A) + λA

for all A ∈ U, this completes the proof.

Application 2: characterization of generalized Lie triple derivations by acting on zero products.
Theorem 3.3 LetU = Tri(A,M,B) be a triangular operator algebra satisfying
(1)πA(Z(U)) = Z(A), πB(Z(U)) = Z(B),
(2)Z(A) = {A ∈ A|[[A,X],Y] = 0,X,Y ∈ A},Z(B) = {B ∈ B|[[B,X],Y] = 0,X,Y ∈ B}.

Suppose that a linear map σ :U →U,

σ([[A,B],C]) = [[σ(A),B],C] + [[A, σ(B)],C] + [[A,B], σ(C)]

for all A,B,C ∈ U with AB = AC = 0, then σ is of the form σ = φ + h, where φ : U → U is a derivation, a
linear map h :U →Z(U) vanishing on [[A,B],C] for all A,B,C ∈ U with AB = AC = 0.
Theorem 3.4 LetU = Tri(A,M,B) be a triangular operator algebra satisfying
•πA(Z(U)) = Z(A), πB(Z(U)) = Z(B),
•Z(A) = {A ∈ A|[[A,X],Y] = 0,X,Y ∈ A},Z(B) = {B ∈ B|[[B,X],Y] = 0,X,Y ∈ B}.

Suppose that a linear map ∆ :U →U,

∆([[A,B],C]) = [[∆(A),B],C] + [[A, σ(B)],C] + [[A,B], σ(C)]

for all A,B,C ∈ U with AB = AC = 0. Then, there exist λ ∈ Z(U), a derivation φ and h1 : U → Z(U) such
that

∆(A) = φ(A) + h1(A) + λA.

for A ∈ U, where h1([[A,B],C]) = 0 for all A,B,C ∈ U with AB = AC = 0.
Proof: According to the theorem 3.3, there exist linear maps φ and h onU

φ :U →U h :U →Z(U)

h([A,B],C]) = 0 with AB = AC = 0. By assumption, for a Lie triple centralizer ϕ = ∆ − σ onU, we have

A,B,C ∈ U,AB = AC = 0⇒ ϕ([[A,B],C]) = [[ϕ(A),B],C] = [[A, ϕ(B)],C]

It follows from the result of this paper that there exist λ ∈ Z(U) and a linear map τ on U such that
ϕ(A) = λA + τ(A), where τ(A) ∈ Z(U) for all A ∈ U and τ([[A,B],C]) = 0,AB = AC = 0. Suppose that
h1 = τ+h, thus h1 :U →Z(U) is a linear map where h1([[A,B],C]) = 0 for all A,B,C ∈ Uwith AB = AC = 0.
Thus, we have

∆(A) =σ(A) + ϕ(A) = φ(A) + h(A) + λA + τ(A) = φ(A) + h1(A) + λA

for all A ∈ U, this completes the proof.
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