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Abstract. In this paper, we have determined the adjacency, the Laplacian and the signless Laplacian
spectra of quasi-corona R-vertex join, represented by G⌊u⌋H and quasi-corona R-edge join, represented by
G⌊e⌋H and obtain several adjacency, Laplacian and signless Laplacian cospectral of non-regular graphs.
Further, we have also determined the Kirchhoff’s indices, Laplacian-energy-like-invariant (LEL) and the
number of spanning trees from Laplacian spectra.

1. Introduction

Consider a simple graph having n vertices and m edges, denoted as G = (U,E). LetU = {u1,u2, . . . ,un}

be the vertex set and E = {e1, e2, . . . , em} be the edge set of G.
The adjacency matrix of the graph G is n × n square matrix and defined as A(G) = [ai j], where

ai j =

{
1, if ui ∼ u j,
0, otherwise.

The incidence matrix of G is n ×m matrix and defined as B(G) = [bi j], where

bi j =

{
1, if e j is incident on ui,
0, otherwise.

Let L(G) be the line graph and consider B(G) = B. Then BTB = A(L(G)) + 2Im and BBT = A(G) + rIn, where
In and Im are the identity matrices. The Laplacian matrix L(G) and the signless Laplacian matrix Q(G) is
defined as D(G)−A(G) and D(G)+A(G) respectively, where D(G) be the diagonal matrix. The characteristic
polynomials of A(G), L(G) and Q(G) are defined as ΦG(A; x) = |xIn − A(G)|, ΦG(L; x) = |xIn − L(G)| and
ΦG(Q; x) = |xIn − Q(G)|, respectively. The eigenvalues of A(G) are the adjacency eigenvalues of G and are
denoted by λ1 ≥ λ2 ≥ · · · ≥ λn. Similarly, µ1 ≤ µ2 ≤ · · · ≤ µn and ν1 ≥ ν2 ≥ · · · ≥ νn denote respectively
the eigenvalues of L(G) and Q(G). Also, the eigenvalues (with multiplicities) of A, L and Q-spectrum is
denoted by {λm1

1 , λ
m2
2 , . . . , λ

mn
n }, {µ

m1
1 , µ

m2
2 , . . . , µ

mn
n } and {νm1

1 , ν
m2
2 , . . . , ν

mn
n } respectively, where m1,m2, . . . ,mn

are its multiplicities. Moreover, if two graphs share the same spectrum, they are referred to as cospectral.
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For any connected graph G, the sum of the resistance distances between all pairs of vertices of G is the
Kirchhoff index, denoted by K f (G) and is defined as K f (G) = n

∑n
i=2

1
µi(G) . The Laplacian spectrum based

graph invariant, Laplacian energy-like-invariant LEL, is defined as LEL(G) =
∑n2

i=2
√
µi and the spanning

trees with n vertices is determined by t(G) = µ2(G)...µn(G)
n .

Several graph operations exist in the literature, such as the complement, union, join, corona operations
and graph product. Their spectra are determined in [1, 3, 5, 8, 11, 13, 14, 17]. Borah, Singh and Prasad [2]
defined four new graphs based on subdivision and central graph, and obtained their A, L, and Q spectra.
As an application, the number of spanning trees and the Kirchhoff’s indices are determined. Given a graph
G, the R- graph [5] is the graph obtained from G by introducing a new vertex to each edge of G and then
joining each new vertex to the end vertices of that edge. Lan and Zhou [12] determined A, L and Q-
spectra of the resulting graphs based on R- graph. Also, they used their results to obtain several pairs of
non-regular A, L and Q-cospectral graphs. Das and Panigrahi [7] obtained A, L and Q- spectra of R-vertex
and edge join graphs and determined pairs of non-regular A, L and Q-cospectral graphs. Hou et al.[10]
defined quasi-corona SG -vertex join and multiple SG- vertex join of graphs and obtained their adjacency
spectra for regular graphs.

Consider two graphs G andH with n1 and n2 vertices, and m1 and m2 edges.

Definition 1.1. The quasi-corona R-vertex join of G and H , represented by G⌊u⌋H , is a graph constructed
from R(G) and H by choosing a copy of R(G) and n1 copies of G and then connecting each old vertex of G
to every vertex ofH .

Definition 1.2. The quasi-corona R-edge join of G andH , represented by G⌊e⌋H , is a graph constructed from
R(G) and H by choosing a copy of R(G) and n1 copies of H and then connecting each new vertex of G to
every vertex ofH .

We observe that G⌊u⌋H and G⌊e⌋H have the same number of vertices n1 + m1 + n1n2 and G⌊v⌋H has
2n1 + n1m2 + n2

1n2 edges and G⌊e⌋H has n1 +m1m2 +m2
1n2 edges.

Example 1.3. Let us take G = K3 andH = P2, then K3⌊u⌋P2 and K3⌊e⌋P2 are given by Figure 1 and Figure 2
respectively.

Figure 1: K3⌊u⌋P2

The M-Coronal, represented by ΓM(x)[16], is defined as ΓM(x) = JT
n (xIn −M)−1 Jn, where M is the square

matrix of order n and Jn is the column matrix of order n × 1 whose entries are 1 and ΓM(x) = n
x−t if row sum

of n order square matrix is equal to a constant t. Further, for the Laplacian matrix L(G), ΓL(x) = n
x [16] and

for the signless Laplacian matrix Q(x), ΓQ(x) = n
x−2r [6].

From [5, 7, 14], we get the following lemmas which will be used in our proof.

Lemma 1.4 (([14])). det(M+ γJn×n) = det(M)+ γJT
n×1adj(M)Jn×1, where adj(M) is the adjoint of M and γ is a real

number. Further, det(xIn −M − γJn) = {1 − γΓM(x)}det(xIn −M).
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Figure 2: K3⌊e⌋P2

Lemma 1.5. ([5]) Let B1,B2,B3 and B4 be four b1 × b1, b1 × b2, b2 × b1 and b2 × b2 matrices, where B1 and B4 are
non-singular square matrices. Then,

det
(
B1 B2
B3 B4

)
= det(B4) det(B1 − B2B−1

4 B3) = det(B1) det(B4 − B3B−1
1 B2).

Lemma 1.6. ([7]) For any real numbers p, q > 0, we get

(pIn − qJn×n)−1 =
1
p

In +
q

p(p − nq)
Jn×n.

The Kronecker product of two matrices A = (ai j) of order a1 × a2 and B = (bi j) of order b1 × b2, denoted
by A ⊗ B, is defined as the matrix of order a1b1 × a2b2 and is obtained by replacing each ai j of A by ai jB [9].
Also, for any four matrices B1,B2,B3 and B4, we get (B1 ⊗ B2)(B3 ⊗ B4) = B1B3 ⊗ B2B4. Further, for any two
non-singular matrices B1 and B2 it follows that (B1 ⊗ B2)−1 = B−1

1 ⊗ B−1
2 and det(B1 ⊗ B2) = (det B1)u(det B2)v,

where u and v are respectively the order of the square matrices B1 and B2.
First, we determine A, L and Q spectra of quasi-coronaR-vertex and quasi-coronaR-edge join of graphs.

Then, we have shown the existence of simultaneous pairs of cospectral graphs of these two graphs. Further,
we obtain the Kirchhoff index, Laplacian-energy-like-invariant and the number of spanning trees.

2. Spectra of quasi-corona R- vertex join

We start with the following result about adjacency spectra of G⌊u⌋H .

Theorem 2.1. ([10]) Let G be an r1- regular andH be any graph, then

ΦG⌊u⌋H (A; x) = xm1−n1

n2∏
i=2

{x − λi(H)}n1

n1∏
i=2

{x2
− λi(G)x − r1 − λi(G)}{x2

− r1x − 2r1 − n1xΓA(H)⊗In1
(x)}.

Now, we have the following observations from the above Theorem 2.1.
Observations.

(1) IfH is an r2 regular graph, then A-spectrum of G⌊u⌋H contains the following eigenvalues

(i) 0 with multiplicities m1 − n1.

(ii) λ j(H) with multiplicities n1, j = 2, 3, · · · n2

(iii) the roots of the quadratic equation x2
− λi(G)x − r1 − λi(G) = 0, i = 2, 3, · · · n1

(iv) the roots of the cubic equation x3
− (r1 + r2)x2 + (r1r2 − 2r1 − n2

1n2)x + 2r1r2 = 0

(2) IfH = Ka,b, then the A-spectrum of G⌊u⌋Ka,b contains the following eigenvalues
(i) 0 with multiplicities m1 + n1(a + b − 3)
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(ii) ±
√

ab with multiplicities n1

(iii) the roots of the quadratic equation x2
− λi(G)x − λi(G) − r1 = 0 and

(iv) the roots of the quadratic equation x2
− r1x − 2r1 − n1xΓA(Ka,b)⊗In1

(x) = 0.

Now, we determine the L- spectra of G⌊v⌋H.

Theorem 2.2. Let G be an r1-regular andH be any graph, then

ΦG⌊u⌋H (L; x) = (x − 2)m1−n1 x{x2
− (2 + r1 + n1 + n1n2)x + (2n1 + n1r1 + 2n1n2)}

n2∏
j=2

{x − n1 − µ j(H)}n1

n1∏
i=2

{x2
− (r1 + n1n2 + 2 + µi(G))x + 2n1n2 + 3µi(G)}.

Proof. By proper labelling of the vertices, L(G⌊u⌋H) can be expressed as

L(G⌊u⌋H) =

(r1 + n1n2)In1 + L(G) −B −Jn1×n2 ⊗ JT
n1

−BT 2Im1 0m1×n2 ⊗ JT
n1

−Jn2×n1 ⊗ Jn1 0n2×m1 ⊗ Jn1 n1In2 + L(H) ⊗ In1

 .
The characteristic polynomial of L(G⌊u⌋H) is ΦG⌊u⌋H (L; x)

=det(xIn1n2+n1+m1 − L(G⌊u⌋H))

=det

(x − r1 − n1n2)In1 − L(G) B Jn1×n2 ⊗ JT
n1

BT (x − 2)Im1 0m1×n2 ⊗ JT
n1

Jn2×n1 ⊗ Jn1 0n2×m1 ⊗ Jn1 {(x − n1)In2 − L(H)} ⊗ In1


=det{((x − n1)In2 − L(H)) ⊗ In1 }det S,

where,

S =
(
(x − r1 − n1n2)In1 − L(G) B

BT (x − 2)Im1

)
−

(
Jn1×n2 ⊗ JT

n1

0m1×n2 ⊗ JT
n1

) ((
(x − n1)In2 − L(H)

)−1
⊗ In1

)(
−Jn2 ⊗ JT

n1
0n2×n1 ⊗ JT

n1

)
=

(
(x − r1 − n1n2)In1 − L(G) B

BT (x − 2)Im1

)
−

(
ΓL(H)⊗In1

(x − n1)Jn1×n1 0n1×m1

0m1×n1 0m1×m1

)
=

(
(x − r1 − n1n2)In1 − ΓL(H)⊗In1

(x − n1)Jn1×n1 − L(G) B
BT (x − 2)Im1

)
.

So,

det S =det{(x − 2)Im1 }det{(x − r1 − n1n2)In1 − ΓL(H)⊗In1
(x − n1)Jn1×n1 − L(G) −

1
x − 2

BBT
}

=det{(x − 2)Im1 }{1 − ΓL(H)⊗In1
(x − n1)ΓL(G)+ BBT

x−2
(x − r1 − n1n2)}det{(x − r1 − n1n2)In1 −

1
x − 2

BBT
}

Since,

ΓL(G)+ BBT
x−2

(x − r1 − n1n2) =
n1(x − 2)

x2 − (2 + r1 + n1n2)x + 2n1n2

and
ΓL(H)⊗In1

(x − n1) =
n1n2

x − n1
,
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We get,

det S = det{(x − 2)Im1 }

{
1 −

n1n2

x − n1

(
n1(x − 2)

x2 − (2 + r1 + n1n2)x + 2n2

)}
× det

{
(x − r1 − n1n2)In1 −

1
x − 2

(A(G) + r1In1 )
}

= (x − 2)m1−n1 {x3
− (2 + r1 + n1 + n1n2)x2 + (2n1 + n1r1 + 2n1n2)x}

n1∏
i=1

{x2
− (r1 + n1n2 + 2 + µi(G))x + 2n1n2 + 3µi(G)}

Applying the fact that λi(G) = r1 − µi(G), µ1(G) = 0 and µ1(H) = 0, gives the desired L-spectrum of
G⌊u⌋H .

From Theorem 2.2, we get the following observations.
Observations.

(1) If G is an r1 regular andH is a r2 regular graphs, then L-spectrum of G⌊u⌋H contains

(i) 0

(ii) 2 with multiplicities m1 − n1

(iii) n1 + µ j(H) with multiplicities n1

(iv) the roots of the quadratic equation x2
−(2+r1+n1n2+µi(G))x+2n1n2+3µi(G) = 0, i = 2, 3, 4, . . . ,n1

and

(v) the roots of the quadratic equation x2
− (2 + r1 + n1 + n1n2)x + (2n1 + n1r1 + 2n1n2) = 0.

(2) If G is an r1 regular andH = Kn2 , then L-spectrum of G⌊u⌋Kn2 contains

(i) 0

(ii) 2 with multiplicities m1 − n1

(iii) n1 with multiplicities n1

(iv) n1 + n2 with multiplicities n1n2 − n1

(v) the roots of the quadratic equation x2
−(2+r1+n1n2+µi(G))x+2n1n2+3µi(G) = 0, i = 2, 3, 4, . . . ,n1

and

(vi) the roots of the quadratic equation x2
− (2 + r1 + n1 + n1n2)x + (2n1 + n1r1 + 2n1n2) = 0.

Next, we determine the Q-spectrum of G⌊u⌋H .

Theorem 2.3. Let G be an r1-regular andH be a r2 regular graph, then

ΦG⌊u⌋H (Q; x) = (x − 2)m1−n1 (x3
− (3r1 + 2 + n1n2 + 3r2)x2 + (2n1n2 + 4r1 + 3n1n2r2 + 9r1r2 + 6r2 − n2

1n2)x

− 6n1n2r2 − 12r1r2 + 2n2
1n2)

n2∏
j=2

{x − n1 − ν j(H)}n1

n1∏
i=2

{x2
− (r1 + n1n2 + 2 + νi(G))x + 2n1n2 + 2r1 − νi(G)}.

Proof. The Q matrix of G⌊u⌋H can be expressed as

L(G⌊u⌋H) =

(r1 + n1n2)In1 +Q(G) −B −Jn1×n2 ⊗ JT
n1

−BT 2Im1 0m1×n2 ⊗ JT
n1

−Jn2×n1 ⊗ Jn1 0n2×m1 ⊗ Jn1 n1In2 +Q(H) ⊗ In1


The proof of the remaining part is similar to the proof of Theorem 2.2.
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From Theorem 2.3, we get the following observations.
Observations.

(1) If G is an r1 regular and H is a r2 regular graph, then Q-spectrum of G⌊u⌋H contains the following
eigenvalues

(i) 2 with multiplicities m1 − n1

(ii) n1 + ν j(H) with multiplicities n1

(iv) the roots of the quadratic equation x2
−(2+r1+n1n2+νi(G))x+2n1n2+2r1−νi(G) = 0, i = 2, 3, 4, . . . ,n1

and

(v) the roots of the cubic equation x3
− (3r1 + 2 + n1n2 + 3r2)x2 + (2n1n2 + 4r1 + 3n1n2r2 + 9r1r2 + 6r2 −

n2
1n2)x − 6n1n2r2 − 12r1r2 + 2n2

1n2 = 0.

3. Spectra of the quasi-corona R edge join G⌊e⌋H

We begin with the adjacency spectra of G⌊e⌋H for regular graphs.

Theorem 3.1. Let G be an r1- regular andH be a r2 regular graph, then

ΦG⌊e⌋H (A; x) = xm1−n1 x{x3
− (r1 + r2)x2

− (2r1 +m1n1n2 − r1r2)x + 2r1r2 + r1m1n1n2}

n2∏
j=2

{x − λ j(H)}n1

n1∏
i=2

{x2
− λi(G)x − r1 − λ(G)}.

Proof. By labelling the vertices appropriately, A(G⌊e⌋H) becomes

A(G⌊e⌋H) =

 A(G) B 0n1×n2 ⊗ JT
n1

BT 0m1×m1 Jm1×n2 ⊗ JT
n1

0n2×n1 ⊗ Jn1 Jn2×m1 ⊗ Jn1 A(H) ⊗ In1


The characteristic polynomial is

ΦG⌊e⌋H (A; x) = det

xIn1 − A(G) −B 0n1×n2 ⊗ JT
n1

−BT xIm1 −Jm1×n2 ⊗ JT
n1

0n2×n1 ⊗ Jn1 −Jn2×m1 ⊗ Jn1 (xIn2 − A(H)) ⊗ In1


=det{(xIn2 − A(H)) ⊗ In1 }det S
=det(xIn2 − A(H))n1 det S,

where,

S =
(
xIn1 − A(G) −B
−BT xIm1

)
−

(
0n1×n2 ⊗ JT

n1

−Jm1×n2 ⊗ JT
n1

) (
(xIn2 − A(H))−1

⊗ In1

)(
0n2×n1 ⊗ Jn1 − Jn2×m1 ⊗ Jn1

)
=

(
xIn1 − A(G) −B
−BT xIm1 − ΓA(H)⊗In1

(x)Jm1×m1

)
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So,

det S =det{xIm1 − ΓA(H)⊗In1
(x)Jm1×m1 }det{xIn1 − A(G) − B

(
xIm1 − ΓA(H)⊗In1

(x)Jm1×m1

)−1
BT
}

=xm
1

{
1 − ΓA(H)⊗In1

(x)
m1

x

}
det{xIn1 − A(G) − B(xIm1 − ΓA(H)⊗In1

(x)Jm1×m1 )−1BT
}

=xm
1

{
1 − ΓA(H)⊗In1

(x)
m1

x

}
det

{
xIn1 − A(G) − B

(1
x

Im1 +
ΓA(H)⊗In1

(x)

x(x −m1ΓA(H)⊗In1
(x))

Jm1×m1

)
BT

}
=xm

1

{
1 − ΓA(H)⊗In1

(x)
m1

x

}
det

{
xIn1 − A(G) −

BBT

x
−

ΓA(H)⊗In1
(x)

x(x −m1ΓA(H)⊗In1
(x))

r2
1 Jn1×n1

}
=xm

1

{
1 − ΓA(H)⊗In1

(x)
m1

x

}
det

{
xIn1 − A(G) −

BBT

x

}{
1 −

r2
1ΓA(H)⊗In1

(x)ΓA(G)+ BBT
x

(x)

x(x −m1ΓA(H)⊗In1
(x))

}
.

Since,
ΓA(G)+ BBT

x
(x) = n1

x−(r1+
2r1
x )

and ΓA(H)⊗In1
(x) = n1n2

x−r2

We get,

det S =xm1−n1

n1∏
i=1

{x2
− λi(G)x − r1 − λi(G)}{x4

− (r1 + r2)x3
− (2r1 +m1n1n2 − r1r2)x2 + (2r1r2 + r1m1n1n2)x}.

Thus, we have

ΦG⌊e⌋H (A; x) = xm1−n1

n2∏
j=2

{x − λ j(H)}n1

n1∏
i=2

{x2
− λi(G)x − r1 − λi(G)}x{x3

− (r1 + r2)x2
− (2r1 +m1n1n2

− r1r2)x + (2r1r2 + r1m1n1n2)}

From Theorem 3.1, we get the following observations.
Observations.

(1) If G is an r1 regular andH is a r2 regular graph, then A-spectrum of G⌊e⌋H contains

(i) 0 with multiplicities m1 − n1 + 1

(ii) λ j(H) with multiplicities n1

(iii) the roots of the quadratic equation x2
− λi(G)x − r1 − λi(G) = 0 and

(iv) the roots of the quadratic equation x3
− (r1 + r2)x2

− (2r1 +m1n1n2 − r1r2)x+ (2r1r2 + r1m1n1n2 = 0.

(2) If G is an r1 regular andH = Kn2 , then A-spectrum of G⌊e⌋H contains

(i) 0 with multiplicities m1 − n1 + 1

(ii) n2 − 1 with multiplicities n1

(iii) -1 with multiplicities n1(n2 − 1)

(iv) the roots of the equation x2
− λi(G)x − r1 − λi(G) = 0 and

(v) the roots of the equation x3
− (n2 − 1)x2

− (2r1 + n1m1n2)x + 2r1(n2 − 1) = 0.

The next result gives the L-spectrum of G⌊e⌋H .
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Theorem 3.2. Let G be a r1-regular andH be any graph, then

ΦG⌊e⌋H (L; x) = x(x − 2 − n1n2)m1−n1

n2∏
j=2

{x −m1 − µ j(H)}n1

n1∏
i=2

{x2
− (r1 + n1n2 + µi(G) + 2)x + 3µi(G)+

n1n2µi(G) + r1n1n2}{x3
− (r1 + 2n1n2 +m1 + 4)x2 + (2r1n1n2 + 4n1n2 + 2r1 + 4 + n2

1n2
2 +m1r1 + 4m1+

n1n2m1)x − (2r1n1n2 + r1n2
1n2

2 +m1r1n1n2 + 2m1r1 + 4m1 + 2m1n1n2)}.

Proof. : By labelling the vertices appropriately, L(G⌊e⌋H) becomes

L(G⌊e⌋H) =

r1In1 + L(G) −B 0m1×n2 ⊗ JT
n1

−BT (2 + n1n2)Im1 −Jm1×n2 ⊗ JT
n1

0n2×m1 ⊗ Jn1 −Jn2×m1 ⊗ Jn1 m1In2 + L(H) ⊗ In1


The characteristic polynomial is

ΦG⌊e⌋H (L : x) =det(xIn1n2+n1+m1 − L(G⌊e⌋H))

=det

(x − r1)In1 − L(G) B 0m1×n2 ⊗ JT
n1

BT (x − 2 − n1n2)Im1 Jm1×n2 ⊗ JT
n1

0n2×m1 ⊗ Jn1 Jn2×m1 ⊗ Jn1 (x −m1In2 − L(H)) ⊗ In1


=det{(x −m1In2 − L(H)) ⊗ In1 }det S

where,

S =
(
x − r1In1 − L(G) B

BT (x − 2 − n1n2)Im1

)
−

(
0m1×n2 ⊗ JT

n1

Jm1×n2 ⊗ JT
n1

) (
(x −m1In2 − L(H))−1

⊗ In1

)(
0n2×n1 ⊗ Jn1 Jn2×m1 ⊗ Jn1

)
=

(
x − r1In1 − L(G) B

BT (x − 2 − n1n2)Im1 − ΓL(H)⊗In1
(x −m1)Jm1×m1 .

)
Therefore, we get

det S =det
{
(x − 2 − n1n2)Im1 − ΓL(H)⊗In1

(x −m1)Jm1×m1

}
det

{
x − r1In1 − L(G)−

B
(
(x − 2 − n1n2)Im1 − ΓL(H)⊗In1

(x −m1)Jm1×m1

)−1

BT
}

=(x − 2 − n1n2)m1

{
1 − ΓL(H)⊗In1

(x −m1)
m1

x − 2 − n1n2

}
det

{
x − r1In1 − L(G)−

B

 1
x − 2 − n1n2

Im1 +
ΓL(H)⊗In1

(x −m1)

(x − 2 − n1n2)(x − 2 − n1n2 −m1ΓL(H)⊗In1
(x −m1))

Jm1×m1

 BT
}

=(x − 2 − n1n2)m1

{
1 − ΓL(H)⊗In1

(x −m1)
m1

x − 2 − n1n2

}
det

{
(x − r1)In1 − L(G)−

BBT

x − 2 − n1n2
−

ΓL(H)⊗In1
(x −m1)

(x − 2 − n1n2)
(
x − 2 − n1n2 −m1ΓL(H)⊗In1

(x −m1)
) r2

1 Jn1×n1

}
=(x − 2 − n1n2)m1

{
1 − ΓL(H)⊗In1

(x −m1)
m1

x − 2 − n1n2

}
det

{
(x − r1)In1 − L(G)−

BBT

x − 2 − n1n2
−

ΓL(H)⊗In1
(x −m1)

(x − 2 − n1n2)(x − 2 − n1n2 −m1ΓL(H)⊗In1
(x −m1))

r2
1 Jn1×n1

}
=(x − 2 − n1n2)m1

{
1 −

n1n2

x −m1
.

m1

x − 2 − n1n2

}
det

{
(x − r1)In1 − L(G) −

BBT

x − 2 − n1n2

}
{
(1 −

ΓL(H)⊗In1
(x −m1)

(x − 2 − n1n2)(x − 2 − n1n2 −m1ΓL(H)⊗In1
(x −m1))

r2
1ΓL(G)+ BBT

x−2−n1n2

(x − r1)
}
.
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Thus, we have

ΦG⌊e⌋H (L; x) = x(x − 2 − n1n2)m1−n1

n2∏
j=2

{x −m1 − µ j(H)}n1

n1∏
i=2

{x2
− (r1 + n1n2 + µi(G) + 2)x + 3µi(G)+

n1n2µi(G) + r1n1n2}{x3
− (r1 + 2n1n2 +m1 + 4)x2 + (2r1n1n2 + 4n1n2 + 2r1 + 4 + n2

1n2
2 +m1r1 + 4m1+

n1n2m1)x − (2r1n1n2 + r1n2
1n2

2 +m1r1n1n2 + 2m1r1 + 4m1 + 2m1n1n2)}.

From Theorem 3.2, we get the following observations.
Observations. If G is an r1 regular andH is any graph, then L-spectra of G⌊e⌋H contains

(i) 0

(ii) 2 + n1n2 with multiplicities m1 − n1

(iii) m1 + µi(H), where i = 2, 3, 4, ...,n2 with multiplicities n1

(iv) the roots of the quadratic equation x2
− {r1 + 2 + n1n2 + µi(G)}x + r1n1n2 + 3µi(G) + n1n2µi(G) = 0,

i = 2, 3, 4, ...,n1 and

(v) the roots of the cubic equation x3
− (r1 + 2n1n2 +m1 + 4)x2 + (2r1n1n2 + 4n1n2 + 2r1 + 4 + n2

1n2
2 +m1r1 +

4m1 + n1n2m1)x − (2r1n1n2 + r1n2
1n2

2 +m1r1n1n2 + 2m1r1 + 4m1 + 2m1n1n2) = 0

Next, we get Q-spectrum of G⌊e⌋H

Theorem 3.3. Let G be an r1-regular andH be a r2 regular graph, then

ΦG⌊e⌋H (Q; x) = (x − 2 − n2n2)m1−n1

n1∏
i=2

{x2
− (r1 + 2 + n1n2 + ν j(G))x + 2r1 + n1n2r1 + ν j(G) + n1n2ν j(G)}

n2∏
j=2

x −m1 − ν j(H)n1 (x4
− (4 + 2n1n2 +m1 + 3r1)x3 + (4m1 + 8r2 + 4 + 4n1n2 + 4n1n2r2 + n2

1n2
2+

n1m1n2 + 10r1 + 3r1n1n2 + 3r1m1 + 6r1r2)x2
− (4m1 + 2m1n1n2 + 4n1n2r2 + 4r1n1n2 + 2n2

1n2
2r2+

6r1m1 + 12r1r2 + 8r1 + 4r1m1 − 6r2
1n1n2r2

2)x + 8r1m1 + 16r1r2 − 8r1r2n1n2 − r2
1n2

1n2)

Proof. The Q- matrix (G⌊v⌋H) can be written as

L(G⌊e⌋H) =

r1In1 +Q(G) −B 0m1×n2 ⊗ JT
n1

−BT (2 + n1n2)Im1 −Jm1×n2 ⊗ JT
n1

0n2×m1 ⊗ Jn1 −Jn2×m1 ⊗ Jn1 m1In2 +Q(H) ⊗ In1


The proof of the remaining part of the theorem is similar to Theorem 3.2.

From Theorem 3.3, we get the following observations.
Observations.

(1) If G is an r1 regular andH is any graph, then Q-spectra of G⌊e⌋H contains

(i) 2 + n1n2 with multiplicities m1 − n1

(ii) m1 + ν j(H), where j = 2, 3, 4, ...,n2 with multiplicities n1

(iii) the roots of the quadratic equation x2
− (r1+2+n1n2+ν j(G))x+2r1+n1n2r1+ν j(G)+n1n2ν j(G) = 0,

i = 2, 3, 4, ...,n1 and
(iv) the roots of the bi-quadratic equation x4

− (4 + 2n1n2 + m1 + 3r1)x3 + (4m1 + 8r2 + 4 + 4n1n2 +
4n1n2r2 + n2

1n2
2 + n1m1n2 + 10r1 + 3r1n1n2 + 3r1m1 + 6r1r2)x2

− (4m1 + 2m1n1n2 + 4n1n2r2 + 4r1n1n2 +

2n2
1n2

2r2 + 6r1m1 + 12r1r2 + 8r1 + 4r1m1 − 6r2
1n1n2r2

2)x + 8r1m1 + 16r1r2 − 8r1r2n1n2 − r2
1n2

1n2 = 0
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4. Pair of simultaneous cospectral graphs

From Theorems 2.1, 2.2, 2.3, 3.1, 3.2 and 3.3, it is observed that the A, L and Q-spectra of the join
graphs G⌊u⌋H and G⌊e⌋H depend only on the number of vertices, edges, degree of regularities and the
corresponding spectrum of G andH . The following are the main observations.
Observations.

(1) Let F1 and F2 be two regular graphs that are both A and L-cospectral, and let F be any graph.
Then, F1⌊u⌋F (respectively, F1⌊e⌋F ) andF2⌊u⌋F (respectively, F2⌊e⌋F ) are also simultaneously A and
L-cospectral.

(2) Let F is a regular graph, and let F1 and F2 are any two graphs that are both A and L-cospectral, then
F ⌊u⌋F1 (respectively, F ⌊e⌋F1) and F ⌊u⌋F2 (respectively, F ⌊e⌋F2 ) are also simultaneously A and L-
cospectral.

(3) Let F1 and F2 are any two regular graphs that are L or Q-cospectral and let H1 and H2 are any two
regular L or Q-cospectral, then, F1⌊u⌋H1 (respectively, F1⌊e⌋H1) and F2⌊u⌋H2 (respectively, F2⌊e⌋H2)
are also L or Q-cospectral.

5. Applications

As an application of these two graph operations, we determine the following invariants from the
Laplacian spectra of the join of graphs G⌊u⌋H and G⌊e⌋H , where G is an r1 regular andH is any graph.

(1) K f (G⌊u⌋H), LEL(G⌊u⌋H) and t(G⌊u⌋H) of G⌊u⌋H are as follows

(i) K f (G⌊u⌋H) = (m1 + n1 + n1n2)
(

m1−n1
2 + 2+r1+n1+n1n2

2n1+2n1n2+n1r1
+

∑n2
j=2

n1
n1+µ j(H) +

∑n1
i=2

r1+2+n1n2+µi(G)
2n1n2+3µi(G)

)
(ii) LEL(G⌊u⌋H) = (m1 − n1)21/2 + n1{n1 + µ j(H)}1/2 +

(
r1+2+n1+n1n2+

√
∆1

2

)1/2

+
(

r1+2+n1+n1n2−
√
∆1

2

)1/2

+(
r1+2+n1n2+µi(G)+

√
∆2

2

)1/2

+
(

r1+2+n1n2+µi(G)−
√
∆2

2

)1/2

,where∆1 = (2+r1+n1+n1n2)2
−4(2n1+n1r1+2n1n2)

and ∆2 = {2 + r1 + n1n2 + µi(G)}2 − 4{2n1n2 + 3µi(G)}

(iii) t(G⌊u⌋H) =
2m1−n1 (2n1+n1r1+2n1n2)

∏n2
j=2(n1+µ j(H))n1

∏n1
i=2(2n1n2+3µi(G))

n1+m1+n1n2

(2) K f (G⌊e⌋H), LEL(G⌊e⌋H) and t(G⌊e⌋H) of G⌊e⌋H are as follows

(i) K f (G⌊e⌋H) = (m1+n1+n1n2)
{

m1−n1
2+n1n2

+
∑n1

i=2
r1+2+n1n2+µi(G)

r1n1n2+3µi(G)+n1n2µi(G)+
(

2r1n1n2+m1r1+4m1+m1n1n2+2r1+4+4n1n2+n2
1n2

2

m1r1n1n2+2r1n1n2+2m1r1+4m1+2m1n1n2+n2
1n2

2r1

)
+∑n2

j=2
n1

m1+µ j(H)

}
(ii) LEL(G⌊e⌋H) = (m1−n1)(2+n1n2)1/2+n1{m1+µ j(H)}1/2+

(
r1+2+n1n2+µi(G)+

√
∆3

2

)1/2

+
(

r1+2+n1n2+µi(G)−
√
∆3

2

)1/2

+

ωi
1/2,where ∆3 = {2+ r1 + µi(G)+ n1n2}

2
− 4{r1n1n1 + n1n2µi(G)+ 3µi(G)} and ωi, i = 1, 2, 3 are the

roots of the cubic equation.

(iii) t(G⌊e⌋H) = 1
n1+m1+n1n2

{(2 + n1n2)m1−n1 (m1r1n1n2 + 2r1n1n2 + 2m1r1 + 4m1 + 2m1n1n2 + n2
1n2

2r1)∏n1
i=2(r1n1n2 + n1n2µi(G) + 3µi(G))

n2∏
j=2

(m1 + µ j(H))n1 }
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