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Trivial coloring of Cartesian product of graphs

Tamás Csernáka

aHUN-REN Alfréd Rényi Institute of Mathematics

Abstract. A coloring of a direct product of graphs is said to be trivial iff it is induced by some coloring of
a factor of the product. A graph G is trivially power colorable iff every coloring of a finite power of G with
χ(G)-many colors is trivial, where χ(G) denotes the chromatic number of G. Greenwell and Lovász proved
that the finite complete graphs Kn for n ≥ 3 are trivially power colorable. Generalizing their result we define
a much wider class of trivially power-colorable graphs: if G is a finite, connected graph with χ(G) ≥ 3 and
every vertex of G is in a clique of size χ(G), then G is trivially power-colorable. As an application of this
result, we give a complete characterization of trivially power-colorable cographs.

Finally, we give a structural description of the colorings of infinite powers of trivially power-colorable
finite graphs.

1. Introduction

In this paper, we define a graph as a pair G = (V(G),E(G)), where V(G) denotes the set of vertices and
E(G) is a set of unordered pairs of V(G) representing the edges. All graphs we discuss in this work are
undirected and simple.

For any (finite or infinite) index set I, and graphs (Gi)i∈I, we define their product as G = ×i∈IGi, where
V(G) = ×i∈IV(Gi), and for u, v ∈ V(G) with u = (ui)i∈I and v = (vi)i∈I, we have that u, v ∈ E(G) if and only if
uivi ∈ E(Gi) for all i ∈ I. The product of two graphs, G and H can be simply denoted by G×H. If for all i ∈ I,
we have Gi = G, then we can use the notion G|I| = ×i∈IG.

Furthermore, for any graph, we denote its chromatic number by χ(G). For any k and a finite graph G,
let P(G, k) be the number of k-colorings of G.

Finally, let c(G) denote the number of connected components of a graph G.

2. Trivially colorable graphs

For any two graphs G and H, it is clear that χ(G×H) ≤ min{χ(G), χ(H)}. For long time it was conjectured,
that for all pairs of finite graphs, we have χ(G × H) = min{χ(G), χ(H)}. However, as shown in [4], this was
recently proven false. Nevertheless, the special case χ(Gn) = χ(G) clearly holds for all graphs G.
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Definition 2.1. Let I be an index set and for each i ∈ I, let Gi be a graph. Write G = ×i∈IGi. The coloring Φ of G is
trivial if there exists some i∗ ∈ I and a coloring ϕ of Gi∗ , such that for each v = (vi)i∈I ∈ V(G), we have Φ(v) = ϕ(vi∗ ).
The product graph G is said to be trivially colorable, if all the χ(G)-colorings of G are trivial.

A graph H is trivially power-colorable, if for all positive integer n, the graph power Hn is trivially colorable.

The solution of the n-switch problem, (see Greenwell and Lovász [2]) can be stated as follows: the
complete graph Kk is trivially power-colorable for all k ≥ 3.

Definition 2.2. Let G be a graph, and let ϕ be a k-coloring of G. We say that ϕ is tight if, for every vertex v ∈ V(G)
and every color c , ϕ(v), there is a neighbor u of v such that ϕ(u) = c. In other words, ϕ is tight if no vertex’s color
can be changed without violating the proper coloring condition.

G is tight if all of its χ(G)-colorings are tight.

Greenwell and Lovász has also shown, that if H is tight with χ(H) = k for some k ≥ 3, then Kk × H is
trivially colorable (see [2, Theorem 1]).

The primary aim of this paper is to characterize a broad class of the finite graphs that are trivially
power-colorable, or at least to provide some necessary and some sufficient conditions for this property.

In the final section, we examine the colorings of graphs Gλ, where G is a finite trivially power-colorable
graph and λ is an infinite cardinal.

Preliminary observations
First, we show that trivially power-colorable graphs must be connected. Some of these statements are

already known, but for the completeness, I will present short proofs.

Lemma 2.3. If G is a finite graph, then for all n, we have c(Gn) ≥ c(G)n.

Proof. Let us denote for any graph H and u, v ∈ V(H), the equivalence relation u ∼ v, that u, v are in
the same component in H. If u, v ∈ V(Gn) and uv ∈ E(Gn), then uivi ∈ E(G) for all 1 ≤ i ≤ n, so clearly
ui ∼ vi. Since ∼ is an equivalence relation through the edges, we have, that if for u, v ∈ V(Gn) with u ∼ v,
then ui ∼ vi for all i. Choose w1, ...,wc(G) ∈ V(G), such that they are all in different components, and let
U = {(w j1 , ...,w jn ) : 1 ≤ j1, ..., jn ≤ c(G)} ⊆ V(Gn). Clearly |U| = c(G)n and if u, v ∈ U,u , v, then there is some
i, such that ui , vi, and since, they are chosen from different components, we have ui / vi, so u / v. All
elements of U are in pairwise different component of Gn, so c(Gn) ≥ |U| = c(G)n.

Lemma 2.4. If G is a finite graph and χ(G) ≤ k, then P(G, k) ≥ kc(G).

Proof. Let r = c(G), and S1, ...,Sr ⊆ V(G) be the connected components. Then all induced subgraphs on
Si are k-colorable. By the permutation of colors used, we can easily see that P(G[S j], k) ≥ k for all j. All
the combinations of k colorings of components gives a k coloring of G, so P(G, k) =

∏r
j=1 P(G[S j], k) ≥ kr =

kc(G).

Theorem 2.5. If G is a trivially power-colorable finite graph, then G is connected.

Proof. Write χ(G) = k. Since G is trivially power-colorable, for all k-colorings Φ of Gn there is 1 ≤ i ≤ n and
a k-coloring, ϕ of G, such that Φ(v) = ϕ(vi) for all v ∈ V(Gn). This i can be chosen n different ways and ϕ can
be chosen P(G, k) different ways, so we have nP(G, k) ≥ P(Gn, k).

On the other hand, using Lemma 2.4 for Gn, and Lemma 2.3 for G, we get P(Gn, k) ≥ kc(Gn)
≥ kc(G)n

.
Putting together, we obtain nP(G, k) ≥ kc(G)n

. If G were disconnected, then c(G) ≥ 2, the right side would be
a doubly exponential function of n, while the left side would be linear, so for sufficiently large n, it would
cause a contradiction. Thus G must be connected.

Now, we have seen, that G must be connected. However it is also possible, that even if G is connected,
some of their powers are not.

Lemma 2.6. If G is a bipartite graph, then G2 is not connected.[5, Theorem 1]
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Proof. Let ϕ be a 2-coloring of G and U1 = {(v1, v2) : ϕ(v1) = ϕ(v2)} ⊆ V(G2), U2 = {(v1, v2) : ϕ(v1) , ϕ(v2)} ⊆
V(G2). Then if uv ∈ E(G2), then ϕ(u1) , ϕ(v1), ϕ(u2) , ϕ(v2), so if ϕ(u1) = ϕ(u2), then ϕ(v1) = ϕ(v2), and if
ϕ(u1) , ϕ(u2), then ϕ(v1) , ϕ(v2). So both are in U1 or both are in U2, hence these sets form a partition with
no edges, thus G2 is disconnected.

Theorem 2.7. If G is a trivially power-colorable non empty finite graph, then χ(G) ≥ 3.

Proof. Suppose for contradiction, that G is bipartite, then by Lemma 2.6, G2 is disconnected. Since G is
trivially power-colorable, for all n, the colorings of (G2)n = G2n are trivial in respect of G, so they are clearly
trivial in respect of G2, thus G2 is trivially colorable, that contradicts Theorem 2.5.

We have seen, that if G is trivially power-colorable, then G must be connected and χ(G) ≥ 3. These are
necessary conditions.

On the other hand if G is connected and χ(G) ≥ 3, then by [5, Theorem 1] all the powers Gn are connected.
Next, we will see an other necessary condition for G to be trivially power-colorable.

Theorem 2.8. If G2 is a trivially colorable for a finite graph G, then G is tight. Hence trivially power-colorable
graphs must be tight.

Proof. Write k = χ(G). Suppose for the sake of contradiction, that G is not tight, and let ϕ,ϕ′ be two
k-colorings of G differ at one point, say w ∈ V(G).

Now, we construct a non-trivial k-coloring Φ of G2 as follows:

Φ(u, v) =
{
ϕ′(v) if (u, v) = (w,w),
ϕ(v) otherwise.

First, we need to verify that Φ is a good coloring. Let (u, v)(u′, v′) ∈ E(G2), so uu′, vv′′ ∈ E(G). If
(u, v) , (w,w) and (u′, v′) , (w,w), then

Φ(u, v) = ϕ(v) , ϕ(v′) = Φ(u′, v′).

If (u, v) = (w,w), then v′ , w and so

Φ(u, v) = Φ(w,w) = ϕ′(w) , ϕ′(v′) = ϕ(v′) = Φ(u′, v′).

The case (u′, v′) = (w,w) is analogue.
Finally, we show that Φ is non-trivial, meaning the color of a vertex is not solely determined by either

the first or second coordinate.
Let vv′ ∈ E(G). We can assume that v , w. Then Φ(v, v) = ϕ(v) , ϕ(v′) = Φ(v, v′), so the first coordinate

does not determine the color of a vertex in the product.
Since Φ(w,w) = ϕ′(w) , ϕ(w) = Φ(v,w), the second coordinate does not determine the color of a vertex

in the product.
Hence, Φ is non-trivial, contradicting the assumption that G2 is trivially colorable.

3. Cliqued graphs

In this section we give some sufficient conditions on graphs to be trivially power-colorable.

Definition 3.1. Let G be a graph with chromatic number χ(G) = k. We say that G is weakly-cliqued if for every
vertex v ∈ V(G) there is a clique X ⊂ V(G) of size k that contains v. The graph G is strongly-cliqued, if it has no
isolated vertices and for every edge uv ∈ E(G), there is a clique X ⊂ V(G) of size k that contains both u and v.

Clearly, all strongly cliqued graphs are also weakly cliqued. Indeed, if G is strongly cliqued and v ∈ V(G),
we can find some u ∈ V(G) with uv ∈ E(G) because G has no isolated vertices, and so we have clique of size
k containing both u and v.
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Observation 3.2. A weakly cliqued graph is tight.

Indeed, if G is weakly-cliqued graph with χ(G) = k, and v ∈ V, then G contains a cliques X of size k
which contains v. Thus, if ϕ : V(G) → k is a proper coloring of G, then ϕ(v) must be the only element of
k \ {ϕ(u) : u ∈ X \ {v}}. In other words, ϕ(v) is uniquely determined by ϕ ↾ V \ {v}.

In this section, we will see, that any weakly-cliqued connected graph G with χ(G) ≥ 3 is trivially
colorable (see Theorem 3.7).

Definition 3.3. If G is a weakly-cliqued graph, with χ(G) = k and X,X′ ⊆ V(G) are cliques of size k, then a
clique-path between X and X′ is a sequence X = X0,X1, ...,Xr = X′ of size k cliques, such that X j ∩ X j+1 , ∅ for
0 ≤ j ≤ r − 1. G is clique-connected if for all pair X,X′ of size k cliques, there is a clique-path between them. This
way we can also define clique-connected components of G. For 2 vertices u, v ∈ V(G) a clique-path between u and
v is a clique-path between some X,X′ of size k cliques, with u ∈ X, v ∈ X′. On the other hand if there is a clique-path
between u, v, then for any X,X′ of size k cliques, with u ∈ X, v ∈ X′ there is a clique path between X,X′. As all vertices
are contained in a size k clique, we can define clique-connectedness and clique-connected components on V(G).

Lemma 3.4. If G is a strongly-cliqued, connected graph, then it is clique-connected.

Proof. Straightforward.

First we try to generalize the theorem of Greenwell and Lovász (Theorem 1 in [2]).

Lemma 3.5. If G is a clique-connected graph, H is a tight graph with χ(G) = χ(H) = k ≥ 3 , then all k-colorigs Φ of
G ×H are trivial.

Proof. Let Φ : G×H→ k be a k-coloring. For any size k clique X ⊆ V(G), let us define X is of 1st type if there
is a coloring ϕX : X → k , such that for all u ∈ X, v ∈ V(H), we have Φ(u, v) = ϕX(u), and X is of 2nd type if
there is a coloring ψX : V(H)→ k, such that for all u ∈ X, v ∈ V(H), we have Φ(u, v) = ψX(v). By Theorem 1
in [2], we have that all size k cliques are either 1st type or 2nd type.

First we will see, that we cannot have 1st and 2nd type cliques at the same time. Suppose for contradic-
tion, that X ⊆ V(G) is of 1st type, and X′ ⊆ V(G) is of 2nd type. Since G is clique-connected, there is some
clique path X = X0, ...,Xr = X′. All of X j-s are either 1st type or 2nd type, so there is some 0 ≤ j ≤ r− 1, such
that X j is of 1st type and X j+1 is of 2nd type. Since X j ∩ X j+1 , ∅, we can choose u ∈ X j ∩ X j+1. Pick any
v, v′ ∈ V(H) with vv′ ∈ E(H). Then we have ψX j+1 (v) = Φ(u, v) = ϕX j (u) = Φ(u, v′) = ψX j+1 (v′) in contradiction
with ψX j+1 is a coloring of H. Thus either all cliques are of 1st type or all cliques are of 2nd type.

First suppose that all cliques are of 1st type. for any cliques X,X′ ⊂ V(G) with X∩X′ , ∅ and u ∈ X∩X′,
we have ϕX(u) = Φ(u, v) = ϕX′ (u), where v ∈ V(H) can be any vertex, so the functions ϕX are compatible.
Let ϕ =

⋃
X⊆V(G),clique ϕX. Then ϕ : V(G)→ k is a function. It is also clear that for any u ∈ V(G), there is some

size k clique X ⊆ V(G) with u ∈ X, so for all v ∈ V(H), we haveΦ(u, v) = ϕX(u) = ϕ(u). We need to show that
this is a good coloring. Let u,u′ ∈ V(G) with uu′ ∈ E(G) and pick any v, v′ ∈ V(H) with vv′ ∈ E(H). Then
since (u, v)(u′, v′) ∈ E(G ×H), we have ϕ(u) = Φ(u, v) , Φ(u′, v′) = ϕ(u′), so ϕ is a good coloring.

Now suppose that all cliques are of 2nd type. We need to show, that for all X,X′ ⊆ V(G) cliques, we
have ψX = ψX′ . If X ∩ X′ , ∅, then let u ∈ X ∩ X′. Then for all v ∈ V(H), we have ψX(v) = Φ(u, v) = ψX′ (v),
thus ψX = ψX′ . Now let X,X′ ⊆ V(G) be arbitrary and let X = X0, ...,Xr = X′ be a clique path. Then
ψX = ψX0 = ψX1 = ... = ψXr = ψX′ . Then let ψ = ψX for all cliques. Then for any u ∈ V(G) and v ∈ V(H)
choose a size k clique X with u ∈ X, and we have Φ(u, v) = ψX(v) = ψ(v).

Next, we generalize this lemma, by changing the clique-connected property to weakly-cliqued.

Theorem 3.6. If G is a weakly-cliqued, connected graph, H is a tight graph with χ(G) = χ(H) = k ≥ 3, then all
k-colorings Φ of G ×H are trivial.
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Proof. Let Φ : G ×H→ k be a k-coloring. For any clique-connected component U ⊆ V(G), let us define U is
of 1st type if there is a coloring ϕU : U→ k , such that for all u ∈ U, v ∈ V(H), we haveΦ(u, v) = ϕU(u), and U
is of 2nd type if there is a coloring ψU : V(H)→ k, such that for all u ∈ U, v ∈ V(H), we have Φ(u, v) = ψU(v).
By Lemma 3.5, we have that all clique-connected components are either 1st type or 2nd type.

We can also define for an u ∈ V(G), that u is of 1st type or 2nd type, by the unique clique-connected
components U ⊆ V(G) with u ∈ U is of 1st type or 2nd type. We will show that there is no edge between
1st type and 2nd type vertices. Suppose for contradiction, that u,u′ ∈ V(G) u is of 1st type, u′ is of 2nd type
and uu′ ∈ E(G). Let U be the unique clique-connected component with u ∈ U and U′ be the unique clique-
connected component with u′ ∈ U′. Then U is of 1st type and U′ is of 2nd type. Since χ(H) = k all of its k
colorings must take all values, so there is some v′ ∈ V(H), such that ψU′ (v′) = ϕU(u). Pick any v ∈ V(H) with
vv′ ∈ E(H). Then (u, v)(u′, v′) ∈ E(G ×H). On the other hand, we have Φ(u, v) = ϕU(u) = ψU′ (v′) = Φ(u′, v′),
that is a contradiction. Now since G is connected and there is no edge between 1st type and 2nd type vertices,
we must have either all vertices are of 1st type or all vertices are of 2nd type, thus all clique-connected
components are of 1st type or all clique-connected components are of 2nd type.

First suppose the case all clique-connected components are of 1st type. Then all the ϕU functions are
defined on pairwise disjoint sets, so their union ϕ =

⋃
U⊆V(G),component ϕU is a is a function ϕ : V(G) → k.

Clearly if u ∈ V(G), v ∈ V(H), we can pick the unique clique-connected component U ⊆ V(G) with u ∈ U,
and then we have Φ(u, v) = ϕU(u) = ϕ(u). We need to show that ϕ is a good coloring. Let u,u′ ∈ V(G)
with uu′ ∈ E(G). Pick any v, v′ ∈ V(H) with vv′ ∈ E(H). Then (u, v)(u′, v′) ∈ E(G × H), so ϕ(u) = Φ(u, v) ,
Φ(u′, v′) = ϕ(u′), thus ϕ is a good coloring.

Now suppose that all clique-connected components are of 2nd type. We need to show, that for any
U,U′ ⊆ V(G) clique-connected components ψU = ψU′ holds. First suppose that there is some u ∈ U,u′ ∈ U′

with uu′ ∈ E(G) and suppose for contradiction, that ψU , ψU′ . Then there is some v ∈ V(H) with
ψU(v) , ψU′ (v). Since H is tight, we cannot change the color of the vertex v in ψU′ to ψU(v), so there
must be some v′ ∈ V(H) with vv′ ∈ E(H) and ψU′ (v′) = ψU(v). Then (u, v), (u′, v′) ∈ E(G × H). On the
other hand, we have Φ(u, v) = ψU(v) = ψU′ (v′) = Φ(u′, v′), that is a contradiction. Now let U,U′ ⊆ V(G)
be arbitrary clique-connected components and pick u ∈ U,u′ ∈ U′. Since G is connected, there is a path
P from u to u′. Let U = U0,U1, ...,Ur = U′ be the list of clique-connected components in the order P
passing through, so for all 0 ≤ j ≤ r − 1, we have that there is an edge between U j,U j+1, So ψU j = ψU j+1 .
Then ψU = ψU0 = ψU1 = ... = ψUr = ψU′ . Let ψ = ψU for all clique-connected components. Then for
all u ∈ V(G), v ∈ V(H), let U ⊆ V(G) be the unique clique-connected component with u ∈ U, we have
Φ(u, v) = ψU(v) = ψ(v).

Theorem 3.7. If G is a weakly-cliqued, connected graph with χ(G) ≥ 3, then G is trivially power-colorable.

Proof. Let k = χ(G). We clearly have that χ(Gn) = k for all n. By [5], we have that Gn is also connected for
all n. Now we will show, that for all n, Gn is weakly-cliqued. Let u ∈ V(Gn). Then u = (v1, ..., vn), where
v j ∈ V(G) for all 1 ≤ j ≤ n. For all j let X j ⊆ V(G) be a clique of size k with v j ∈ X j, and let us list the elements
X j = {w j,1, ...,w j,k} where w j,1 = v j. For all 1 ≤ i ≤ k let ui = (w1,i, ...,wn,i). Then clearly by definition, we have
u1 = u and for all 1 ≤ i, i′ ≤ k with i , i′, we have that for all 1 ≤ j ≤ n, since w j,i,w j,i′ ∈ X j and w j,i , w j,i′ , we
have w j,iw j,i′ ∈ E(G), thus uiui′ ∈ E(Gn). Then X = {u1, ...,un} is a clique of size k in Gn containing u, so Gn is
weakly-cliqued.

Now we will show that for all n all colorings of Gn are trivial. We prove it by induction on n. For
n = 1, it is clear. Suppose it is true for some n, and we will prove it for n + 1. Let Φ : V(Gn+1) → k be a
k-coloring of Gn+1 = Gn

× G. Since all conditions of Theorem 3.6 hold, by Theorem 3.6, we have that either
there is some τ : V(Gn)→ k good coloring, such that for all v ∈ V(Gn+1), we have Φ(v) = τ(v|n) or there is a
ψ : V(G) → k, such that for all v ∈ V(Gn+1), we have Φ(v) = ψ(vn+1). In the former case by induction there
is some 1 ≤ j ≤ n, and ϕ : V(G) → k coloring, such that τ(w) = ϕ(w j) for all w ∈ V(Gn). But then for any
v ∈ V(Gn+1) we have Φ(v) = τ(v|n) = ϕ((v|n) j) = ϕ(v j), so Φ is trivial by coordinate j. In the latter case Φ is
clearly trivial by coordinate n + 1, so the induction step works.
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4. An application: trivially colorable cographs

In Section 2, we gave some necessary conditions for a graph to be trivially colorable, and in Section 3, we
gave some sufficient conditions. However, these conditions do not characterize trivially colorable graphs
in general, as there are many graphs, that meet the necessary conditions but not the sufficient ones. This is
not the case, in a special class of graphs, called cographs.

Definition 4.1. The cographs are the finite graphs that can be constructed by the following 3 steps:
1. Any graph with one vertex is a cograph.
2. If G is a cograph, then its complement Ḡ is a cograph.
3. If G,H are cographs, their disjoint union G ∪H is a cograph.

By other words, cographs are the smallest class of finite graph, that contain all one vertex graph, and it
is closed for operations 2,3. There are many cographs, we can construct. Empty graphs are cographs, as
they are the disjoint union of their vertices as one vertex graphs. Complete graphs are the complement of
empty graphs, so they are also cographs. Complete multipartite graphs are also cographs, as they are the
complement of disjoint union of complete graphs, and so on. Cographs can be characterized in different
ways, given by [1, Theorem 2].

Theorem 4.2. For a finite graph G the following statements are equivalent:
1) G is a cograph
2) For any U ⊆ V[G] and X,Y ⊆ U, if X is a maximal clique in G[U] and Y is a maximal independent set of

G[U], then X ∩ Y , ∅
3) G is P4-free (it does not contain a path of 4 vertices as an induced subgraph)

Now we characterize the trivially power-colorable cographs.

Lemma 4.3. Let G be a cograph, with χ(G) = k, then the following statements are equvivalent:
1) G is tight
2) There is a coloring ϕ : V(G)→ k, that is tight
3) For all maximal cliques of X ⊆ V(G), we have |X| = k
4) G is strongly-cliqued
5) G is weakly-cliqued

Proof. (1)→ (2): Obvious
(2) → (3): For all 0 ≤ l < k, Yl = {v ∈ V(G) : ϕ(v) = l} is an independent set. If u < Yl, then ϕ(u) , l,

and since ϕ is tight, there is some w ∈ V(G) with uw ∈ E(G) and ϕ(w) = l. Then w ∈ Yl, so Yl ∪ {u} is
not independent, thus Yl is maximal independent for all l. If X ⊆ V(G) is a maximal clique, then by (2) of
Theorem 4.2, we have X ∪ Yl , ∅ for all l. Since X intersects the pairwise disjoint sets Y0, ...,Yk−1, we have
|X| ≥ k. On the other hand χ(G) = k, so G can not have any clique larger than k, thus |X| = k.

(3)→ (4): If v ∈ V(G) were an isolated vertex, then {v}would be itself a maximal clique of size less then
k, so G does not have any isolated vertices. If u, v ∈ V(G) with uv ∈ E(G), then {u, v} ⊆ V(G) is a clique, so
there is a maximal clique X ⊆ V(G), with {u, v} ⊆ X. Then |X| = k and u, v ∈ X, so G is strongly-cliqued.

(4)→ (5)→ (1): We already had for general graphs.

Theorem 4.4. A cograph G is trivially power-colorable if and only if it is tight, connected and χ(G) ≥ 3.

Proof. By Theorem 2.5, Theorem 2.7 and Theorem 2.8, these conditions are nessesary. If a cograph G has
these properties, then since G is tight, by Lemma 4.3, it is weakly-cliqued, and then by Theorem 3.7 it is
trivially power-colorable.
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5. Colorings of infinite products

Now we turn our attention to the colorings of Gλ, where G is a trivially power-colorable finite graph
and λ is an infinite cardinal.

As we will see in Observation 5.2, we cannot expect a single coordinate to determine the color of a
vertex in an arbitrary coloring of Gλ. However, in constrast to this result, Theorem 5.8 provides a complete
structural description of any proper coloring of Gλ.

Fist, we define a natural class of colorings of Gλ.

Definition 5.1. Let G be a finite graph, ϕ : V(G)→ k a coloring, andU be an ultrafilter on an infinite cardinal λ.
Define the coloring ϕU : V(Gλ)→ k as follows: for each v = (vα)α<λ ∈ V(Gλ) pick the unique vU ∈ V(G) such that

{α < λ : vα = vU} ∈ U,

and let ϕU(v) = ϕ(vU). (Since V(G) is finite, vU is defined.)

Observation 5.2. (1) If G is a finite graph, ϕ : V(G) → k is a proper coloring of G, and U is an ultrafilter on an
infinite cardinal λ, then ϕU : V(Gλ)→ k is a proper coloring of Gλ.
(2) IfU is non-principal, then finitely many coordinates do not determine theϕU-color of a vertex of Gλ. In particular,
ϕU is not a trivial coloring.

The first part of following observations are straightforward, based on that fact that if vw is an edge in
Gλ, then vUwU is an edge in G. The second part follows from the fact that if {α < λ : v(α) = w(α)} ∈ U,
then ϕU(v) = ϕU(w).

Komjáth and Totik in [3] has shown, that for all k ≥ 3, the colorings of the graph Kλ
k are in this form,

defined by an ultrafilter. Now we generalize this theorem to all trivially power-colorable finite graphs.

Theorem 5.3. If G is a trivially power-colorable finite graph, and Φ is a proper χ(G)-coloring of Gλ for some infinite
cardinal λ, then there is an ultrafilter U on λ and a χ(G)-coloring ϕ on G such that Φ = ϕU .

Proof. Write k = χ(G). The coloring Φ : V(Gλ)→ k is fixed.

Definition 5.4. A finite partition of λ is a partition of λ into finitely many non-empty pieces. Let Part(λ) be the
set of all finite partitions of λ. For a finite partition P, let

VP = {v ∈ V(Gλ) : v ↾A is constant for all A ∈ P}

and GP = Gλ[VP].

If v = (vξ)ξ<λ ∈ VP, and A ∈ P, then, by definition, there is a vA ∈ V(G), such that vξ = vA for all ξ ∈ A.
If P = {A1, . . . ,An}, then the map

v 7→ ⟨vA1 , . . . ,vAn⟩

gives an isomorphism between GP and Gn.
Now Φ|VP is a k-coloring of GP. Since G is trivially power-colorable, and GP and Gn are isomorphic,

there is some 1 ≤ i ≤ n, and a coloring ϕ of G, such that

Φ(v) = ϕ(vAi )

for all v ∈ VP. Write iP = i, ϕP = ϕ and I(P) = Ai.

Definition 5.5. For P1,P2 ∈ Part(λ), we say, that P1 is a refinement of P2, denoted by P1 ≺ P2 if for all A ∈ P1,
there is a B ∈ P2 with A ⊆ B.

For P1,P2 ∈ Part(λ), their greatest common refinement is

P1 ⊓ P2 = {A ∩ B : A ∈ P1,B ∈ P2,A ∩ B , ∅}.

It is easy to see, that this is also a finite partition, that is the refinement of both P1 and P2.
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If P1 ≺ P2, then VP2 ⊆ VP1 . For the trivial partition P = {λ}, VP contains only the constant functions.

Lemma 5.6. If P1,P2 ∈ Part(λ) with P1 ≺ P2, then I(P1) ⊆ I(P2).

Proof. Assume on the contrary that I(P1) ∩ I(P2) = ∅. Pick B ∈ P2 with I(P1) ⊂ B. Let vw be an edge in G.
Consider the vertices u,v and w from V(Gλ), where v(ξ) = v and w(ξ) = v for each ζ < λ, and

u(ζ) =
{

v if ξ ∈ B
w otherwise.

Since u ∈ VP2 and w ↾ I(P2) = u ↾ I(P2), we have Φ(w) = Φ(u). Since u ∈ VP1 and v ↾ I(P1) = u ↾ I(P1), we
have Φ(w) = Φ(u). But vw is en edge in Gλ. Contradiction.

Lemma 5.7. If P1,P2 ∈ Part(λ), then I(P1 ⊓ P2) = I(P1) ∩ I(P2).

Proof. SinceP1⊓P2 ≺ P1 andP1⊓P2 ≺ P2, by Lemma 5.6, we have I(P1⊓P2) ⊆ I(P1) and I(P⊓P2) ⊆ I(P2),
so I(P1 ⊓ P2) ⊆ I(P1) ∩ I(P2). This means, that I(P1) ∩ I(P2) , ∅ and thus I(P1) ∩ I(P2) ∈ P1 ⊓ P2.
Then I(P1 ⊓ P2) is an element of P1 ⊓ P2, contained in I(P1) ∩ I(P2), but P1 ⊓ P2 is a finite partition, so
I(P1 ⊓ P2) = I(P1) ∩ I(P2).

Lemma 5.8. The set U = {I(P) : P ∈ Part(λ)} is an ultrafilter on λ.

Proof. Clearly ∅ < U , as it is not even an element of a partition. For the trivial partition, we have
λ = I({λ}) ∈ U . If A,B ∈ U , then there are some P1,P2 ∈ Part(λ) with A = I(P1),B = I(P2). Then by Lemma
5.7, we have A∩B = I(P1)∩ I(P2) = I(P1 ⊓P2) ∈ U . Now let A ∈ U and B ⊆ λwith A ⊆ B. Let P1 ∈ Part(λ)
be such that A = I(P1) and let P2 ∈ Part(λ) be any finite partition with B ∈ P2 (for example P2 = {B, λ \ B}).
Then A = A ∩ B ∈ P1 ⊓ P2, and by Lemma 5.6, since P1 ⊓ P2 ≺ P1, we have I(P1 ⊓ P2) ⊆ I(P1) = A, and
since P1 ⊓ P2 is a partition, we must have I(P1 ⊓ P2) = A. On the other hand, we have P1 ⊓ P2 ≺ P2, by
Lemma 5.6, we have A = I(P1 ⊓P2) ⊆ I(P2). But since P2 is also a partition, B is its only element containing
A, so B = I(P2) ∈ U . Finally, if A ⊆ λ, we need to show that either A or λ \A is in U . It is obvious, if one of
them is ∅, so suppose A, λ \ A , ∅. Then P = {A, λ \ A} is a finite partition, so I(P) ∈ U is either A or λ \ A,
and that is what we needed to prove.

We are ready to conclude the Proof of Theorem 5.3. Let U be the ultrafilter, defined in Lemma 5.8. First
we will show, that if u, v ∈ V(Gλ) with {ξ ∈ λ : uξ = vξ} ∈ U , then Φ(u) = Φ(v). Let

P(u) = {{ξ ∈ λ : uξ = w} : w ∈ V(G)} \ {∅} ∈ Part(λ)

and similarly,
P(v) = {{ξ ∈ λ : vξ = w} : w ∈ V(G)} \ {∅} ∈ Part(λ).

Then u ∈ VP(u), v ∈ VP(v), so u, v ∈ VP(u)⊓P(v), so they are both constant on I(P(u) ⊓ P(v)). This way it is
either uξ = vξ for all ξ ∈ I(P(u) ⊓ P(v)), or uξ , vξ for all ξ ∈ I(P(u) ⊓ P(v)). On the other hand, we have
I(P(u) ⊓ P(v)) ∈ U , so I(P(u) ⊓ P(v)) ∩ {ξ ∈ λ : uξ = vξ} , ∅, so the second one is not an option. Thus we
have uI(P(u)⊓P(v)) = vI(P(u)⊓P(v)), so Φ(u) = Φ(v).

Now for any w ∈ V(G), let c(w) ∈ V(Gλ), be such that c(w)ξ = w for all ξ ∈ λ. Let as define a coloring ϕ on
G, such that ϕ(w) = Φ(c(w)) for w ∈ V(G). We need to show, that this is a good coloring of G. If w,w′ ∈ V(G),
with ww′ ∈ E(G), then c(w)c(w′) ∈ E(Gλ), so ϕ(w) = Φ(c(w)) , Φ(c(w′)) = ϕ(w′). Finally let v ∈ V(Gλ) be
arbitrary. Then {ξ ∈ λ : vξ = c(vU )ξ} = {ξ ∈ λ : vξ = vU } ∈ U , so we have Φ(v) = Φ(c(vU )) = ϕ(vU ), and
then we are done.
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6. Conclusion and problems

We gave a partial characterisation of trivially power-colorable finite graphs. By Theorem 2.5, Theorem
2.7 and Theorem 2.8 a trivially power-colorable graph G must be connected, tight and χ(G) ≥ 3 must hold.
In converse by Theorem 3.7 if G is a weakly cliqued connected graph with χ(G) ≥ 3, then G is trivially
power-colorable.

These conditions do not meet in general, as there are examples of finite graphs that are tight, but not
weakly cliqued. However, we do not know whether these graphs are trivially power colorable, or not, so
that raises the following 2 problems, with one of them must have positive answer.

Problem 6.1. Is there any finite graph G that is trivially power-colorable but not weakly cliqued?

Problem 6.2. Is there any finite graph G, that is connected, tight, χ(G) ≥ 3 holds, but not trivially power-colorable?

For cographs, the nessecary an sufficient conditions meet, and it characterizes trivially power-colorability.
This raises the quiestion, whether whether this result can be extended into a larger class of graphs.

Problem 6.3. Is there a ”natural” class Γ of finite graphs larger then the class of cographs, such that one of the
following is always true?

- If G ∈ Γ is connected, tight and χ(G) ≥ 3, then G is weakly cliqued.
- If G ∈ Γ is connected, tight and χ(G) ≥ 3, then G is trivially power-colorable.
- If G ∈ Γ is trivially power-colorable, then G is weakly cliqued.

By Theorem 5.3 we also know, that the colorings of an infinite power of a finite, trivially power-colorable
graphs are given by an ultrafilter, but we did not mention the case of infinite graphs. If a graph G has
infinite chromatic number, then it is easy to see that they cannot be trivially power-colorable, but in case
χ(G) is finite, trivial power colorability can be defined in a similar way. This gives us another problem.

Problem 6.4. Is it true that if G is an infinite graph, with χ(G) = k finite, such that for all n, all k-colorings of Gn

are trivial, then for any infinite λ, all colorings of Gλ are defined by an ultrafilter?
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