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Abstract. Partial geometric difference sets (PGDSs) were introduced by O. Olmez. In this paper, we
construct partial geometric difference sets by using spread-like constructions method. We also give some
PGDS constructions by using cosets of a finite group. We call it partial coset construction methods.

1. Introduction

The difference set technique is a remarkable asset for constructing combinatorial objects with large
automorphism groups. In particular, designs are the most constructed ones of those constructed with
this technique [7, 10, 14, 17]. This connection has provided elegant solutions to engineering problems.
A (v, k, λ)- difference set (DS) in a finite group G of order v is a k-subset D with the property that the
multiset ∆D := {d1(d2)−1

|d1, d2 ∈ D, d1 , d2} contains every non-identity element precisely λ times. The set
{1D : 1 ∈ G} called the development set of a difference set is a symmetric design with a regular automorphism
group. Difference sets of various types have interesting links to other combinatorial objects, including
graphs, association schemes, codes, and functions for cryptography [15, 16]. For instance, relative difference
sets can be used to construct bent functions and divisible designs and partial difference sets can be used
to construct strongly regular graphs. A (v, b, k, λ)-relative difference set (RDS) in a finite group G of order
vb relative to a (forbidden) subgroup U of order b is a k− subset R with the property that the multiset
∆R := {r1(r2)−1

|r1, r2 ∈ R, r1 , r2} contains every element of G\U precisely λ times and does not contain any
nonzero elements of U . The RDS is called semiregular if v = k = bλ.
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Table 1: The Parameters of PGDSs.

v k α β − α Comments Citation
(t − 1)m2 (t − 1)m mt(t − 2) m2 t ≥ 3, t is a positive integer [6]

tm2 m(t − 1) m(t − 2)(t − 1) m2 t ≥ 3, t is a positive integer [6]
p2(r+d) pr+2dt pr+4dt2

− pr+2d p2(r+d) r, d ≥ 1,p is prime,1 ≤ t ≤ pr [6]
22dr2t 22d−1r2t − 2dr 24d−3r4t2

− 3 · 23d−2r3t + 22dr2 22dr2 r, d ≥ 1,p is prime,1 ≤ t ≤ 4 [6]
22d+3t 22d+1t − 22d 24dt2

− 3 · 24d−1t + 24d−1 24d d ≥ 1,1 ≤ t ≤ 22d+1+1
3 [6]

3d+1t 3dt + 3d 32d−1t2 + 32dt + 2 · 32d−1 32d d ≥ 1,1 ≤ t ≤ 32d+1
−1

2 [6]
22d+4t 22d+2t + 22d+1 24d+2t2 + 3 · 24d+1t + 24d+1 24d+2 d ≥ 1,1 ≤ t ≤ 22d+2

−1
3 [6]

q2d+2t 1
2 (q2
− q)q2dt 1

8 (q4
− 3q3 + 3q2

− q)q4dt2 q4d+2 q = 3r or q = p2r, [6]

+q2d+1 + 3
4 (q3
− 2q2 + q)q4dt + (q2

− q)q4d 1 ≤ t ≤ 4 q2d+2
−1

q2−1

2q2d+2t (q2
− q)q2dt 1

2 (q4
− 3q3 + 3q2

− q)q4dt2 q4d+2 q = 2r, 1 ≤ t ≤ 2 q2d+2
−1

q2−1 [6]
+q2d+1 + 3

2 (q3
− 2q2 + q)q4dt + (q2

− q)q4d

pk pk−1 p2k−3
− pk−2 pk−1 p is an odd prime, k > 1 [14]

pn+1 pn p2n−1
− pn−1 pn p is prime, n is integer [2]

pn+m pn p2n−m
− pn+s−m pn+s p is an odd prime,0 ≤ s ≤ n, [2]

n and m are integers
3n 3n−1 32n−3

− 3n−2 3n−1 n ≥ 3 [2]
p2n pn pn

− ps pn+s p is an odd prime, 0 ≤ s ≤ n [2]

mp2 mp 3
4 m2p m2p2

4 p > 2 is a prime, m = 0 mod 2 [9]
6p2 4p 8p 12p p is an odd prime [9]
n2 n n − 1 n n is an integer [9]
8l 4l 6l2 4l2 n = 4l is a positive integer [9]

qt+1ms qtms m2q2t−1(s2
− 1) m2q2t t ≥ 1, q is a prime, s ≤ qt+1

−1
q−1 [3]

qt+1ms qtm(s − 1) m2q2t−1(s − 1)(s − 2) m2q2t t ≥ 1, q is a prime, s ≤ qt+1
−1

q−1 [3]
q2lms qlms m2ql(s2

− 1) m2q2l l ≥ 1,s ≤ ql + 1 [3]
q2lms qlm(s − 1) m2ql(s − 1)(s − 2) m2q2l l ≥ 1,s ≤ ql + 1 [3]
mq2s mqs m2q(s2

− 1) m2q2 s ≤ q + 1, q is an odd prime [3]
mq2s mq(s − 1) m2q(s2

− 3s + 2) m2q2 s ≤ q + 1, q is an odd prime [3]
3t+1ms 3tm(s + 1) 32t−1m2(s2 + 3s + 2) 32tm2 t ≥ 1, m is an integer, 1 ≤ s ≤ 1

2 (3t+1
− 1) [3]

lqs+1 lqs (l2 − 1)q2s−1 q2s 2 ≤ l ≤ qs+1
−1

q−1 ,s is a positive integer, q is a prime [13]

r1s+1 (r − 1)qs q2s−1(r − 1)(r − 1) q2s 2 ≤ l ≤ qs+1
−1

q−1 ,s is a positive integer, q is a prime [13]
lq2m lqm (l2 − 1)qm q2m 2 ≤ l ≤ 2

qm+1 ,m is an integer [13]
rq2m mqm qm(r − 2)(r − 1) q2m r = qm + 1, q is a prime, m is an integer [13]
4u 2u u2 3u2 u > 1 [12]

In this paper, we are interested in a certain type of difference set known as a partial geometric difference
set. The notion of PGDSs (or 1 1

2 -difference sets) was introduced in [12], and some existence and nonexistence
results were given. Furthermore, a series of 1 1

2 -designs was constructed. From these designs, strongly
regular graphs were derived [1]. To facilitate the management of the parameters, 1 1

2 were investigated
as PGDS and are now referred to by this nomenclature in the existing literature. In [6], the framework
of extended building sets was used to find infinite families of PGDSs in abelian groups. In [14], it was
demonstrated that the existence of a family of partial geometric difference sets is equivalent to the existence
of a certain family of three-weight linear codes, and a link was also provided between ternary weakly
regular bent functions, three-weight linear codes and partial geometric difference sets. In [2], the authors
established a relationship between vectorial s-plateaued functions and partial geometric difference sets,
leveraging this connection to provide a partition of F3n into partial geometric difference sets.In [9], using
Galois rings and Galois fields, they constructed several infinite classes of partial geometric difference sets
and partial geometric difference families with new parameters. In [3], the authors introduced several new
constructions of partial geometric difference sets and partial geometric difference families by using cosets
of a group in the direct product of two groups. In [13], they constructed an infinite family of PGDSs (or
1 1

2 -difference sets) in non-cyclic abelian p-groups. We have presented the parameters obtained from the
above-mentioned studies in Table 1.
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2. Preliminaries

Let G be a group of order v and S ⊂ G be a k-subset. We define δ(1) as

δ(1) := |{(s, t) ∈ S × S : 1 = st−1
}|

for each 1 ∈ G. Let v and k be positive integers satisfying the condition v > k > 2. The following concept
introduced in [12] for defining PGDSs will be used frequently in this article. A k-subset S of a group G of
order v is called a PGDS in G with parameters (v, k;α, β) if there exist constants α and β such that, for each
x ∈ G,∑

y∈S

δ(xy−1) =
{
α if x < S,
β if x ∈ S.

This definition generalizes the concept of (v, k, λ,n)-difference sets and semiregular relative difference
sets. For instance the existence of a (v, k, λ,n)-DS, implies the existence of a (v, k; kλ,n + kλ)-PGDS and
existence of an (m,u, k, λ) semiregular RDS, implies the existence of a (mu, k;λ(k−1), k(λ+1)−λ)-PGDS. The
construction strategies we will consider in this paper requires standard and convenient tools from group
rings.

Let G be a finite group and we call Z[G] be the group ring of G and define it as

Z[G] :=


∑
1∈G

a11|a1 ∈ Z

 .
The addition and multiplication operations on Z[G] are presented as∑

1∈G

a11 +
∑
1∈G

b11 =
∑
1∈G

(a1 + b1)1

and ∑
1∈G

a11


∑

r∈G

brr

 = ∑
1,r∈G

a1br(1 + r).

Let Z[G] := {
∑
1∈G a11|a1 ∈ Z}. If S ⊂ G, then the group ring element S will be defined using the normal

abuse of notation as S =
∑

s∈S s. Furthermore, the group ring elements S(−1) and G will be defined as
S(−1) :=

∑
s∈S s−1 and G :=

∑
1∈G 1.

Let S be a subset of G. In [12] they showed that S is a (v, k;α, β)-PGDS if it satisfies the following group
ring equation.

S S(−1)S = (β − α)S + αG. (1)

3. Spread-like Constructions of PGDS

In this section, we delve into the construction of PGDSs by leveraging partial k-spreads within specific
vector spaces over finite fields. Meidl and Pirsic [8] introduced a family of bent functions by using spreads
of vector spaces where B denotes an abelian group of order 2k. In the following proposition, we will present
a slightly modified version of the method for constructing a bent function, as outlined in [8]. It has been
observed that the set produced by this method yields PGDS. This proposition constitutes a preliminary
step for our main PGDS constructing method. We designate a k-dimensional vector subspace of Vn as a
k−subspace. A partial k− spread in Vn refers to a collection of k− subspaces that intersect trivially pairwise.



S. Piri, O. Olmez / Filomat 39:12 (2025), 4183–4197 4186

Unless stated otherwise, the additive group of Vn is denoted by E throughout this paper. In particular,
E2m represent the additive group of the 2m-dimensional vector space V2m over GF(2). Notably, there exist
precisely 2m + 1 m-dimensional subspaces ofV2m that intersect trivially pairwise.

Let H1,H2,H3, . . . ,H2m+1 denote the corresponding subgroups of E with the property that Hi ∩ H j = {e}
for all i , j. Consequently, we derive the following equations in the group ring ZE.

H1 +H2 +H3 + · · · +Hr = 2me + E

HiH j =

{
2mHi if i = j
E if i , j

Proposition 3.1. Let B be an abelian group of order 2l. Each nonzero element γ of B is associated with the union of
exactly 2m−l subgroups of E2m, excluding the identity element e ∈ E2m. i.e.,

2m−l⋃
i=1

(H′i , γ),

where H′ = H \ {0}.
Then the set

S =
2l⋃

j=1

2m−l⋃
i=1

(H′j+2k(i−1), γ j)

is a PGDS inV2m × B with parameters β = 22m−l(22m
− 3 · 2m + 2) + 22m and α = 22m−l(22m

− 3 · 2m + 2).

We will give the proof of this proposition as an application of our main constructions.

Example 3.2. Let’s examine the situation where m = 2, l = 2, and B = Z4. In this case, each element of B corresponds
to an element of each 2-dimensional subspace ofV4. There are precisely 5 unique 2-dimensional subspaces inV4 that
intersect only at {0}. Therefore, we label these subspaces as {H1,H2,H3,H4,H5}, creating a spread ofV4.

Considering this setup, the collection

S = {(H
′

1, 0), (H
′

2, 1), (H
′

3, 2), (H
′

4, 3)}

forms a PGDS inV4 × B with parameters (64, 12; 24, 40). We can demonstrate that

S S−1S = 16S + 24G

in the group ring where G = V4 × B.
In this scenario,

H
′

1 = {(1, 0, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1)}

H
′

2 = {(0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 1, 1)}

H
′

3 = {(0, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)}

H
′

4 = {(1, 1, 0, 0), (1, 0, 1, 1), (0, 1, 1, 1)}

Next, we will adopt a similar approach to that used in the bent function constructions 1 and 2, as given
in [8], to construct PGDSs. Let Vn denote the n-dimensional vector space over F2, where the vectors are
n-tuples. Our focus will be on analyzing collections of m-dimensional subspaces within Vn that intersect in
a non-trivial manner.
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Let Vn be an n-dimensional vector space, and consider m-dimensional subspaces of Vn that pairwise
intersect in a fixed t-dimensional subspace. We immediately observe the following upper and lower bounds
on t:

m +m − t ≤ n,
2m − n ≤ t < m.

We also note that an additional restriction on the integer t is required. Since we are working over
GF(2), we need 2n

−2t

2m−2t to be an odd integer to partition Vn into m-dimensional subspaces that intersect in a
t-dimensional subspace and m-dimensional subspaces with the intersection subspace removed. Therefore,
we require (m − t) | (n − t). Now, let us give the main constructions of the paper.

Construction 3.3. Consider N as the t-dimensional intersection subspace. DefineS = {Hi | 1 ≤ i ≤ (2l
−1)(2n−m−l)}

to be a partial m-spread ofVn with intersection N. Let B denote an abelian group of order 2l where 1 ≤ l ≤ m− t. Let
the construction steps for the set S be as follows:

- Every nonzero element γ of B is associated with the union of exactly 2n−m−l elements of S excluding N. That is,

2n−m−l⋃
i=1

(H′i , γ) where H′ = H \N.

- All other elements of G are associated with 0 ∈ B.

Then,

S =

2l
−1⋃

j=1

2n−m−l⋃
i=1

(
H
′

(2n−m−l) j−2n−m−l+i, γ j

) ∪


2n
−2t

2m−2t⋃
i=(2l−1)(2n−m−l)+1

(H
′

i , 0)

 ∪ (N, 0)

yields a PGDS in G = E × B.

Before proving the construction, let us present some equations in the group ring ZE:

H
′

i H
′

i = (|H
′

i | − |N|)H
′

i + |H
′

i |N (2)

NN = |N|N (3)

H
′

i N = |N|H
′

i (4)

Proof. Let G = E ×Z2l be a group and let the subset S ⊆ G be constructed as in the construction above. For
the first condition, precisely 2n−m−l subspaces H ∈ S, with the intersection subspace removed, match with
the elements of B′ = {x ∈ B | x , 0}. For the second condition, exactly

(
2n
−2t

2m−2t − 2n−m−l(2l
− 1)

)
elements of

S that do not match with the non-identity elements of B and the subspace N are paired with the identity
element (chosen as 0) of B.

To demonstrate that the set S constitutes a PGDS, it is sufficient to show that it satisfies Equation 1. It is
evident that the inverse of the subset H′ is equal to itself. Indeed, the set H′ is constructed by removing a
certain subspace from the group H, and the inverse of each element remains within H′.

The proof is conducted by examining two distinct cases based on the intersection subspaces N of m-
dimensional subspaces, specifically when considering the products of these subspaces with N removed.
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These cases are distinguished by whether the ratio 22m+22t
−2m+t+1

2n+2t−2m+1 is an integer. This ratio pertains to the
total number of elements obtained from the product of two distinct subspaces, excluding their intersection
subspaces, relative to the remaining elements of E not contained in these subspaces.

Case I: H′

i H
′

j = |N|(E \ (H′

i ∪H′

j ∪N))
In this case, for different i and j, the product of H′

i and H′

j consists of all H′

w where i , w , j. First, let us

compute the product SS−1. As can be inferred from Equations 2,3 and 4, SS−1 contains only the elements
(N, 0) and G − (N,B). The coefficients of (N, 0) arise from the products H′

i H
′

i and NN. From this, we obtain:

(2m
− 2t)

2n
− 2t

2m − 2t + 2t = 2n.

On the other hand, the coefficient of G − (N,B) similarly arises from the products H′

i H
′

i , H′

i H
′

j, and H′

i N.
Thus, we have:

(2m
− 2t
− 2t) + 2 · 2t + 2t

((
2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

=
2m + 2t

((
2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

.

Therefore,

SS−1 = 2n(N, 0) +
2m + 2t

((
2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

(G − (N,B)).

Now we can compute SS−1S.

SS−1S =

2n(N, 0) +

2m + 2t
((

2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

 (G − (N,B))

 S

= 2n
|N|S +

2m + 2t
((

2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

 (|S|G − |N|G)

= 2n2tS +

2m + 2t
((

2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

 (2nG − 2tG)

= 2n+tS +

2m + 2t
((

2n
−2t

2m−2t

)
− 2

) ((
2n
−2t

2m−2t

)
− 1

)
2l

 (2n
− 2t

)
G.

Therefore, the set S is a PGDS in the group G with parameters α =
(

2m+2t
((

2n
−2t

2m−2t

)
−2

)((
2n
−2t

2m−2t

)
−1

)
2l

) (
2n
− 2t) and

β =

((
2m+2t

((
2n
−2t

2m−2t

)
−2

(
2n
−2t

2m−2t

)
−1

)
2l

) (
2n
− 2t)) + 2n+t.

Case 2: H′

i H
′

j = H′

w, i , w , j
In this case, for different i and j, the product of H′

i and H′

j yields a set H′

w such that i , w , j. Following

a similar enumeration as in Case 1, from equations (2.5), (2.6), and (2.7), the product SS−1 is obtained as:

SS−1 = 2n(N, 0) + 2n(H
′

w, 0) + 2n−l(G − (N,B) − (H
′

w,B)).

Therefore,

SS−1 = 2n(Hw, 0) + 2n−l(G − (Hw,B)).
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Now we can compute the product SS−1S.

SS−1S =
(
2n(Hw, 0) + 2n−l(G − (Hw,B))

)
S

= 2n
|Hw|S + 2n−l(|S|G − |Hw|G)

= 2n2mS + 2n−l(2nG − 2mG)

= 2n+mS + (22n−l
− 2n−l+m)G.

Therefore, the set S is a PGDS in the group G with parameters (v = 2n+l, k = 2n;α = 22n−l
− 2n−l+m, β =

22n−l
− 2n−l+m + 2n+m).

By a similar counting method, the construction method given below also specifies PGDSs with the same
parameters as those specified in Construction 3.3.

Construction 3.4. Consider N as the t-dimensional intersection subspace. DefineS = {Hi | 1 ≤ i ≤ (2l
−1)(2n−m−l)+

1} to be a partial m-spread ofVn with intersection N. Let B denote an abelian group of order 2l where 1 ≤ l ≤ m − t.
Let the construction steps for the set S be as follows:

- an element γ̄ of B′ makes pairs with the union of exactly 2n−m−l + 1 elements of S. i.e.,
⋃2n−m−l+1

i=1 (Hi, γ̄). Note
that the intersection subspace makes pairs with γ too.

- All other nonzero elements except γ̄ of B′ makes pairs with the union of exactly 2n−m−l different elements of S
except from N. i.e.,

⋃2n−m−l

i=1 (H′

i , γ ) where H′ = H \N.

- 0 ∈ B element makes pair with rest of the elements of G that is not used in two steps.

Then,

S =

2n−m−l+1⋃
i=1

(
Hi, γ̄

) ∪
 (2l
−1)(2n−m−l)+1⋃

i=(2n−m−l)+2,γ,γ̄

(H
′

i , γ)

 ∪


2n
−2t

2m−2t⋃
i=(2l−1)(2n−m−l)+2

(H
′

i , 0)

 ∪ (N, 0)

yields a PGDS in G = E × B.

When t = 0, the construction will be a partial spread partition for subspaces that intersect trivially in
pairs. According to Meidl and Pirsic, these constructions with t = 0 yield bent functions when n = 2m, see
[8].

Now we can give the proof of Proposition 3.1 by using the results in Construction 3.3.

Proof. {Proof of Proposition 3.1} Let S1 be the PGDS constructed as in Construction 3.3 where n = 2m
and N = e. Then it is enough to prove that the set S = S1 − (H2m+1, 0) is a PGDS with parameters as
β = 22m−l(22m

−3 ·2m+2)+22m and α = 22m−l(22m
−3 ·2m+2) since the intersection element e and the elements

of G that pair with 0 ∈ B are removed from the set S.
To do this, we compute (S1 − (H2m+1, 0))(S1 − (H2m+1, 0))−1(S1 − (H2m+1, 0)):
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(S1 − (H2m+1, 0)) (S1 − (H2m+1, 0))−1(S1 − (H2m+1, 0)) = 2m(H2m+1, 0))

+ (S1 S1
−1
− 2(2m−l(G − (H2m+1,B)) + 2m(H2m+1, 0))(S1 − (H2m+1, 0))

= (S1 S1
−1
− 2m−l+1G + 2m−l+1(H2m+1,B) − 2m(H2m+1, 0))(S1 − (H2m+1, 0))

= (S1 S1
−1
− 2m−l+1G + 2m−l+1(H2m+1,B) − 2m(H2m+1, 0))(S1 − (H2m+1, 0))

= S1 S1
−1S1 − 23m−l+1G + 22m−l+1G − 22m−lG + 22m−l(H2m+1,B) − 22m(H2m+1, 0)

− 22m(H2m+1, 0) − 23m−lG + 22m−l(H2m+1,B) + 22m−l+1G − 22m−l+1(H2m+1,B)

+ 22m(H2m+1, 0)

Since this proposition fits in case 1 in Construction 3.3 we have S1 S1
−1S1 = 22mS1 + (24m−l

− 22m−l)G.

= 22mS1 + (24m−l
− 22m−l

− 23m−l+1 + 22m−l+1
− 22m−l

− 23m−l + 22m−l+1)G

− 22m(H2m+1, 0)

= 22m(S1 − (H2m+1, 0) + (22m−l(22m
− 3 · 2m + 2))G

= 22m(S + (22m−l(22m
− 3 · 2m + 2))G.

With these construction methods, we can obtain PGDSs with different parameters by changing the di-
mensions of the vector space, its subspaces and the intersection space within the given rules. As an example,
we will now examine the following 2 propositions as an application of these construction methods to be
better understood by the reader.

For these corollaries, we will consider an n-dimensional vector space and its n−2-dimensional subspaces,
which intersect pairwise in n−4 and n−3-dimensional subspaces ofVn, respectively. For n−4-dimensional
intersections, there are 2n

−2n−4

2n−2−2n−4 = 5 such n − 2-dimensional subspaces. For n − 3-dimensional intersections,
there are 2n

−2n−3

2n−2−2n−3 = 7 such n− 2-dimensional subspaces. Let B = Z4 be a cyclic group. Constructing S in the
following manner will provide a PGDS in G = E × B.

Corollary 3.5. Let {H1,H2,H3,H4,H5} be a collection of (n − 2)-dimensional subspaces of Vn that intersect in
a fixed (n − 4)-dimensional subspace N. For the cyclic group B of order 4 and 2, we have partial spreads
S1 = {H1,H2,H3, } S2 = {H1,H2} Define the sets S1 = {(H

′

1, 1), (H′

2, 2), (H′

3, 3), (H′

4, 0), (H′

5, 0), (N, 0)} and S2 =

{(H′

1, 1), (H′

2, 1), (H′

3, 0), (H′

4, 0), (H′

5, 0), (N, 0)}. These sets are PGDSs with the following parameters:

• For G = E × B, where B is a cyclic group of order 4, S1 has parameters (2n+2, 2n; 15 · 22n−6, 19 · 22n−6).

• For G = E × B, where B is a cyclic group of order 2, S2 has parameters (2n+1, 2n; 15 · 22n−5, 17 · 22n−5).

Note that this corollary falls into case I in Construction 3.3 since H′

i H
′

j = |N|(E \ (H′

i ∪H′

j ∪N)).
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Example 3.6. Let n = 5. Consider the following subspaces ofV5:

H1 = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(1, 0, 1, 0, 0), (0, 1, 1, 0, 0), (1, 1, 1, 0, 0)},

H2 = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 1), (1, 1, 0, 0, 1), (0, 0, 1, 1, 0),
(1, 0, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)},

H3 = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 1, 0), (1, 1, 0, 1, 0), (0, 0, 1, 1, 1),
(1, 0, 1, 1, 1), (0, 1, 1, 0, 1), (1, 1, 1, 0, 1)},

H4 = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 1, 1), (1, 1, 0, 1, 1), (0, 0, 1, 0, 1),
(1, 0, 1, 0, 1), (0, 1, 1, 1, 0), (1, 1, 1, 1, 0)},

H5 = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 0, 0, 1, 0), (1, 0, 0, 1, 0), (0, 0, 0, 0, 1),
(1, 0, 0, 0, 1), (0, 0, 0, 1, 1), (1, 0, 0, 1, 1)},

where these subspaces intersect in the n−4 = 1-dimensional subspace N = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)}. Construct
the set

S = {(H′1, 1), (H′2, 2), (H′3, 3), (H′4, 0), (H′5, 0), (N, 0)}.

This set S forms a PGDS with parameters α = 240 and β = 304 in the group G = E×B, where B is a cyclic group
of order 4.

Corollary 3.7. Let {H1,H2,H3,H4,H5,H6,H7} be a collection of (n − 2)-dimensional subspaces of Vn, intersecting
in a fixed (n − 3)-dimensional subspace N. Define the set

S = {(H′1, 1), (H′2, 1), (H′3, 0), (H′4, 0), (H′5, 0), (H′6, 0), (H′7, 0), (N, 0)}.

This set S forms a PGDS with parameters (2n+1, 2n; 3 · 22n−3, 5 · 22n−3) in the group G = E × B, where B is a cyclic
group of order 2.

Note that this corollary falls into case II in Construction 3.3.

Example 3.8. Let n = 4, m = 2, t = 1, and l = 1. Consider the following (n − 2)-dimensional subspaces ofVn:

H1 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)},
H2 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1)},
H3 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 1, 0), (1, 1, 1, 0)},
H4 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 1, 1), (1, 1, 1, 1)},
H5 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 1), (1, 0, 1, 1)},
H6 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1)},
H7 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 0)}.

These subspaces have an intersection in the fixed (n − 3)-dimensional subspace N = {(0, 0, 0, 0), (1, 0, 0, 0)}. Define
the set

S = {(H′1, 1), (H′2, 1), (H′3, 0), (H′4, 0), (H′5, 0), (H′6, 0), (H′7, 0), (N, 0)}.

This set S forms a PGDS with parameters α = 96 and β = 160 in the group G = E × B, where B is a cyclic group of
order 2.
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As commonly observed in the literature, the general construction of PGDSs with m-dimensional sub-
spaces of Vn intersect trivially is always used with the specific condition that n = 2m. This corollary
demonstrates the efficacy of the construction method when n = 3m. The following corollary exemplifies
the scenario where m-dimensional subspaces of Vn intersect pairwise trivially, with the specific condition
that n = 3m.

Corollary 3.9. LetVn be an n-dimensional vector space with n = 3m, and consider its m-dimensional subspaces. Let
B be a cyclic group of order 2l. Assume there exists a fixed intersection subspace of dimension t, where 0 ≤ t < m. For
t = 0, the set S constructed via Construction 3.3 forms a PGDS with parameters (23m+l, 23m; 26m−l

− 23m−l+1, 26m−l
−

23m−l+1 + 26m+1).

According to Constructions 3.3 and 3.4, we can derive various corollaries with different parameter
variations. We have demonstrated some of these corollaries so far. In the following, we will explore
other construction types for PGDSs. Specifically, we will utilize multiple subgroups of E. The following
constructions illustrate these approaches.

Proposition 3.10. Let Vn be an n-dimensional vector space over GF(2). Consider the (n − 1)-dimensional vector
subspaces having an intersection subset |N| = 2n−2 of E. Let B be a cyclic abelian group of order 4. Define
S = {H′1,H

′

2,H
′

3,N} as a distinct subset collection of Vn, where H′i denotes the subset Hi\N. Then the set S =⋃3
i=1(H′i , i) ∪

⋃3
i=1(H′i , 0) forms a PGDS with parameters β = 4 · 22n−2 and α = 3 · 22n−2 in G = E × B.

Proof. We denote the group G by G and the set S by S =
∑3

i=1((H′i , i) + (H′i , 0)) in the group ring ZG. Note

that S−1 =
∑3

i=1((H′i ,−i)+ (H′i , 0)) since elements of H′i are inVn over GF(2). We have the following equations
in the group ring ZE:

H′i H
′

j = 2n−2H′k for i , j , k,

H′i H
′

i = 2n−2N.

Let us verify the PGDS equation in the group ring:

S · S−1
· S =

 3∑
i=1

((H′i , i) + (H′i , 0))


 3∑

j=1

((H′j,− j) + (H′j, 0))

 S

= 2n−2

4(N, 0) + 2

 3∑
i=0

(H′1, i) +
3∑

i=0

(H′2, i) +
3∑

i=0

(H′3, i) +
3∑

i=0

(N, i)


 S

=
(
2n−1G + 2n(N, 0)

)
S

= 6(2n−1)(2n−2)G + (2n)(2n−2)S

= 3(22n−2)G + (22n−2)S.

Since N +H′1 +H′2 +H′3 = E, the proof is complete.

Proposition 3.11. Let Vn be an n-dimensional vector space over GF(2) and let B = Z4. Consider the collection
{H1,H2,H3, . . . ,H2n−m+1 } of m-dimensional subspaces ofVn that intersect in a fixed (m− 1)-dimensional subspace N.
Define H′i = Hi\N for i ∈ {1, 2, . . . , 2n−m+1

}.

Then the set S =
(⋃2n−m+1

i=1 (H′i , 1)
)
∪

(⋃2n−m+1

i=1 (H′i , 2)
)

forms a PGDS with parameters β = 3 · 22n and α = 22n in
the group G = E × B.
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Proposition 3.12. Let Vn be an n-dimensional vector space over GF(2), and let B = Zl
2 where l ≥ 2. Consider the

collection {H1,H2,H3, . . . ,H2n−m+1−1} of m-dimensional subspaces ofVn that intersect in a fixed (m − 1)-dimensional
subspace N. Denote H′i = Hi\N for i ∈ {1, 2, . . . , 2n−m+1

− 1}, and let S = {H′1,H
′

2,H
′

3, . . . ,H
′

i , . . . ,H
′

j} be the
corresponding subset collection ofVn.

Then the set S =
⋃2n−m+1

i=1 (H′i , j), where j ∈
{

1+(−1)t

2 + 2t | t ∈ [0, 2l−1
− 1]

}
, forms a PGDS with parameters

β = 3 · 22n+2(l−2) and α = 22n+2(l−2) in the group G = E × B.

Example 3.13. Let n = 3, m = 2, and let B be a cyclic abelian group of order 8. Consider the 2-dimensional subspaces
ofV3:

H1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)},
H2 = {(0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)},
H3 = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)},

which have the intersection subset {(0, 0, 0), (0, 1, 0)} inV3.
Define the set S = {H′1,H

′

2,H
′

3,H
′

4}, where:

H′1 = {(1, 0, 0), (1, 1, 0)},
H′2 = {(1, 0, 1), (1, 1, 1)},
H′3 = {(0, 0, 1), (0, 1, 1)},
H′4 = {(0, 0, 0), (0, 1, 0)}.

Then the set S is defined as:

S =
4⋃

i=1

{(H′i , 1), (H′i , 2), (H′i , 5), (H′i , 6)}.

This set S forms a PGDS with parameters β = 3(28) and α = 28 in the group G = E ×Z8.

The proofs of Proposition 3.11 and Proposition 3.12 utilize the same counting techniques as those used
in the proof of Proposition 3.10, and hence are not included here. Next, we present Proposition 3.15 as
formulated in [13], followed by an alternative version for PGDS construction.

Lemma 3.14. ([13], Lemma 3.3) Let U1,U2, . . . ,Ul be l distinct m-dimensional subspaces ofV2m, where q is a prime
and K is a group of order l. Assume r ≥ l ≥ 2, where r denotes the total number of such subspaces. Then the set
S =

⋃l
i=1(Hi, ki) is a PGDS in the group G = E × K.

S forms a PGDS with parameters α = (l2 − 1)qm and β = α + q2m.

Proposition 3.15. Let H1,H2, . . . ,Hl be n − 2-dimensional subspaces ofVn intersecting in 2n−4 elements, and let B
be a group of order l where 2 ≤ l ≤ 5. Consider the group G = E × B.

Define the set S =
⋃l

i=1(Hi, bi), where bi ∈ B. Then, S forms a PGDS with parameters (2nl, 2n−2l; 22n−6(l2 −
1), (l2 + 3)22n−6) in the group G.

Before proving the proposition, we establish some equations in the group ring ZE:

HiHi = 2n−2Hi

HiH j = 2n−4E for i , j
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H1 +H2 + · · · +Hl = lN + E

where N denotes the n − 4-dimensional intersection subspace. For n = 4, this scenario corresponds to
construction 2 in [13].

Proof. We aim to demonstrate that the set S defined as S =
∑l

i=1(Hi, bi) satisfies the group ring equation.
Here S−1 =

∑l
i=1(Hi, b−1

i ).

SS−1S =

 l∑
i=1

(Hi, bi)


 l∑

j=1

(H j, b−1
j )


 l∑

t=1

(Ht, bt)


=

 l∑
i=1

(Hi, bi) +
∑
i, j

(HiH j, bib−1
j )


 l∑

t=1

(Ht, bt)


=

2n−2
l∑

i=1

(Hi, eB) + l2n−4(G − (E, eB))


 l∑

t=1

(Ht, bt)


= 22n−4

l∑
i=1

(Hi, bi) + 2n−2
∑
i, j

(HiHt, bt) + l222n−6G − l22n−6G

= 22n−4
l∑

i=1

(Hi, bi) +
(
22n−6(l − 1) + l222n−6

− l22n−6
)

G

Therefore, S is a PGDS with parameters (2nl, 2n−2l; 22n−6(l2 − 1), (l2 + 3)22n−6) in G = E × B.

Example 3.16. Let n = 6 and H1,H2 be 4-dimensional subspaces of V6 intersecting in the set {(0, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0)}. Then the set S = {(H1, b1), (H2, b2)} is a PGDS with parameters
(128, 32; 192, 448) in G = E × B where B is a cyclic group of order 2.

Note that;
Let {H1,H2, . . . ,Hl} denote a collection of n− 2-dimensional subspaces ofVn intersecting in 2n−4 elements as
in Proposition 3.15. If we choose a cyclic group B of order l+1 (not l), same set S =

⋃l
i=1(Hi, bi) in Proposition

3.15 also forms a PGDS with parameters (2n(l + 1), 2n−2l; 22n−6(l2 − l), (l2 − l + 4)22n−6).

4. Partial Coset Constructions of PGDS

Now, we will demonstrate that the partial spread constructions of vector spaces can be translated into
the context of direct products of cyclic groups, a process we will refer to as partial coset construction. Before
proceeding, it is essential to present the following significant theorem.

Theorem 4.1. Let S be a PGDS with parameters (v, k;α, β) in a group G, and let H be a group of order n. Then the
set A = S ×H = {(x, y) : x ∈ S, y ∈ H} is a PGDS with parameters (nv,nk; n2α,n2β) in G ×H.

Proof. Given that S is a PGDS with parameters (v, k;α, β) in the group G, we have the fundamental group
ring equation:

SS−1S = (β − α)S + αG.

Our goal is to demonstrate that the set A = S × H is a PGDS in the group G × H with the corresponding
parameters (nv,nk; n2α,n2β).
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Consider the group ring Z(G ×H). We can express the set A in this group ring as:

A =
∑

x∈S,y∈H

(x, y).

Next, we need to verify that A satisfies the PGDS equation in Z(G ×H). First, observe the inverse set A−1:

A−1 = {(x−1, y−1) | (x, y) ∈ A}.

Thus, we have:

A−1 =
∑

(x,y)∈A

(x−1, y−1).

Now, let’s compute AA−1A:

AA−1A =

 ∑
(x,y)∈A

(x, y)


 ∑

(x′,y′)∈A−1

(x′, y′)


 ∑

(x′′,y′′)∈A

(x′′, y′′)


=

 ∑
x∈S,y∈H

(x, y)


 ∑

x′∈S−1,y′∈H

(x′, y′)


 ∑

x′′∈S,y′′∈H

(x′′, y′′)

 .
Using the distributive property of the group ring, we can separate the contributions of S and H:

AA−1A =
(
SS−1S

)
×

 ∑
y,y′,y′′∈H

(yy′y′′)

 .
Since H is a group of order n, we have HH−1 = HH = nH and thus,∑

y,y′,y′′∈H

(yy′y′′) = |H|2H = n2H.

Therefore, the above expression simplifies to:

AA−1A =
(
(β − α)S + αG

)
× n2H.

Distributing the multiplication, we get:

AA−1A = n2(β − α)A + n2αG ×H.

This confirms that A satisfies the group ring equation for a PGDS with parameters (nv,nk; n2α,n2β) in
G ×H. Hence, A = S ×H is indeed a PGDS with the desired parameters.

This theorem is a valuable tool for constructing PGDSs from existing ones. The following lemma seems
as an application of the theorem but gives a PGDS that has parameters (9, 3; 2, 5) and it is not from the
existing one.

Corollary 4.2. Let A be a group of order 3n and N be a subgroup of A of order n. Consider the cosets N,H1,H2 of N
as a coset partition of A. Further, let B be an additive group Z3. Then, the sets

{{(H1, i) ∪ (H1, j) ∪ (H2, k)} : i, j, k ∈ {0, 1, 2}, i , j}

and

{{(H2, i) ∪ (H2, j) ∪ (H1, k)} : i, j, k ∈ {0, 1, 2}, i , j}

are PGDS in A × B with parameters (32n, 3n; 2n2, 5n2).
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Proof. Let H1 and H2 be the cosets of N. We will do the proof for an arbitrary set S = {(H1, 1)∪(H1, 0)∪(H2, 2)}.
We have following equations; H−1

1 = H2, H−1
2 = H1, N−1 = N, H1H2 = nN, H1H1 = nH2 and H2H2 = nH1.

Then the rest of the proof is just to show that the set S satisfies the PGDS equation in the group ringZ(A×B).
Note that S−1 = {x−1 : x ∈ S} = {(H2, 2), (H1, 1), (H2, 0)}.

S S−1S =
(
(H1, 1) + (H2, 2) + (H1, 0)

) (
(H2, 2) + (H1, 1) + (H2, 0)

)
S

=
(
(3n)(N, 0) + n(A, 1) + (A, 2)

)
S

= 3n2S + 2n2G

Therefore, S is a PGDS with parameters (32n, 3n; 2n2, 5n2) in G = E × B in A × B.

Example 4.3. Let A = Z6 and B = Z3. The set {(1, 1), (4, 1), (1, 2), (4, 2), (2, 2), (5, 2)} is a PGDS in A × B with
parameters (18, 6; 8, 20).

Corollary 4.4. Let A be a group of order 4n and N be a subgroup of A of order n. Consider the cosets N,H1,H2,H3

as coset partition of A. Further, let B be an additive group Z3. Then the set S =
⋃3

i=1((Hi, i) ∪ (Hi, 0)) is a PGDS
with parameters (16n, 6n; 12n2, 16n2) in A × B.

In [11], they constructed partial geometric difference families in the group Zn where n = 4l for some
integer l and in [9] generalized the idea for the groupZ2 ×Zn as in Theorem 4.5. We constructed PGDSs in
Corollary 4.6 by modifying this theorem.

Theorem 4.5. (Theorem 3.13 [9]) Let G = Z2 ×Zn where n = 4l for some positive integer l. Let H =< 4 > be the
unique subroup of Zn of order l. Define H + i = {z + i|z ∈ H} = {x ∈ Zn|x ≡ i mod 4} for i = 0, 1, 2, 3 (that is, the
cosets of H inZn). Then both {0} × (H∪ (H+ 1))∪ {1} × (H∪ (H+ 3)) and {1} × (H∪ (H+ 1))∪ {0} × (H∪ (H+ 3))
are partial sets of geometric differences in G with parameters (8l, 4l; 6l2, 10l2).

We also note that the set {0} × (H + 2) ∪ {1} × ((H + 2) ∪ (H + 1) ∪ (H + 3)) is a PGDS in G with same
parameters.

Corollary 4.6. Let G = Zn ×Z2 where n = 6l for a positive integer l. Let H =< 3 > be a unique subgroup of Zn
of order 2l. Let us define the cosets of H as Hi = {x ∈ Zn : x ≡ i mod 3}, Hodd

i = {x ∈ Hi : x ≡ 1 mod 2} and
Heven

i = {x ∈ Hi : x ≡ 0 mod 2}. Then the following sets are PGDS with parameters (12l, 4l; 4l2, 8l2) in G.

H1 × {0} ∪Hodd
2 × {0} ∪Heven

2 × {1}

H1 × {0} ∪Hodd
2 × {1} ∪Heven

2 × {0}

H2 × {0} ∪Hodd
1 × {0} ∪Heven

1 × {1}

H2 × {0} ∪Hodd
1 × {1} ∪Heven

1 × {0}

The proof of the corollary is a straightforward counting, so it is omitted.

Example 4.7. Let G = Z6 ×Z2 for l = 1. Then the set {(1, 1), (4, 0), (2, 1), (5, 1)} is a PGDS in G with parameters
(12, 4; 4, 8).
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5. Conclusion

We listed partial geometric difference sets constructed in this paper in the following tables.

Table 2: The Parameters of PGDS Constructed in This Paper.

v k α β − α Comment Citiation
22m+l 2m(2m

− 1) 24m−l
− 3 · 23m−l + 22m−l+1 22m m ≥ 1, 1 ≤ l ≤ m − t Proposition 3.1

2n+1 2n 15(22n−5) 22n−4 n ≥ 2 Corollary 3.5
2n+2 2n 15(22n−6) 22n−4 n ≥ 2 Corollary 3.5
2n+1 2n 3(22n−3) 22n−2 n ≥ 2 Corollary 3.7
23m+l 23m 26m−l

− 23m−l+1 26m+1 m ≥ 1, 1 ≤ l ≤ m − t Corollary 3.9
2n+2 3 · 2n−1 3 · 22n−2 22n−2 n ≥ 2 Proposition 3.10
2n+2 2n+1 22n 22n+1 n ≥ 2 Proposition 3.11
2n+2 2n 22n+2l−4 22n+2l−3 1 ≤ l ≤ m − t, l ≥ 2 Proposition 3.12
l · 2n l · 2n−2 22n−6(l2 − 1) 22n−4 2 ≤ l ≤ 5,n ≥ 2 Proposition 3.15
9n 3n 2n2 3n2 n ≥ 1 Corollary 4.2

16n 6n 12n2 4n2 n ≥ 1 Corollary 4.4
12l 4l 4l2 4l2 l ≥ 1 Corollary 4.6
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