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Available at: http://www.pmf.ni.ac.rs/filomat

Structure of the rough Hausdorff limit set of sequences of balls in
normed spaces
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Abstract. In this paper, we study the rough Hausdorff convergence of a sequence (Bn) of balls in normed
spaces. We also discuss the following questions:

(Q1) Does the rough Hausdorff limit set of the sequence (Bn) consist of balls?
(Q2) Is the set of intersections or unions of sets taken from the rough Hausdorff limit set of the sequence

(Bn) a ball?

1. Introduction

In this paper, we define the rough Hausdorff limit set of a sequence (Bn) of balls and examine its structure
and some properties. While examining the structure of this set, we use the definitions of Chebyshev radii
to show whether it is ball or not.

Papini and Wu [11] studied the Hausdorff convergence of sequences of both sets and balls in Banach
spaces. They showed that if a sequence (Bn) of balls is Hausdorff convergent, then its limit set is a ball (see

Proposition 6). They also proved that if (Bn) is a uniformly bounded increasing sequence, then B = cl
(
∞⋃

n=1
Bn

)
is a ball and H(Bn,B)→ 0 as n→∞ (see Proposition 7). Additionally, Albayrak [1] generalized some of the
results given for sequences of sets in [11] by using the concept of ideal convergence.

On the other hand, the structure of the union of unbounded increasing sequences of balls in a normed
space X has been examined to characterize some geometric properties of the dual space X∗. It has been

shown that for the unbounded increasing sequence (Bn), B∗ =
∞⋃

n=1
Bn is a cone in finite dimensional normed

spaces, but not in infinite dimensional normed spaces (see [5, Proposition 2.7 and Theorem 2.16]).
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Ö. Ölmez, E. Dündar / Filomat 39:12 (2025), 4199–4206 4200

In Examples 3.4 and 3.6, we show that the answers to questions (Q1) and (Q2) are ”no” in finite and
infinite dimensional normed spaces, respectively. We mention the properties of the rough Hausdorff
limit set of the sequence (Bn) such as monotonicity, closedness and convexity. We also characterize the
relationship between the Hausdorff convergence and the rough Hausdorff convergence of the sequence
(Bn) (see Proposition 3.12).

2. Preliminaries

Let (X, ∥.∥) be a normed space. Cl(X) and B(X) denote the class of all nonempty closed subsets and the
class of all nonempty, closed and bounded subsets of X, respectively.

Let (xn) be a sequence of real numbers and r be a nonnegative real number. The sequence (xn) is said to
be rough convergent to x, if for every ε > 0 there exists an N (ε) ∈N such that

∥xn − x∥ < r + ε for all n ≥ N (ε) .

In this case, we write xn
r
−→ x as n→∞ [12].

Define LIMrxn = {x ∈ X : xn
r
→ x}, which is called the rough limit set of (xn) [12].

For a sequence (xn), the rough limit superior set and the rough limit inferior set are defined as follows:

LIMSUPrxn = LIMr
n→∞

sup
k≥n

xk

and

LIMINFrxn = LIMr
n→∞

inf
k≥n

xk [4].

The open ball S(a, ε) with centre a ∈ X and radius ε > 0 is defined as

S(a, ε) = {x ∈ X : ∥x − a∥ < ε}

whereas the closed ball B(a, ε) with centre a ∈ X and radius ε > 0 is defined as

B(a, ε) = {x ∈ X : ∥x − a∥ ≤ ε}.

For A,B ∈ Cl(X), the Hausdorff distance between A and B is defined by

H (A,B) = max {h(A,B), h(B,A)} ,

where

h(A,B) = sup
a∈A

d(a,B) and d(a,B) = inf
b∈B
∥a − b∥ .

Equivalently,

H(A,B) = inf {ε > 0 : A ⊆ Sε (B) and B ⊆ Sε (A)} ,

where

Sε(A) = {x ∈ X : d(x,A) < ε}

is the ε-enlargement of A. The closure of ε-enlargement of A is denoted by Sε(A). It is clear that Sε(A) = B(A, ε).
Let A,An ∈ Cl(X) (n ∈N). A sequence (An) is said to be Hausdorff convergent to A if for every ε > 0 there

exists an N(ε) ∈N such that

H(An,A) = max {h(An,A), h(A,An)} < ε for all n ≥ N(ε).
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In this case, we write An
H
−→ A or H(An,A)→ 0 as n→∞.

The diameter δ(A) of a nonempty set A is defined to be

δ(A) = sup
a1,a2∈A

∥a1 − a2∥ .

Now we give the definitions of Chebyshev radii, which are necessary to show whether a set is ball or
not (see [2, 3, 7] for details).

Definition 2.1. Let A be a nonempty bounded subset of X. We denote

R(x,A) = inf{ε > 0 : B(x, ε) ⊃ A} = sup
a∈A
∥x − a∥ (x ∈ X)

and

R
′

(x,A) = sup {ε > 0 : B(x, ε) ⊂ A} (x ∈ A).

•The relative Chebyshev radius of A in Y is defined by RY(A) = inf
y∈Y

R(y,A) (Y ⊆ X).

•The Chebyshev radius of A is defined by R(A) = RX(A).
•The self Chebyshev radius of A is defined by RA(A) = inf

a∈A
R(a,A).

•The inner Chebyshev radius of A is defined by R′ (A) = sup
x∈A

R′ (x,A).

It is clear that

0 ≤ R
′

(A) ≤ R(A) ≤ RA(A) ≤ δ(A).

Example 2.2. Consider the spaceR2 endowed with the taxicab norm. Let A be a trapezoid with vertices at the points
(−3, 1), (1, 1), (3,−3) and (−5,−3), and let Y =

{
(x, y) ∈ R2 : y = −5

}
. Then, we have

δ(A) = 10, R(A) = 6, RY(A) = 8, RA(A) = 6 and R
′

(A) = 0.

Let us give a useful lemma expressing the criteria for a set to be ball.

Lemma 2.3 ([10]). Let A ∈ Cl(X). A is a ball if and only if

R
′

(A) =
δ(A)

2
⇔ R(A) = R

′

(A)⇔ RA(A) = R
′

(A). (1)

It is obvious that the set A in Example 2.2 is not a ball.

3. Main Results

In this section, we study on rough Hausdorff convergence of a sequence (Bn) of balls. The concept of
rough Hausdorff convergence of sequences of sets was first introduced by Ölmez et al. [9]. We express our
results for sequences of balls by generalizing this concept given in metric spaces to normed spaces.

Throughout this paper, let (An) and (Bn) denote the sequence of sets and the sequence of closed balls in
X, respectively. For simplicity, we suppose that A,An ∈ B(X)(n ∈N).

Definition 3.1. A sequence (Bn) is said to be r−Hausdorff convergent to A if for every ε > 0 there exists an N(ε) ∈N
such that

H(Bn,A) = max {h(Bn,A), h(A,Bn)} < r + ε for all n ≥ N(ε).

In this case, we write Bn
r−H
−→ A or H(Bn,A) r

→ 0 as n→∞.
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Although the limit of a convergent sequence is unique in classical theory, this is not the case in rough
convergence theory. That is, the sequence (Bn) can have many limit sets depending on the given degree of
roughness. For this reason, the structure and properties of the set consisting of rough limit sets are very
important. Now we will state the concept of rough Hausdorff limit set of the sequence (Bn). We note that
the following definitions are similar to definitions (2.1) and (2.3) in [9].

Definition 3.2. Define

1 − LIMrBn = {A ⊂ X : H(Bn,A) r
→ 0},

which is called the rough Hausdorff limit set of (Bn).
Define

2 − LIMrBn =
⋂

C∈L(Bn)

B(C, r),

where L(Bn) is the family of all limit sets of (Bn).

The set 1 − LIMrBn consists of sets to which the sequence (Bn) is rough Hausdorff convergent. In other
words, it corresponds to the set of sets. The set 2− LIMrBn corresponds to a single set. These sets cannot be
compared to each other because their structures are different. Unlike in [12, Proposition 3.5(b)], this shows
that the definitions do not coincide with each other.

First, we examine the structure of the rough Hausdorff limit set of the sequence (Bn). Namely, when the
sequence (Bn) is rough Hausdorff convergent to A, we examine whether A is a ball. As in [11, Proposition
6], we expected that any set taken from 1 − LIMrBn would correspond to a ball. However, as can be seen
from the following example, the rough Hausdorff limit of the sequence (Bn) is not always a ball.

Example 3.3. In the space R2 with usual norm, let us the sequence (Bn) be defined by

Bn = B
((

1 −
1
n
, 0

)
, 2 +

1
n

)
.

Take A = B ((1, 0) , 3). Then, H(Bn,A) r
→ 0 as n→∞ for r = 1 and so A is a ball. Moreover, let’s consider a rectangle

D with vertices (−1,∓1) and (3,∓1) in A. Then, we see that H(Bn,D) r
→ 0 as n→ ∞ for r = 1. Since δ(D) = 2

√
5

and R′ (D) = 0, we have R′ (D) , δ(D)
2 . From (1), we say that D is not a ball in R2.

So, is the set of intersections or unions of sets to which a sequence (Bn) be rough Hausdorff convergent
a ball? That is, when the sequence (Bn) is rough Hausdorff convergent, do the sets

⋂
1 − LIMrBn and⋃

1− LIMrBn correspond to a ball? Now we will give answers to these questions in the following example.

Example 3.4. Consider the space R2 with the max norm. Define the sequence (Bn) as follows:

Bn =

{
B ((−4, 2) , 2) , if n is odd
B ((1, 1) , 1) , if n is even .

Since the limit sets of the sequence (Bn) are two different balls, it is not Hausdorff convergent. For r = 6, we obtain

2 − LIMrBn = Sr (B ((−4, 2) , 2)) ∩ Sr (B ((1, 1) , 1)) = D∗,

where D∗ is a rectangle with vertices at the points (−6, 8) , (−6,−6) , (4,−6) and (4, 8). Then we have H(Bn,D∗)
r
→ 0

as n→∞ for r = 6. In addition, we get δ(D∗) = 14 and R′ (D∗) = 5. By (1), D∗ is not a ball. This implies that the set
2 − LIMrBn is not always a ball.
Let’s consider the rectangles D1 and D2 in D∗, whose vertices are

(−6,−2) , (−6,−6) , (4,−6) , (4,−2)
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and

(−6, 8) , (−6, 0) , (4, 0) , (4, 8) ,

respectively. Then we have H(Bn,D1) r
→ 0 and H(Bn,D2) r

→ 0 as n→∞ for r = 6. We also obtain

D1 ∩D2 = ∅

for the sets D1,D2 ∈ 1 − LIMrBn. It follows that⋂
1 − LIMrBn = D1 ∩D2 ∩ . . . = ∅

for r = 6. As a consequence, the set
⋂

1 − LIMrBn is not always a ball.
On the other hand, since the largest rough Hausdorff limit set of (Bn) for r = 6 is D∗, we get⋃

1 − LIMrBn = D1 ∪D2 ∪ . . . = D∗.

It is clear that the set
⋃

1 − LIMrBn is not always a ball.

Remark 3.5. As can be seen from Example 3.4, the sets
⋂

1−LIMrBn,
⋃

1−LIMrBn and 2−LIMrBn are not always
balls in finite dimensional normed spaces.

The following example shows that sets
⋂

1−LIMrBn and
⋃

1−LIMrBn are not balls in infinite dimensional
normed spaces.

Example 3.6. Let (en) denote the standart basis in the space c0. Define a sequence (Bn) by

Bn = B
(xn

n
, 1 +

1
n

)
,

where

un =
n∑

k=1
ek and xn =

n∑
k=1

uk.

It’s easy to see that

Bn =
{
(α1, α2, . . .) ∈ c0 : αi ∈

[
−

i
n
, 2 −

( i − 2
n

)]
, ∀i ≤ n; αi ∈

[
−1 −

1
n
, 1 +

1
n

]
, ∀i > n

}
.

Set

A1 =
{(

1,
1
2
,

1
3
, . . . , 0, 0, . . .

)}
,

A2 =
{(
−1,−

1
2
,−

1
3
, . . . , 0, 0, . . .

)}
,

A3 = {(α1, α2, . . .) ∈ c0 : αi ∈ [−2, 3], ∀i ∈N} .

Then we have H(Bn,A1) r
→ 0, H(Bn,A2) r

→ 0 and H(Bn,A3) r
→ 0 as n→∞ for r = 2. We also obtain

A1 ∩ A2 = ∅

for the sets A1,A2 ∈ 1 − LIMrBn. It follows that⋂
1 − LIMrBn = A1 ∩ A2 ∩ A3 ∩ . . . = ∅
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for r = 2. Consequently, the set
⋂

1 − LIMrBn is not always a ball in c0.
On the other hand, we take

An0 =
{
(α1, α2, . . .) ∈ c0 : αi ∈

[
−2 −

i
n0
, 4 −

( i − 2
n0

)]
, ∀i ≤ n0; αi ∈ [−2, 3] , ∀i > n0

}
.

Obviously, H(Bn,An0 ) r
→ 0 as n→∞ for r = 2. Then,⋃

n0∈N
An0 = {(α1, α2, . . .) ∈ c0 : αi ∈ [−2, 4] , ∀i ≤ n; αi ∈ [−2, 3] , ∀i > n} .

Therefore, we obtain⋃
1 − LIMrBn =

⋃
n0∈N

An0 .

It is clear that the set
⋃

1 − LIMrBn is not always a ball in c0.

Now let’s talk about some properties of the rough Hausdorff limit set of (Bn).

Proposition 3.7. The diameter of 1 − LIMrBn is not greater than 2r.

Proof. We show that

δ (1 − LIMrBn) = sup {H(A1,A2) : A1,A2 ∈ 1 − LIMrBn} ≤ 2r.

Conversely, assume that δ (1 − LIMrBn) > 2r. Then there exist A1,A2 ∈ 1−LIMrBn such that α := H(A1,A2) >
2r. Let 0 < ε < α2 − r. Since A1,A2 ∈ 1 − LIMrBn, there exist N1 (ε) ,N2 (ε) ∈N such that

H(Bn,A1) < r + ε for all n ≥ N1 (ε)

and

H(Bn,A2) < r + ε for all n ≥ N2 (ε) .

Define Ñ(ε) = max {N1(ε),N2(ε)}. Then, we have

H(A1,A2) ≤ H(A1,Bn) +H(Bn,A2)
< r + ε + r + ε = 2(r + ε)

< 2
α
2
= α

for all n ≥ Ñ(ε). It follows that H(A1,A2) < H(A1,A2), which is a contradicts.

Proposition 3.8. (i) If (Bkn ) is a subsequence of (Bn), then

1 − LIMrBn ⊆ 1 − LIMrBkn .

(ii) If r1 ≤ r2 then

1 − LIMr1 Bn ⊆ 1 − LIMr2 Bn and 2 − LIMr1 Bn ⊆ 2 − LIMr2 Bn.

Proof. The proofs of (i) and (ii) are analogous to that of Propositions 2.3 and 2.4 in [9], respectively.

Proposition 3.9. The set 1 − LIMrBn is closed.
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Proof. From 1− LIMrBn, let’s take an arbitrary sequence (Am) satisfying H(Am,A∗)→ 0 as m→∞. We show
that A∗ ∈ 1 − LIMrBn. Given ε > 0. By assumption, there exists an M(ε) ∈N such that

H(Am,A∗) <
ε
2

for all m ≥M(ε).
Since (Am) ⊂ 1 − LIMrBn, we have AM(ε) ∈ 1 − LIMrBn. Then, there exists an N(ε) ∈N such that

H
(
Bn,AM(ε)

)
< r +

ε
2

for all n ≥ N(ε). Define

Ñ(ε) := max {M(ε),N(ε)} .

Then, we have

H(Bn,A∗) ≤ H
(
Bn,AM(ε)

)
+H

(
AM(ε),A∗

)
< r +

ε
2
+
ε
2
= r + ε

for all n ≥ Ñ(ε). Thus we obtain A∗ ∈ 1 − LIMrBn,which completes the proof.

To prove the next proposition we need the following lemma.

Lemma 3.10 ([6]). Let Y be a Banach space. If A,A1,C,C1 are nonempty bounded subsets of Y then
(i) H(αA, αC) = αH(A,C) for all α ≥ 0,
(ii) H(A + C,A1 + C1) ≤ H(A,A1) +H(C,C1).

We know that every finite dimensional normed space is complete [8, Theorem 2.4.2]. Since Lemma 3.10
is satisfied in Banach spaces, the next proposition is given in finite dimensional normed spaces.

Proposition 3.11. If X is a finite dimensional normed space, then 1 − LIMrBn is convex.

Proof. Let A1,A2 ∈ 1 − LIMrBn be arbitrary. Given ε > 0. Then, there exists an N(ε) ∈N such that

H(Bn,A1) < r + ε and H(Bn,A2) < r + ε

for all n ≥ N(ε).
We show that (1 − t)A1 + tA2 ∈ 1 − LIMrBn for all t ∈ [0, 1]. Using Lemma 3.10 (i) and (ii), we have

H (Bn, (1 − t)A1 + tA2) = H ((1 − t)Bn + tBn, (1 − t)A1 + tA2)
≤ H ((1 − t)Bn, (1 − t)A1) +H (tBn, tA2)
= (1 − t)H(Bn,A1) + tH(Bn,A2)
≤ (1 − t)(r + ε) + t(r + ε) = r + ε

for all n ≥ N(ε). This implies that (1 − t)A1 + tA2 ∈ 1 − LIMrBn.

Proposition 3.12. Assume that r1 ≥ 0, r2 > 0 and (Bn), (B̃n) ⊂ X. If there exists a sequence (B̃n) such that
A ∈ 1 − LIMr1 B̃n and H(Bn, B̃n) ≤ r2 for all n = 1, 2, . . ., then A ∈ 1 − LIMr1+r2 Bn.
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Proof. Suppose A ∈ 1 − LIMr1 B̃n. Given ε > 0. Then, there exists an N(ε) ∈N such that

H(B̃n,A) < r1 + ε

for all n ≥ N(ε). By assumption H(Bn, B̃n) ≤ r2 for all n = 1, 2, . . ., we have

H(Bn,A) ≤ H(Bn, B̃n) +H(B̃n,A)
< r2 + r1 + ε.

It follows that A ∈ 1 − LIMr1+r2 Bn.

Taking r1 = 0 and r2 = r in Proposition 3.12, we can see that if H(B̃n,A)→ 0 as n→∞ and H(Bn, B̃n) ≤ r
for all n = 1, 2, . . ., then H(Bn,A) r

→ 0 as n→∞. This shows the relationship between Hausdorff convergence
and rough Hausdorff convergence.

We recall that (Bn) is an increasing sequence of balls if Bn ⊆ Bn+1 for all n ∈ N. Also, for an increasing

sequence (Bn), if B = cl
(
∞⋃

n=1
Bn

)
is bounded, the sequence (Bn) is said to be uniformly bounded.

We know that if a sequence (An) is Hausdorff convergent then this sequence is r−Hausdorff convergent
to the same set for each r [9]. This fact is also true for the sequence (Bn). Finally, we express the effect of
some properties of the sequence (Bn) on the rough Hausdorff convergence in the following corollary. Its
proof is clear from [11, Proposition 7].

Corollary 3.13. Suppose that (Bn) be a uniformly bounded increasing sequence. Then H(Bn,B) r
→ 0 as n → ∞,

where B = cl
(
∞⋃

n=1
Bn

)
is a ball.
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