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Abstract. This study explores the integration of group-theoretic structures with approximation operators
to develop a novel mathematical framework for handling uncertainty. Traditional rough set theory, based
on equivalence relations, has been widely applied in data analysis, but its rigid structure limits adaptability
in cases where data is inherently imprecise or structured by transformations. To overcome these limitations,
we introduce new approximation operators derived from fundamental group-theoretic concepts, including
cyclic subgroups, centralizers, normalizers, orbits, and stabilizers.

By defining lower and upper approximation sets using group actions, we establish a more flexible
approach to capturing structural uncertainty. Furthermore, we demonstrate the applicability of these
operators in digital image processing, particularly in tasks such as object recognition, noise reduction, and
feature extraction. The integration of group theory with approximation methods not only enriches the
theoretical foundation of rough sets but also enhances their practical utility in mathematical modeling,
pattern analysis, and computer vision. This work provides a systematic study of these group-based
operators, their fundamental properties, and their potential applications, offering a new perspective on
uncertainty modeling in structured data environments.

1. Introduction and Motivation

Pioneered by Zdzisław Pawlak in the early 1980s [18–20], rough set theory offers a rigorous framework
for knowledge discovery and information systems analysis, specifically tailored to address the challenges
posed by imperfect data. Departing from the crisp set membership paradigm of classical set theory,
rough set theory elegantly accommodates the inherent vagueness and uncertainty prevalent in real-world
datasets. Central to this theory is the concept of approximating a set through two derived subsets; the lower
approximation, comprising elements definitively belonging to the target set based on available information,
and the upper approximation, encompassing elements potentially belonging to the target set, acknowledging
data limitations and uncertainties.

Data is structured within information systems, effectively represented as decision tables. These tables
organize data points (objects) as rows and their descriptive features (attributes) as columns, facilitating
classification. The strength of rough set theory lies in its capacity to identify information deficiency and
enable decision-making under uncertainty. By examining the discrepancy between the lower and upper
approximations, rough sets illuminate regions of data ambiguity or insufficiency, highlighting knowledge
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gaps and directing further inquiry. Crucially, even with imperfect data, rough sets empower the extraction
of actionable insights, supporting informed decision-making by leveraging existing information while
explicitly recognizing its inherent limitations.

Due to its robust handling of imprecise data, rough set theory finds broad applicability across diverse
domains, including data mining, decision support systems, and machine learning.

In Pawlak’s seminal work [18, 19], rough sets are grounded in the concept of an approximation space,
defined by a universal set U and an equivalence relation R on U. Formally, the pair (U,R) constitutes
an approximation space. For any x ∈ U, the equivalence class of x under R, denoted [x]R, is termed an
elementary set. The collection of all such elementary sets forms the quotient set U⧸R. The equivalence
relation R embodies the available information concerning U, enabling the construction of lower and upper
approximations. Specifically, for any X ⊆ U, the lower approximation of X is defined as:

R↓(X) = {x ∈ U|[x]R ⊆ X}

and the upper approximation of X is defined as:

R↑(X) = {x ∈ U|[x]R ∩ X , ∅}

The pair (R↓(X),R↑(X)) then defines the rough set of X. This rough set provides an approximation of X based
on the knowledge encoded by R, facilitating the classification of the universe U. The classical theory of
rough sets has been significantly advanced by numerous studies, as exemplified in [7, 20–23, 26, 27, 34]. As
noted in [29, 31, 37, 38], the equivalence relation is often difficult to implement due to its restrictive nature.

Over time, many studies have been conducted on generalizations of rough set theory by replacing the
equivalence relation given in the approximation space with an ordinary relation [16, 33–35, 39]. These
generalizations have made the theory easily applicable to many fields. On the other hand, it has been
shown [12–15] that approximation can be studied through a general framework based on neighborhood
systems from general topology. Nevertheless, under an arbitrary binary relation, the successor elements of
a given element may be considered its neighborhood [32]. The neighborhood concept, used to construct
rough sets from such relations, broadens the scope of approximate equivalence relations, thus enabling a
more flexible analysis of data patterns and relationships. More modern versions of rough sets have been
derived in [1–3, 9] and [10] by employing new paradigms of the neighborhood concept, with applications
shown in various fields.

Let us formally define the derivation of approximation operators from the neighborhood of a point with
respect to a given relation. Consider an ordinary relation R on a non-empty universe U. The pair (U,R)
is then termed an approximation space. Here, the definition of approximation operators is grounded in the
concept of a point’s neighborhood within U, as induced by R. Specifically, the neighborhood of a point
x ∈ U under the relation R is defined as:

n(x) = {y ∈ U|(x, y) ∈ R}

Clearly, n constitutes an operator of the form n : U → P(U), termed the neighborhood operator.
Leveraging this generalization, the lower and upper approximations of a subset X ⊆ U with respect to R
are defined as:

R↓(X) = {x ∈ U | n(x) ⊆ X} and (1)

R↑(X) = {x ∈ U | n(x) ∩ X , ∅} (2)

This generalization leads to the definition of a generalized rough set as the pair (R↓(X),R↑(X)). The
difference between the upper and lower approximations, R↑(X) and R↓(X), is defined as the R-boundary of
X, denoted BNR(X), such that BNR(X) = R↑(X) − R↓(X).
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In [16], in a generalized approximation space (U,R), a point x is called a solitary element if n(x) = ∅, and
the set of all solitary element in (U,R) is denoted by S = {x ∈ U | n(x) = ∅}. However, as we recall, if n(x) , ∅
for every x ∈ U, then the relation R on U is called a serial relation, and also, n is called the serial neighborhood
operator. We can clearly see that; n is serial neighborhood if and only if S = ∅.

Considering an arbitrary universal set U, a relation R defined on it, and a set S of solitary elements, the
following properties hold:

Proposition 1.1. [16]

(a) R↓(∅) = S, R↑(∅) = ∅, R↓(U) = U and R↑(U) = Sc, where Sc is the complement of S.

(b) S ⊆ R↓(X) and R↑(X) ⊆ Sc for all X ∈ P(U).

(c) R↓(X) − S ⊆ R↑(X) for each X ∈ P(U).

(d) R↓(X) = U iff
⋃

x∈U n(x) ⊆ X and R↑(X) = ∅ iff X ⊆ (
⋃

x∈U n(x))c.

(e) If S , ∅, then R↓(X) , R↑(X) for each X ∈ P(U).

(f) Let I be an arbitrary index set. Then, R↓(
⋂

i∈I Xi) =
⋂

i∈I R↓(Xi) and R↑(
⋃

i∈I Xi) =
⋃

i∈I R↑(Xi).

(g) For each X,Y ⊆ U, if X ⊆ Y then R↓(X) ⊆ R↓(Y) and R↑(X) ⊆ R↑(Y).

(h) R↓(X) ∪ R↓(Y) ⊆ R↓(X ∪ Y) and R↑(X ∩ Y) ⊆ R↑(X) ∩ R↑(Y).

(i) (R↓(X))c = R↑(Xc) and (R↑(X))c = R↓(Xc).

(j) There is some X ∈ P(U) such that R↓(X) = R↑(X) iff R is serial.

Additionally, for an arbitrary serial relation R on U, the following results are also obtained:

Proposition 1.2. [16] The followings are equivalent.

(a) R is serial,

(b) For each X ∈ P(U), R↓(X) ⊆ R↑(X),

(c) R↓(∅) = ∅,

(d) R↓(U) = R↑(U),

(e) The set {X | R↓(X) = R↑(X)} is non-empty.

In [36], the authors define approximation operators, which are obtained from a transformation called
a neighborhood operator, independently of any structure on the universal set, more generally than the
concepts given above. This has led to a more general definition of the generalized rough set concept
presented above.

From [36], any map n : U → P(U) is called a neighborhood operator. If n(x) , ∅ for all x ∈ U, n is called a
serial neighborhood operator. If x ∈ n(x) for all x ∈ U, n is called a reflexive neighborhood operator.

The second important mathematical tool we will use in this study is group theory. Group theory is a
fundamental branch of abstract algebra with vast importance in mathematics and numerous applications
across various scientific fields.

Group theory is the mathematical language of symmetry, providing a unifying framework for under-
standing transformations such as rotations and reflections. It simplifies complex problems by revealing
hidden structures and relationships across diverse fields.

In mathematics, group theory is foundational to abstract algebra, ring theory, and Galois theory, shaping
fundamental theorems and interconnections. In physics, it governs the symmetries of particles and physical
laws, underpinning conservation principles through Noether’s theorem. In chemistry, it predicts molecular
structures and reactions. In cryptography, it ensures secure communication through finite group properties,
while in computer science, it plays a crucial role in coding theory and data compression.

At its core, a group consists of a set G and a binary operation ∗ that satisfies four key axioms [8]:
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Closure The operation always results in an element of G .

Associativity The grouping of elements does not affect the outcome.

Identity Element A special element e exists such that x ∗ e = e ∗ x = x for all x ∈ G.

Inverse Element Each element x has an inverse x−1 such that x ∗ x−1 = x−1
∗ xe.

If the operation is commutative ( x ∗ y = y ∗ x ), the group is Abelian. The order of a group is its number
of elements, and any subset that forms a group under the same operation is a subgroup.

Group theory is a remarkably profound and extensive theory. A few group-theoretical definitions that
form the basis of this study and will be used later are given below.

Let G be a group and S be a subgroup of G.

Cyclic Subgroup [8] The cyclic subgroup of G generated by an element x ∈ G is defined to be

⟨x⟩ = {xn
| n ∈ Z},

where Z is the set of integers.

Centralizer [17] The centralizer of an element x ∈ G is defined to be

C(x) = {y ∈ G | xy = yx}.

Normalizer [17] The normalizer of an element x ∈ G is defined to be

N(x) = {y ∈ G | y−1xy ∈ ⟨x⟩}.

Left - Right Coset [8] The left coset of S in G is defined to be

xS = {xy | y ∈ S},

and the right coset of S in G is defined to be

Sx = {yx | y ∈ S},

where x ∈ G.

It should be noted that there is a relationship between the cyclic subgroup, the centralizer, and the
normalizer, such that

⟨x⟩ ⊆ C(x) ⊆ N(x). (3)

Let X be a non-empty set. It is called that ∗ : G × X → X is a group action of G on X that satisfies the
following two axioms;

(a) e ∗ x = x, for all x ∈ X and e ∈ G is an identity element of G.

(b) (1h) ∗ x = 1 ∗ (h ∗ x), for all 1, h ∈ G and for all x ∈ X.

It is called that X is G-set if G is acting on X.
Let G be a group acting on a set X. The orbit of an element x ∈ X is defined as

Orb(x) = {y ∈ X | ∃1 ∈ G, y = 1 ∗ x}.

That is Orb(x) = G ∗ x.
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At the same time, for given x ∈ X, its stabilizer is defined as

Stab(x) = {1 ∈ G | 1 ∗ x = x}

which is subset of G.
Note that, for each x ∈ X, Stab(x) is a subgroup of G. It is called a stabilizer subgroup of G or isotropy

subgroup of x.
Let X and Y be two G-sets, and f : X → Y be a function. It is called that f is a morphism of G-sets or

G-function, if f (1 ∗ x) = 1 ∗ f (x) for all 1 ∈ G and x ∈ X. If f is a bijective G-function then we call that f is an
isomorphism.

In any group G and for any 1 ∈ G, the element a1a−1 is called conjugate of 1 with respect to a. The
automorphism f : G→ G such that f (x) = axa−1 is called conjugation. If we define the operation · : G×G→ G
such that 1 · x = 1x1−1, then we have an action ·, and G acts on itself. We call that · is conjugation action.

The motivation behind this study arises from the need to bridge group-theoretic concepts with approxi-
mation operators to develop a more robust mathematical framework for uncertainty modeling. Traditional
rough set theory, pioneered by Pawlak, relies on equivalence relations to construct lower and upper ap-
proximations. However, these strict conditions often limit its applicability in real-world scenarios where
data is inherently imprecise. To address this, we explore an alternative approach by leveraging group
structures—such as cyclic subgroups, centralizers, normalizers, orbits, and stabilizers—as a foundation for
defining approximation operators. This integration provides a novel perspective that enhances the flexi-
bility and applicability of rough set theory, particularly in domains where symmetry and transformations
play a crucial role. Furthermore, we illustrate the practical implications of our approach by applying these
newly developed operators to digital image processing, demonstrating their potential for tasks like object
recognition, noise reduction, and feature extraction. By unifying these mathematical tools, this work not
only extends the theoretical landscape of approximation operators but also offers a concrete pathway for
their implementation in real-world applications.

2. Approximation operators derived from group structures

Neighborhood operators can be obtained on the group using the group structural concepts given in the
previous section, immediately.

Definition 2.1. Assume that U is a group and S is a subgroup of U. Define set valued mappings as follows:

(1) The mapping cn : U→ P(U) such that cn(x) = ⟨x⟩ for each x ∈ U is called the cyclical neighborhood operation
on U.

(2) The mapping Cn : U → P(U) such that Cn(x) = C(x) for each x ∈ U is called the centralizing neighborhood
operator on U.

(3) The mapping Nn : U → P(U) such that Nn(x) = N(x) for each x ∈ U is called the normalizing neighborhood
operator on U.

(4) The mapping Ln : U → P(U) such that Ln(x) = xS for each x ∈ U is called the left cosetial neighborhood
operator on U.

(5) The mapping Rn : U → P(U) such that Rn(x) = Sx for each x ∈ U is called the right cosetial neighborhood
operator on U.

In [36], using the neighborhood operator, the lower and upper approximations of a set based on its
elements are defined as shown in Equations 1 and 2, respectively. Building on this and using the arguments
in Definition 2.1, the lower and upper approximation operators are obtained as shown below.

Definition 2.2. Let U be a group, S be a subgroup of U and X be non-empty subset of U.
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(1) The lower approximation of X with respect to the cyclical neighborhood operator is defined as apr
cn

(X) = {x ∈
U | cn(x) ⊆ X}, and the upper approximation of X with respect to the cyclical neighborhood operator is defined
as aprcn(X) = {x ∈ U | cn(x) ∩ X , ∅}.

(2) The lower approximation of X with respect to the centralizing neighborhood operator is defined as apr
Cn

(X) =
{x ∈ U | Cn(x) ⊆ X}, and the upper approximation of X with respect to the centralizing neighborhood operator
is defined as aprCn(X) = {x ∈ U | Cn(x) ∩ X , ∅}.

(3) The lower approximation of X with respect to the normalizing neighborhood operator is defined as apr
Nn

(X) =
{x ∈ U | Nn(x) ⊆ X}, and the upper approximation of X with respect to the normalizing neighborhood operator
is defined as aprNn(X) = {x ∈ U | Nn(x) ∩ X , ∅}.

(4) The lower approximation of X with respect to the left cosetial neighborhood operator is defined as apr
Ln

(X) =
{x ∈ U | Ln(x) ⊆ X}, and the upper approximation of X with respect to the left cosetial neighborhood operator
is defined as aprLn(X) = {x ∈ U | Ln(x) ∩ X , ∅}.

(5) The lower approximation of X with respect to the right cosetial neighborhood operator is defined as apr
Rn

(X) =
{x ∈ U | Rn(x) ⊆ X}, and the upper approximation of X with respect to the right cosetial neighborhood operator
is defined as aprRn(X) = {x ∈ U | Rn(x) ∩ X , ∅}.

Proposition 2.3. Let U be a group and X ⊆ U. If e < X, then apr
cn

(X) = ∅.

Proof. Since ⟨x⟩ is a subgroup of U for any x ∈ U, then e ∈ ⟨x⟩. Since e is not an element of X by hypothesis,
it follows that ⟨x⟩ cannot be a subset of X. Consequently, apr

cn
(X) is the empty set.

It is noteworthy that the converse of Proposition 2.3 does not generally hold. To illustrate this, consider,
for instance, the group Z2 = {0, 1}. Let us choose X = {0}. In this case, it is evident that e = 0 ∈ X. Let us
compute the set apr

cn
(X). For x = 0, we have ⟨0⟩ = {0} ⊆ X, and for x = 1, we have ⟨1⟩ = {0, 1} = Z2 1 X.

Consequently, we obtain apr
cn

(X) = X. As a result, if e ∈ X, then apr
cn

(X) , ∅.

Proposition 2.4. Let U be a group and X ⊆ U. If e ∈ X, then aprcn(X) = U.

Proof. Since ⟨x⟩ is a subgroup of U for any x ∈ U, then e ∈ ⟨x⟩. Since e is an element of X by hypothesis, it
follows that ⟨x⟩ ∩ X , ∅. Therefore, we have aprcn(X) = U.

Furthermore, it is important to note that the converse of Proposition 2.4 is also not true. To demonstrate
this, let us consider the group Z2, again. If we choose X = {1}, then upon calculating aprcn(X), we find that
for x = 0,

⟨0⟩ ∩ X = {0} ∩ {1} = ∅,

and for x = 1,
⟨1⟩ ∩ X = Z2 ∩ {1} = {1} , ∅.

Consequently, when e < X, aprcn(X) , U.

Proposition 2.5. Let U be a group and X ⊆ U. apr
cn

(X) ⊇ apr
Cn

(X) ⊇ apr
Nn

(X).

Proof. Assume that x ∈ apr
Nn

(X). So, we have Nn(x) ⊆ X. From Equation 3, since Cn(x) ⊆ Nn(x), it follows
that Cn(x) ⊆ X, and therefore x ∈ apr

Cn
(x). Hence, we obtain that apr

Cn
(X) ⊇ apr

Nn
(X).

In a similar manner, it can be demonstrated that apr
cn

(X) ⊇ apr
Cn

(X) holds. As a result, the desired
outcome is achieved.

Proposition 2.6. Let U be a group and X ⊆ U. aprcn(X) ⊆ aprCn(X) ⊆ aprNn(X).
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Proof. Let x be an arbitrary element in aprcn(X). Then, cn(x) ∩ X , ∅ and thus ⟨x⟩ ∩ X , ∅ follows. Since
⟨x⟩ ⊆ C(x) by Equation 3, then C(x) ∩ X , ∅ and thus Cn(x) ∩ X , ∅ is obtained. Therefore, x ∈ aprCn(X).
Hence, aprcn(X) ⊆ aprCn(X).

Similarly, it is also shown that aprCn(X) ⊆ aprNn(X).

It is straightforward to conclude from Proposition 2.3 and Proposition 2.5 that if the identity element e
is not in X, then apr

Cn
(X) and apr

Nn
(X) are both empty sets.

Similarly, it is clear that as a consequence of Proposition 2.4 and Proposition 2.6, if any subset X of a
group U contains the identity element e, then aprCn(X) = aprNn(X) = U.

Example 2.7. Let us consider the symmetric group S3 that its elements are denoted by I = (a, b, c), fa = (a, c, b),
fb = (c, b, a), fc = (b, a, c), f1 = (b, c, a) and f2 = (c, a, b). The operation table for S3 is as in Table 2.7:

Table 1: The operation table for S3

◦ I fa fb fc f1 f2
I I fa fb fc f1 f2
fa fa I f2 f1 fc fb
fb fb f1 I f2 fa f1
fc fc f2 f1 I fb fa
f1 f1 fb fc fa f2 I
f2 f2 fc fa fb I f1

The following results are obtained from the definitions of cyclic subgroups, centralizers, and normalizers:
⟨I⟩ = {I}, ⟨ fa⟩ = {I, fa}, ⟨ fb⟩ = {I, fb}, ⟨ fc⟩ = {I, fc}, ⟨ f1⟩ = {I, f1, f2} and ⟨ f2⟩ = {I, f1, f2} are all cyclic subgroups.
C(I) = S3, C( fa) = {I, fa}, C( fb) = {I, fb}, C( fc) = {I, fc}, C( f1) = {I, f1, f2} and C( f2) = {I, f1, f2} are all

centralizers.
N(I) = S3, N( fa) = {I, fa}, N( fb) = {I, fb}, N( fc) = {I, fc}, N( f1) = S3 and N( f2) = S3 are all normalizers.
Consider the subset X = {I, fc, f1, f2} of S3. Thus, we have the lower approximations of X with respect to cyclical

neighborhood, centralizing neighborhood and normalizing neighborhood operators are as apr
cn

(X) = {I, fc, f1, f2},
apr

Cn
(X) = { fc, f1, f2} and apr

Nn
(X) = { fc}. The upper approximations of X with respect to cyclical neighbor-

hood, centralizing neighborhood and normalizing neighborhood operators are obtained as aprcn(X) = aprCn(X) =
aprNn(X) = S3.

Let us consider another subset of S3, namely Y = { fa, f2}. Then we have that apr
cn

(Y) = apr
Cn

(Y) = apr
Nn

(Y) = ∅
from Proposition 2.3. All upper approximations of Y are aprcn(Y) = { fa, f1, f2}, aprCn(Y) = {I, fa, f1, f2} and
aprNn(Y) = {I, fa, f1, f2}.

In general, it is clear from Example 2.7 that apr
cn

(X), apr
Cn

(X), apr
Nn

(X), aprcn(X), aprCn(X) and aprNn(X)
for any subset X of U cannot be subgroups of U.

Analogously to the concepts in rough set theory, the following proposition can be stated:

Proposition 2.8. Let U be a group, X and Y be subsets of U. We have the following statements.

(a) (i) apr
cn

(X) ⊆ X ⊆ aprcn(X).

(ii) apr
Cn

(X) ⊆ X ⊆ aprCn(X).

(iii) apr
Nn

(X) ⊆ X ⊆ aprNn(X).

(b) (i) apr
cn

(∅) = aprcn(∅) = ∅, apr
cn

(U) = aprcn(U) = U.

(ii) apr
Cn

(∅) = aprCn(∅) = ∅, apr
Cn

(U) = aprCn(U) = U.

(iii) apr
Nn

(∅) = aprNn(∅) = ∅, apr
Nn

(U) = aprNn(U) = U.
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(c) (i) aprcn(X ∪ Y) = aprcn(X) ∪ aprcn(Y).

(ii) aprCn(X ∪ Y) = aprCn(X) ∪ aprCn(Y).

(iii) aprNn(X ∪ Y) = aprNn(X) ∪ aprNn(Y).

(d) (i) apr
cn

(X ∩ Y) = apr
cn

(X) ∩ apr
cn

(Y).

(ii) apr
Cn

(X ∩ Y) = apr
Cn

(X) ∩ apr
Cn

(Y).

(iii) apr
Nn

(X ∩ Y) = apr
Nn

(X) ∩ apr
Nn

(Y).

(e) (i) If X ⊆ Y then apr
cn

(X) ⊆ apr
cn

(Y) and aprcn(X) ⊆ aprcn(Y).

(ii) If X ⊆ Y then apr
Cn

(X) ⊆ apr
Cn

(Y) and aprCn(X) ⊆ aprCn(Y).

(iii) If X ⊆ Y then apr
Nn

(X) ⊆ apr
Nn

(Y) and aprNn(X) ⊆ aprNn(Y).

Proof. Here, we establish the first condition of (b)(i). The remaining proofs are straightforward.
(b)(i) For any x ∈ U, the subgroup ⟨x⟩ is the cyclic subgroup generated by x. The subgroup ⟨x⟩

must contain at least the identity element e. The empty set (∅) contains no elements; therefore, e < ∅.
Consequently, the condition ⟨x⟩ ⊆ ∅ cannot be satisfied for any x ∈ U. Thus, apr

cn
(∅) = ∅.

Moreover, it is evident that ⟨x⟩ ∩ ∅ = ∅ for any x ∈ U. Consequently, aprcn(∅) = ∅.

Proposition 2.9. Let U be a group and X be a subgroup of U. Then, apr
cn

(X) = X.

Proof. It is clear that apr
cn

(X) ⊆ X from Proposition 2.8 (a)(i).
On the other hand, assume that x ∈ X. Then, since X is a subgroup of U and therefore a group, the

group generated by x is obtained as a subgroup of X. By the definition of a subgroup, ⟨x⟩ is a subset of X.
Consequently, x ∈ apr

cn
(X) is obtained.

Hence, apr
cn

(X) = X.

It is important to note that the converse of Proposition 2.9 does not hold. That is, if apr
cn

(X) = X, then
X is not necessarily a subgroup of the group U. To illustrate this, consider the additive group U = Z ×Z.
Let’s examine the subset X = (Z×{0})∪ ({0}×Z) ⊆ Z×Z. Choose elements x = (1, 0) ∈ X and y = (0, 1) ∈ X.
Clearly, ⟨x⟩ = {(n, 0)|n ∈ Z} ⊆ X and ⟨y⟩ = {(0,n)|n ∈ Z} ⊆ X. However, x+ y = (1, 0)+ (0, 1) = (1, 1) < X, and
furthermore, ⟨x + y⟩ = {(n,n)|n ∈ Z} 1 X. Consequently, X is not a subgroup of U since it fails to satisfy the
closure property.

Nevertheless, since X = (Z × {0}) ∪ ({0} × Z), the elements of X are either of the form (n, 0) or (0,m),
where n,m ∈ Z. For elements of the form x = (n, 0), ⟨x⟩ = {(k · n, 0)|k ∈ Z}. This set is a subset of Z × {0},
and therefore is contained within X. Hence, x = (n, 0) ∈ apr

cn
(X). For elements of the form x = (0,m),

⟨x⟩ = {(0, k · m)|k ∈ Z}. This set is a subset of {0} × Z, and therefore is contained within X. Hence,
x = (0,m) ∈ apr

cn
(X). Elements outside of X are of the form (a, b), where a, b , 0. For elements of the form

x = (a, b) (where a, b , 0), ⟨x⟩ = {(k ·a, k ·b)|k ∈ Z}. This set is not contained within X, because for the elements
(k · a, k · b) to be in X, either k · a = 0 or k · b = 0 must hold. However, since a, b , 0, this is not possible.
Therefore, x = (a, b) < apr

cn
(X). Consequently, apr

cn
(X) = X.

It should be noted that when the identity element e of a group is considered, since Cn(e) = {x ∈ U|ex =
xe} = U, it is clear that apr

Cn
(X) , X for any subgroup X of U. Moreover, since Cn(x) ⊆ Nn(x), we have

Cn(e) = Nn(e) = U. Consequently, it is also clear that apr
Nn

(X) cannot be equal to X for an arbitrary
subgroup X of U.

In addition, given an arbitrary subgroup X of U, since every subgroup X contains the identity element
e of U and by Proposition 2.6, we have aprcn(X) = aprCn(X) = aprNn(X) = U. To illustrate this, consider the
following example:
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Table 2: Operation table of Q8

1 i j k -1 -i -j -k
1 1 i j k -1 -i -j -k
i i -1 k -j -i 1 -k j
j j -k -1 i -j k 1 -i
k k j -i -1 -k -j i 1
-1 -1 -i -j -k 1 i j k
-i -i 1 -k j i -1 k -j
-j -j k 1 -i j -k -1 i
-k -k -j i 1 k j -i -1

Example 2.10. Let Q8 = {1,−1, i,−i, j,− j, k,−k} be the quaternion group where the operation table is as in Table
2.10:

Consider the subgroup X = {−1, 1,− j, j} of Q8. As a result, the followings are achieved:

• apr
cn

(X) = {−1, 1,− j, j} = X.

• aprcn(X) = Q8.

• apr
Cn

(X) = {− j, j} ⊆ X.

• aprCn(X) = Q8.

• apr
Nn

(X) = ∅.

• aprNn(X) = Q8.

In this way, the above statement is exemplified.

Proposition 2.11. Let U be a group and {e} be trival subgroup. Then,

(a) apr
cn

({e}) = {e}, aprcn({e}) = U,

(b) apr
Cn

({e}) = ∅, aprCn({e}) = U,

(c) apr
Nn

({e}) = ∅, aprNn({e}) = U.

Proof. It is clear that for an arbitrary element x ∈ U, the condition ⟨x⟩ ⊆ {e} holds only when x = e. However,
since ⟨x⟩ is a subgroup of U for every x ∈ U, it contains the identity element e, and thus, the intersection
⟨x⟩ ∩ {e} is non-empty for every x ∈ U. Consequently, the conditions given in (a) are satisfied.

Since both Cn(x) and Nn(x) are subgroups for an arbitrary element x in U, they contain both the
identity element e and the element x. Therefore, for any arbitrary x ∈ U, Cn(x),Nn(x) ⊆ {e} cannot
be true. Thus, we obtain apr

Cn
({e}) = apr

Nn
({e}) = ∅. Additionally, due to Proposition 2.6, we have

aprCn({e}) = aprNn({e}) = U.

Since the concept of the boundary of a subset in rough set theory is defined as the difference between the
upper approximation set and the lower approximation set, the boundary of a subset in a group is defined
similarly as follows:

Definition 2.12. Let U be a group and X be a subset of U.

(a) The subset bndcn(X) = aprcn(X) − apr
cn

(X) of U is called the cyclical boundary of X.

(b) The subset bndCn(X) = aprCn(X) − apr
Cn

(X) of U is called the centralizing boundary of X.
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(c) The subset bndNn(X) = aprNn(X) − apr
Nn

(X) of U is called the normalizing boundary of X.

Example 2.13. From Example 2.7, we have that

• bndcn(X) = S3 − {I, fc, f1, f2} = { fa, fb}.

• bndCn(X) = S3 − { fc, f1, f2} = {I, fa, fb}.

• bndNn(X) = S3 − { fc} = {I, fa, fb, f1, f2}.

Definition 2.14. Let U be a group and X be a subset of U.

(a) The set X is called cyclical rough if its cyclical boundary is non-empty.

(b) The set X is called centralizing rough if its centralizing boundary is non-empty.

(c) The set X is called normalizing rough if its normalizing boundary is non-empty.

A subset X is called a crisp set if its boundaries are the empty set with respect to all neighborhoods.

In [11], four classes of uncertainty are defined for sets according to the classical approximation spaces.
These are given in the following form:

Definition 2.15. Let (U,R) be an approximation space and X be a non-empty subset of U. Then,

(a) X is called roughly R-definable, iff R↓(X) , ∅ and R↑(X) , U.

(b) X is called internally R-undefinable, iff R↓(X) = ∅ and R↑(X) , U.

(c) X is called externally R-undefinable, iff R↓(X) , ∅ and R↑(X) = U.

(d) X is called totaly R-undefinable, iff R↓(X) = ∅ and R↑(X) = U.

In parallel with Definition 2.15, definitions of the following uncertainty classes can be given for a subset
of a group using the cn, Cn, and Nn operators.

Definition 2.16. Let U be a group and X be non-empty subset of U.

(a) (i) X is roughly cn-definable, iff apr
cn

(X) , ∅ and aprcn(X) , U.

(ii) X is called internally cn-undefinable, iff apr
cn

(X) = ∅ and aprcn(X) , U.

(iii) X is called externally cn-undefinable, iff apr
cn

(X) , ∅ and aprcn(X) = U.

(iv) X is called totaly cn-undefinable, iff apr
cn

(X) = ∅ and aprcn(X) = U.

(b) (i) X is roughly Cn-definable, iff apr
Cn

(X) , ∅ and aprCn(X) , U.

(ii) X is called internally Cn-undefinable, iff apr
Cn

(X) = ∅ and aprCn(X) , U.

(iii) X is called externally Cn-undefinable, iff apr
Cn

(X) , ∅ and aprCn(X) = U.

(iv) X is called totaly Cn-undefinable, iff apr
Cn

(X) = ∅ and aprCn(X) = U.

(c) (i) X is roughly Nn-definable, iff apr
Nn

(X) , ∅ and aprNn(X) , U.

(ii) X is called internally Nn-undefinable, iff apr
Nn

(X) = ∅ and aprNn(X) , U.

(iii) X is called externally Nn-undefinable, iff apr
Nn

(X) , ∅ and aprNn(X) = U.

(iv) X is called totaly Nn-undefinable, iff apr
Nn

(X) = ∅ and aprNn(X) = U.
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Proposition 2.17. Let U be a group and X ⊆ G. If e < X, then X is internally cn-undefinable.

Proof. From Proposition 2.3, we have that apr
cn

(X) = ∅. Moreover, since X does not contain a unit element,
aprcn(X) cannot be equal to U. Consequently, X is an internally undefinable set according to Definition
2.16(a)(ii).

It follows directly from Proposition 2.5, Proposition 2.6 and Proposition 2.17 that the following result
holds.

Corollary 2.18. Let U be a group and X ⊆ G. If e < X, then X is internally Cn-undefinable and internally
Nn-undefinable.

Proposition 2.19. Let U be a group and X be a proper subset of U. If U is abelian, then apr
Cn

(X) = apr
Nn

(X) = ∅
and aprCn(X) = aprNn(X) = U.

Proof. Since U is an abelian group, it is easy to see that Cn(x) = {y ∈ U|xy = yx} = U for any arbitrary x ∈ U.
Thus, we obtain

apr
Cn

(X) = {x ∈ U|Cn(x) ⊆ X}

= {x ∈ U|U ⊆ X} = ∅.

However, from Proposition 2.5, we obtain apr
Nn

(X) = ∅.
The result aprCn(X) = aprNn(X) = U can also be readily observed.

As a direct consequence of Proposition 2.19 and Definition 2.16, we obtain the following result.

Corollary 2.20. If U is an abelian group and X is an arbitrary subset of U, then X is both totally Cn-undefinable
and totally Nn-undefinable set.

Let U be a group acting on a set X, i.e. X be an U-set. Then, from the definition of the orbit of an element
x ∈ X, a partition of X is induced, denoted by

P = {U · x|x ∈ X},

and an equivalence relation is naturally defined on X using this partition, given by

x ∼ y :⇔ U · x = U · y.

Equivalence relations induced by group actions on sets naturally give rise to approximation operators
in the sense of Pawlak. In addition, if the operator non : U → P(U) is defined as non(x) = U · x, then
non(x) is called the orbital neighborhood of the element x. Thus, using Equations 1 and 2, lower and upper
approximation sets are obtained for arbitrary subsets of X. These approximation sets are defined, for S ⊆ X,
as

apr
on

(S) = {x ∈ X|non(x) ⊆ S} (4)

and

apron(S) = {x ∈ X|non(x) ∩ S , ∅}, (5)

and are called the orbital lower approximation set and orbital upper approximation set of S, respectively.
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Example 2.21. Let U = {(1), (123), (132), (45), (123)(45), (132)(45)} be a subgroup of the symmetric group S5. Let
U act on the set X = {1, 2, 3, 4, 5}.

Since non(x) = Orb(x) = U · x, it is clear that Orb(1) = Orb(2) = Orb(3) = {1, 2, 3} and Orb(4) = Orb(5) =
{4, 5}.

Now, let us consider the subset S = {3, 4, 5} of X. Then, from Equations 4 and 5, we obtain

apr
on

(S) = {4, 5}

and
apron(S) = {1, 2, 3, 4, 5} = X.

Similarly to Definition 2.12, the orbital boundary of a set, denoted by bndon(S), can be defined using the
orbital approximations of the set as follows:

bndon(S) = apron(S) − apr
on

(S).

Therefore, using the arguments in Example 2.21, the orbital boundary of the subset S ⊆ X is found to be:

bndon(S) = apron(S) − apr
on

(S) = X − {4, 5} = {1, 2, 3}.

Proposition 2.22. Let a group U acting on a set X and S ⊆ X. Then,

(a) apr
on

(S) ⊆ S ⊆ apron(S).

In Group Theory, there are various definitions for group actions. Some of these will be presented here.
Then, a group action is called transitive if for any x, y ∈ X, there exists an element 1 ∈ U such that 1 · x = y.
In other words, a group action is called transitive if it has only one orbit. In addition to that, a group action
U on a set X is called primitive if Orb(x) = X holds for every x ∈ X. It is worth noting that all primitive
actions are transitive.

Proposition 2.23. Let X be an U-set. If the group action is transitive, then apr
on

(S) = ∅ for arbitrary proper subset
S of X, and apron(S) = X for each non-empty subset S of X.

Proof. Since the group action transitive if and only if it has exactly one orbit. The proof is straightforward.

As a consequence of Proposition 2.23, if a group action is primitive, then it is clear that apr
on

(S) = ∅ for
every proper subset S of X, and apron(S) = X for every non-empty subset S of X.

Proposition 2.24. Let U act on itself. Then, apr
on

(S) = ∅ for any proper subset S of U and apron(S) = U for any
non-empty subset S of U.

Proof. If U acts on itself, then the desired results are easily obtained since Orb(x) = U for every x ∈ U.

Analogously to Definition 2.16, the rough definability of sets using lower and upper orbital approxima-
tions can be given as follows:

Definition 2.25. Let U be a group, X be non-empty set, U acting on X and S be subset of X.

(i) S is roughly on-definable, iff apr
on

(S) , ∅ and apron(S) , X.

(ii) S is called internally on-undefinable, iff apr
on

(S) = ∅ and apron(S) , X.

(iii) S is called externally on-undefinable, iff apr
on

(S) , ∅ and apron(S) = X.

(iv) S is called totaly on-undefinable, iff apr
on

(S) = ∅ and apron(S) = X.
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Let U be a group acting on a set X. For any x ∈ X, the stabilizer of x, denoted by Stab(x), is the subset
of U consisting of elements that fix x. Inspired by the notion of a group action and the concept of Stab(x),
we can define a neighborhood operator on U itself. Suppose that U acts on itself. Then, the stabilizer
neighborhood operator on U, denoted by nsn : U → P(U), is defined for each 1 ∈ U as nsn(1) = Stab(1).
Then, using the operator nsn, we can define approximation sets for any subset S of U analogously to the
above. These are defined for any S ⊆ U as

apr
sn

(S) = {1 ∈ U | nsn(1) ⊆ S} (6)

and

aprsn(S) = {1 ∈ U | nsn(1) ∩ S , ∅} (7)

and are called the lower stabilizer approximation of S and the upper stabilizer approximation of S, respec-
tively. Furthermore, the expression

bndsn(S) = aprsn(S) − apr
sn

(S)

is also called the stabilizer boundary of S for any S ⊆ U.
The following statements are directly obtained from the definitions of the lower and upper stabilizer

approximations of a set.

Proposition 2.26. Let U be a group acting on itself. For S ⊆ U, the following properties hold:

(a) For every 1 ∈ U, 1 belongs to the lower stabilizer approximation of S if and only if the stabilizer neighborhood
of 1 is equal to S, i.e. nsn(1) = Stab(1) = S.

(b) For every 1 ∈ U, 1 belongs to the upper stabilizer approximation of S if and only if the intersection of the
stabilizer neighborhood of 1 and S is nonempty.

Proposition 2.27. Let U be acting on itself, and S be an arbitrary subset of U.

(a) apr
sn

(S) ⊆ S ⊆ aprsn(S).

(b) Let h ∈ U be any element. Then,

(i) apr
sn

(hS) = hapr
sn

(S).

(ii) aprsn(hS) = haprsn(S).

Proof. The proof of (a) is straightforward.
We now proceed to prove (b)(i). Suppose that 1 ∈ apr

sn
(hS). This means nsn(1) ⊆ hS. Consider an

element t ∈ nsn(1) = Stab(1). This implies that t1 = 1. Applying the group action by h on both sides:
ht1 = h1. Since t ∈ nsn(1), we know t is also in U. Therefore, ht ∈ nsn(h1). Because t is arbitrary in nsn(1), this
shows nsn(h1) ⊆ hS. Hence, h1 ∈ apr

sn
(S).

On the other hand, suppose that h1 ∈ apr
sn

(S). This means nsn(h1) ⊆ S. Let t ∈ nsn(1). This means t1 = 1.
Since h ∈ U, we can consider the element h−1t ∈ U. We want to show that h−1t leaves h1 unchanged under
the group action. Applying the group acytion by h on both sides of t1 = 1, we get ht1 = 1h. Substituting h−1t
for h, we have (h−1t)1 = h1. Rearranging the equation, we get h−1t(1) = h1. Since h−1t ∈ U, this implies that
h−1t ∈ nsn(h1). From the given assuption, we know nsn(h1) ⊆ S. Since h−1t ∈ nsn(h1), this implies h−1t ∈ S.
Thus, t ∈ hS. Hence, nsn(1) ⊆ hS.

The proof for the upper approximation follows a similar logic to the lower approximation. We can show
that 1 ∈ aprsn(hS)⇔ h1 ∈ aprsn(S), demonstrating that applying the group action by h on both the set S and
its upper approximation results in the corresponding transformed upper approximation.
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3. Leveraging Group Approach Operators for Image Processing Tasks

Image processing is the field of analyzing, enhancing, and interpreting digital images by applying
mathematical operations to them. These operations involve modifying the properties of the image, such
as its brightness, color, texture, and shape. Image processing draws upon various disciplines, including
computer science, electrical engineering, and mathematics, and has a wide range of applications in medicine,
engineering, aviation, security, and many other fields [5, 6, 24, 28].

Image processing is built upon mathematical foundations, and mathematical concepts and techniques
play a crucial role in the development and application of image processing algorithms. Therefore, the
applicability and even implementation of abstract mathematical structures directly impacts the future of
image processing. In this section, some fundamental examples will be presented as an application of the
above-mentioned approach operators derived from a group and its action on a set.

Image processing consists of fundamental elements such as pixels, matrices, vectors, functions, trans-
formations, filters, segmentation, feature extraction, and pattern recognition. These elements are intricately
related and work together to perform various operations on images. The smallest units that constitute
images are pixels. Each pixel represents the brightness or color value at a specific point in the image. Pixels
are typically arranged in a rectangular grid. Digital images are commonly represented using mathematical
structures known as matrices. Each pixel corresponds to a cell in a matrix. Matrices can store image
properties such as brightness, color, and others. The representation of individual pixels’ spatial coordinates
and intensity values is frequently accomplished through the utilization of vectors, which are mathematical
structures. A vector can be a two-dimensional vector with x and y components. Mathematical operations
known as functions are employed to transform the values of pixels within an image. For instance, a function
can be used to increase or decrease the brightness of an image. For the purpose of executing operations such
as rotation, scaling, and other modifications, images are mapped from one domain to another using trans-
formations. Mathematical operations known as filters are employed to eliminate undesired noise or other
distortions within an image. Filters can be applied in the frequency domain or spatial domain of an image.
The process of partitioning an image into distinct objects or regions is referred to as segmentation. Seg-
mentation is often performed using techniques such as thresholding, region growing, or split-and-merge.
Feature extraction is the term used to describe the process of extracting salient information such as edges,
corners, and objects from an image. Feature extraction is often performed using techniques such as edge
detectors, texture analyzers, or shape descriptors. The process of identifying and classifying objects within
an image is referred to as pattern recognition. Pattern recognition is often performed using techniques such
as K-nearest neighbors, support vector machines, or neural networks.

Image processing is a powerful tool for performing various operations on digital images using a complex
combination of these fundamental elements and their relationships.

One of the primary goals of this research is to make group-theoretic concepts practical. The presented
concepts are thought to have potential applications in image processing such as face recognition, image
matching, and noise reduction.

The fundamental concept underlying group action is to comprehend how the elements within this group
transform the elements of the set. Rotations, translations, and symmetries constitute notable instances of
group action and find widespread applications across diverse fields. A rotation entails rotating an object
around a fixed point by a specific angle, a translation involves moving an object in a fixed direction by a
specific distance, and a symmetry is the phenomenon where an object becomes congruent to itself after a
transformation. For instance, the symmetry group of a square consists of transformations that can rotate,
translate, and reflect the square. These transformations aid in comprehending the symmetry properties of
the square.

Let U be a group representing a set of transformations. These transformations could encompass rota-
tions, translations, or any other operations pertinent to the specific group action under consideration. Let X
be a set representing the collection of geometric shapes. We define a subset S ⊆ X containing solely square
shapes. This subset serves as the focal point for our rough set analysis.

Orbital Lower Approximation: This subset encompasses elements of X that can definitively be classified
as belonging to S based on the group action. In our context, apr

on
(S) would comprise shapes in X that can
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never be transformed into non-square shapes through any element of U (the group of transformations).
Analyzing this subset might reveal specific rotated squares that retain their squareness under all possible
group actions (rotations in our example).

Orbital Upper Approximation: This broader subset encompasses elements of X that could potentially
belong to S. It includes shapes in X that can be transformed into elements of S through some element of
U. Analyzing apron(S) might reveal shapes like rectangles that can be transformed into squares via specific
rotations within the group action.

This methodology can be utilized for image processing operations on a set of digital images.
Let’s consider a group action of rotations and translations on a set of digital images X. Each image in

X can be represented by a matrix of pixel values. The group action would involve applying rotations or
translations to the pixels of an image, resulting in a new image. The orbital neighborhood of an image
I ∈ X in this context would represent all possible images obtained by applying rotations and translations
to I. This includes images that are identical to I (no change), rotated versions of I, and translated versions
of I. apr

on
(S) would consist of images in X for which their entire orbital neighborhood (all possible rotated

and translated versions) is contained within a subset S of X. This means that no matter how we rotate
or translate an image in this set, we will always end up with an image that is still considered “similar”
or belonging to the subset S. apron(S) would consist of images in X for which their orbital neighborhood
(all possible rotated and translated versions) has at least one image that belongs to S. This means that
there exists some combination of rotations and translations that can be applied to an image in this set to
transform it into an image in the subset S. apr

on
(S) can help identify images that are very similar to each

other, even under rotations and translations. This could be useful for tasks like image matching or object
recognition. Thus, it contributes to the identification of similar images. apron(S) can help analyze the range
of variations that an image can undergo under rotations and translations. This could be useful for tasks
like image registration or image transformation. By analyzing the orbital neighborhoods of images, we can
potentially identify and remove noise or artifacts that are not consistent with the true image content. This
could be done by selectively removing elements from the orbital neighborhoods that do not fit the expected
characteristics of the image.

Let us illustrate this with a simpler, more explanatory example. Let us consider the group U as the
dihedral group D1, that is, let U be the group of rotations by 0◦ and 180◦. Assume that the set X consists of
all 2 × 2 binary images where each pixel is either black (1) or white (0). Here, we will focus on images with
only one black pixel. Accordingly, there are four such images, such as

• I1: Black pixel at position (1, 1) (top-left).

• I2: Black pixel at position (1, 2) (top-right).

• I3: Black pixel at position (2, 1) (bottom-left).

• I4: Black pixel at position (2, 2) (bottom-right).

I1 I2 I3 I4

Thus, under the group action of U, each image is rotated by 0◦ and 180◦. Clearly, rotations of 0◦ result
in the image itself. Under 180◦ rotations, I1 becomes I4, and I2 becomes I3. Consequently, the orbit partition
of X yields the orbit of I1 as {I1, I4} and the orbit of I2 as {I2, I3}. Considering S = {I1} ⊆ X as a set, the lower
orbital approximation of S, clearly, is apr

on
(S) = ∅. However, the intersection of S with the orbit of I1 and

I4 is I1, and the intersection of S with the orbit of I2 and I3 is the empty set. Therefore, apron(S) = {I1, I4} is
obtained. As a result,

bndon(S) = apron(S) − apr
on

(S) = {I1, I4} − ∅ = {I1, I4}
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is obtained. In conclusion, this represents the images that can be transformed into S but are not ‘exactly
similar’ to S.

More specifically, consider a set of grayscale images X representing faces of people. The group action
involves rotations and translations of the images. Define a subset S of X containing images of a specific
person (e.g., Albert Einstein) from different angles and positions. The objective here is to identify images
in X that resemble Albert Einstein’s face even under rotations and translations.

Step-by step Algorithm:

1. Define the Group Action: Specify the specific rotations and translations allowed for the group action.
This could involve defining the range of rotation angles and translation distances.

2. Represent Images: Convert each image in X into a numerical representation, such as a matrix of pixel
intensities or a feature vector extracted using a suitable feature extraction technique.

3. Compute Orbital Neighborhoods: For each image I in X, calculate its orbital neighborhood by
applying all possible rotations and translations (within the defined range) to the image’s numerical
representation. This results in a set of transformed images representing the possible variations of I
under the group action.

4. Construct Orbital Lower Approximation: Identify images I in X for which their entire orbital neigh-
borhood is contained within the subset S of images representing Albert Einstein. This can be done by
comparing each transformed image in the orbital neighborhood to the images in S.

5. Construct Upper Approximation: Identify images I in X for which their orbital neighborhood has at
least one image that belongs to the subset S. This can be done by checking if any transformed image
in the orbital neighborhood matches an image in S.

6. Analyze Results: Interpret the identified images in the lower approximation as highly similar to
Albert Einstein’s face, even under rotations and translations. Analyze the images in the upper
approximation to understand the range of variations that images of Albert Einstein can undergo.

Nevertheless, by employing the concept of the orbital boundary of the set, it represents the “transition
zone” between images that are completely similar and those that are not at all similar.

As a reminder, the orbital boundary of a set S was defined as

bndon(S) = apron(S) − apr
on

(S).

It represents the set of elements in X that are “on the edge” of the subset S. These elements belong to the
upper approximation (have at least one element in their orbital neighborhood in S) but not to the lower
approximation (do not have their entire orbital neighborhood in S).

In the example of identifying Albert Einstein’s face, the boundary set bndon(S) would consist of images
in X that can be transformed into images in S (representing Albert Einstein) through some combination
of rotations and translations, but do not have their entire orbital neighborhood contained within S. The
boundary set provides insights into the range of variations that images of Albert Einstein can undergo
while still being considered similar enough to be included in the upper approximation. It represents the
”transition zone” between images that are clearly similar to Albert Einstein (lower approximation) and
those that are more distant in appearance (not in the upper approximation). The boundary set can help
us understand the range of facial expressions, angles, and positions that Albert Einstein’s face can exhibit
while still being recognized. This could be useful for developing more robust face recognition algorithms
that can handle variations in appearance. Images in the boundary set might represent cases where an
image classification algorithm might struggle to determine whether the image belongs to Albert Einstein or
not. Analyzing these images could help identify potential weaknesses in the classification algorithm and
improve its performance.

Note that the interpretation and significance of the boundary set will depend on the specific character-
istics of the group action (rotations and translations), the definition of the subset S (criteria for similarity),
and the nature of the images in X.

Moreover, the orbital approximation framework and the concept of the boundary set are powerful tools
for analyzing the relationships between images under group actions. By carefully considering the specific
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details of the problem and applying these concepts appropriately, we can gain valuable insights into image
similarity, variation, and classification challenges.

4. Conclusions

Algebra and group theory form the bedrock of mathematics and have numerous applications across
diverse fields. Algebra studies the properties of structures, relations, and operations, while group theory
delves into the symmetries and transformations of these structures. These theories are not only crucial for
pure mathematics but also hold immense significance in physics, chemistry, cryptography, and computer
science. Group theory finds applications ranging from explaining the behavior of subatomic particles to
ensuring the security of cryptographic systems. Therefore, understanding algebra and group theory plays
a pivotal role in solving many complex problems in science and engineering.

Therewithal, rough set theory emerges as a powerful tool for effectively dealing with imprecise and
incomplete information. It provides a robust methodology for managing uncertainties and imperfections
within information systems. By incorporating rough set theory into data analysis, one can gain a deeper
understanding and better handle imprecise information, leading to more accurate and reliable outcomes.
This work seamlessly integrates these two crucial mathematical materials, rendering the theoretical concepts
of mathematics more applicable. Toward the conclusion of the study, an application of the proposed method
to image processing is discussed.

This study highlights the significant role of group-theoretic structures in refining approximation opera-
tors, offering a novel mathematical framework for uncertainty modeling. By integrating concepts such as
cyclic subgroups, centralizers, and normalizers, this approach extends traditional rough set theory, making
it more adaptable to structured and transformation-invariant data. The proposed framework enhances
the theoretical understanding of approximation methods and demonstrates practical applications in image
processing, particularly in feature extraction and noise reduction. These findings bridge abstract mathe-
matical theory with real-world computational challenges, providing a versatile tool for diverse scientific
and engineering domains. Future research can further expand on these ideas by exploring additional group
actions and their implications in artificial intelligence, pattern recognition, and data classification.

Although the study maintains its integrity both theoretically and in terms of its application method, it
has the following possible limitations. By expanding these limitations, the applicability of the study can be
increased.

• While this study successfully integrates group-theoretic structures with rough set theory, the proposed
framework primarily focuses on fundamental group properties such as cyclic subgroups, centralizers,
and normalizers. A more extensive exploration of additional algebraic structures, such as Lie groups
or higher-order group actions, could further enrich the theoretical foundation.

• The application of group-based approximation operators in image processing introduces a new ap-
proach to handling uncertainty. However, the computational efficiency of these methods, especially
when applied to large-scale datasets or real-time image analysis, remains an open question. Future
research could focus on optimizing these operations for practical implementations.

• Although this study provides a mathematical framework and theoretical justifications, the practical
performance of the proposed approach has not been extensively validated on diverse real-world
datasets. Conducting experiments on different image processing tasks, such as object detection or
medical imaging, would help assess its robustness and applicability.

• The proposed method relies on specific group actions and their corresponding approximation op-
erators. However, its adaptability to more complex or irregular transformation groups, such as
those encountered in deep learning-based feature extraction, remains unexplored. Extending this
framework to accommodate more general transformation groups could broaden its applicability.
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• While the study establishes a novel link between group theory and rough sets, a direct comparison with
existing uncertainty modeling techniques, such as fuzzy sets or probabilistic models, could provide
deeper insights into its advantages and limitations. Future work could incorporate benchmarking
studies to evaluate the method’s effectiveness relative to other approaches.

The author hopes that this article sheds light on the way of scientists that is working in this area.
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