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Abstract. Using a variety of matrix techniques, the problem of locating the left eigenvalues of the quater-
nion companion matrices is investigated in this paper. In a recent paper, Dar et al. [8], proved that the
zeros of a quaternionic polynomial and the left eigenvalues of corresponding companion matrix are same.
In view of this, we use various newly developed matrix techniques to prove various results concerning the
location of the zeros of regular polynomials of a quaternionic variable with quaternionic coefficients, which
include an extension of the result of A. L. Cauchy as well.

1. Introduction and statement of results

Quaternions are a type of mathematical object that extend the concept of complex numbers into a
four-dimensional space. They were first introduced by Irish mathematician William Rowan Hamilton [14]
in the mid-19th century, which are denoted by H = {a = a0 + a1i + a2 j + a3k : a0, a1, a2, a3 ∈ R } and i, j, k
satisfy i2 = j2 = k2 = i jk = −1, i j = − ji = k, jk = −kj = i, ki = −ik = j. The set of quaternions is a
skew-field and because of non-commutative nature, they differ from complex numbers C . A quaternionic
number is denoted by q where q = α + βi + γ j + δk ∈ H, contains one real part α and three imaginary
parts β, γ and δ. The conjugate of q, denoted by q̄ is a quaternion q = α − βi − γ j − δk and the norm of q is
|q| =

√
qq̄ =

√
α2 + β2 + γ2 + δ2. The inverse of each non zero element q of H is given by q−1 = |q|−2q̄. We

also define the ball B(0, r) = {q ∈H : |q| < r}, for r > 0.
Hamilton probably didn’t realise, though, that his discovery, quaternions, would eventually be utilised to
many fields as in physics, where in quaternions are correlated to the nature of the universe at the level
of quantum mechanics. They lead to elegant expressions of the Lorentz transformations, which form the
basis of the modern theory of relativity. In signal processing, Quaternion Fourier Transform (QFT) is a
powerful tool. The QFT restores the lost commutative property at the cost of no longer being a division
algebra. It can be used, for instance, to embed a watermark in a colour image [6]. Quaternions are very
useful for analyzing situations where rotations in R3 are involved [9]. Other applications of QFT include
face recognition (jointly with Quaternion Wavelet Transform) and voice recognition. Quaternions are very
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efficient for analyzing situations where rotations inR3 are involved. In recent years, a lot of research activity
has been in progress in the study of the quaternion-related mathematical objects; each year, several research
articles are being published in a wide range of journals and different methodologies are used for various
objectives. The main challenge in the field, currently is the non commutative multiplication of quaternions.
However, in this article, we will try to prove various results concerned with (finite) quaternionic compan-
ion matrices, which in turn yield various results concerning the location of zeros of quaternion polynomials.

Quaternionic Polynomials:
A quaternion polynomial of degree n is an expression of the form
f (q) = a0 + a1q + ... + anqn, an , 0 and q, ai ∈H, i = 0, ...,n.
The addition and the multiplication of two polynomials are defined in the same way as those in the
commutative case:

(a0 + a1q + ... + amqm) + (b0 + b1q + ... + bnqn) = (a0 + b0) + (a1 + b1)q + ... + (an + bn)qn

and
(a0 + a1q + ... + amqm)(b0 + b1q + ... + bnqn) = c0 + c1q + ... + cm+nqm+n

where cγ =
∑
α+β=γ aαbβ. So, in view of the definition of the multiplication, the indeterminate q is assumed

to commute with quaternion coefficients. Accordingly it is routine to check that the totality of quaternion
polynomials denoted byH forms a domain (a ring without zero divisor) [5].

However we cannot define the evaluation of a quaternion polynomial in the same simple way as that for
the commutative case because the direct substitution of q by a quaternion always yields distinct results for
different forms of the polynomial, for instance,
Let f (q) = q2

− (i + j)q + k = (q − i)(q − j). At q = i,

i2 − (i + j)i + k = 2k , 0 = (i − i)(i − j)

For the sake of integrity, the way of the evaluation must be specified for some certain definite form of
polynomials. There are two main ways of evaluations: the left evaluation and the right evaluation [11].
In this paper, we shall adopt the following definition.

Definition: A quaternionic polynomial of degree n is defined as;
f (q) = anqn + an−1qn−1... + a1q + a0 or 1(q) = qnan + qn−1an−1... + qa1 + a0, an , 0 where ai, q ∈H, i = 1, ...,n.
A quaternionic polynomial p(q) is said to be Lacunary type polynomial if its coefficients skip certain values
or are zero at regularly, spaced intervals. Mathematically given a non-negative integer r , a polynomial
p(q) = anqn + arqr...+ a1q+ a0, or h(q) = qnan + qrar...+ qa1 + a0; ai, q ∈H, where ar , 0,and 1 ≤ r ≤ n− 1 is said
to be lacunary type polynomial of degree n ≥ 2 with quaternionic coefficients and q be the quaternionic
variable. As usual, if we take the leading coefficient an = 1, then the above polynomials are said to be
monic. Without loss of generality, we will take monic polynomials throughout this article.

Quaternionic polynomial matrices:As usual,Hr×s andHr×s[q] will, respectively, denote the set of the r × s
matrices with entries inH and inH[q].

Quaternion Companion Matrix:
The n×n companion matrix of a monic quaternion polynomial of the form f (q) = qn + an−1qn−1 + ...+ a1q+ a0
is given by

C f =


0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . .
0 0 0 ... 0 1
−a0 −a1 −a2 ... −an−2 −an−1





N. A. Rather et al. / Filomat 39:12 (2025), 3897–3906 3899

Whereas the n × n companion matrix for a monic quaternion polynomial of the form 1(q) = qn + qn−1an−1 +
... + qa1 + a0 is given by

C1 =


0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
. . . ... . .
0 0 0 ... 1 −an−1


Also Quaternion Companion Matrix for a monic lacunary type polynomial of the form
p(q) = qn + arqr + ... + a1q + a0,where ar , 0 and 1 ≤ r ≤ n − 1 is given by

Cp =



0 1 0 ... 0 . 0
0 0 1 ... 0 . 0
0 0 0 ... 0 . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 ... 0 . 1
−a0 −a1 −a2 ... −ar . 0


Whereas the companion matrix for a monic lacunary type quaternion polynomial of the form
h(q) = qn + qrar + ... + qa1 + a0, where ar , 0 and 1 ≤ r ≤ n − 1 is given by

Ch =



0 0 0 ... 0 ... 0 −a0
1 0 0 ... 0 ... 0 −a1
. . . ... . ... . .
0 0 0 ... 1 ... 0 −ar
. . . ... . ... . .
0 0 0 ... 0 ... 1 0


For an n × n matrix A = (pµν) of quaternions, the non commutativity of quaternions result in two different
types of eigenvalues,[7].
Quaternionic eigenvalues. Let A be an n × n matrix with entries from H. Lack of commutativity means
that we have two possible types of eigenvalue viz left eigenvalue and right eigenvalue.
A quaternion λ is said to be left eigenvalue of A ∈ Hn×n[q], if Ax = λx for some non-zero quaternionic
vector x ∈Hn and the vector x is called a left eigenvector associated with it and a quaternion λ is said to be
right eigenvalue of A ∈Hn×n[q] if Ax = xλ for some non-zero quaternionic vector x ∈Hn and the vector x is
called a right eigenvector associated with it. As usual the left spectrum and right spectrum of A ∈ Hn×n[q]
are respectively defined by

σl(A) = {λ ∈H : Ax = λx, f or some x , 0}

and
σr(A) = {λ ∈H : Ax = xλ, f or some x , 0}.

For complex case, concerning the location of eigenvalues, the famous Geršgorin theorem can be stated as

Theorem 1.1. All the eigenvalues of a n × n complex matrix A = (aµν) are contained in the union of n Geršgorin
discs defined by Dµ = {z ∈ C : |z − aµµ| ≤

∑n
ν=1
ν,µ
|aµν|}.

Recently, Dar et al. [8] extended Theorem 1.1 to the quaternions, more precisely they proved following
quaternion version of Geršgorin theorem.
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Theorem 1.2. All the left eigenvalues of a n × n matrix A = (aµν) of quaternions lie in the union of the n Geršgorin
balls defined by Bµ = {q ∈H : |q − aµµ| ≤ ρµ(A)}, where ρµ(A) =

∑n
ν=1
ν,µ
|aµν|.

Since the set of zeros of quaternion polynomial and the left spectrum of its companion matrix coincide, i.e,
if h(q) is a quaternion polynomial then Zero(h) = σl(Ch) [13], we may therefore use Theorem 1.2 and other
known results on the left eigenvalues of quaternionic matrices as a tool in determining the zeros of a given
polynomial and vice-versa.

We study analytic theory of polynomials in geometric theory of functions, where we focus on polynomials

P(z) =
n∑

j=o
a jz j of a complex variable and the different parameters connected with it, such as coefficients,

zeros, bounds for the zeros, maximum modulus of P(z), location of the zeros, the relationship between the
zeros and coefficients, zero free regions, growth, and much more. In accordance with the Fundamental
Theorem of Algebra, Every polynomial of positive degree with complex coefficients always has a zero and
the number of zeros is exactly equal to its degree. This theorem although tells about the exact number of
zeros of a polynomial but the zeros can’t be determined algebraically when the degree of a polynomial is
more than 4. Thus, the challenge of determining at least the regions of a polynomial that include all or some
of its zeros becomes important in the theory of polynomials.The first contributors of the subject were Gauss
and Cauchy. As Compared to Gauss’s bounds, Cauchy’s were more exact for the moduli of the zeros of
polynomials having arbitrary complex coefficients. In 1829,concerning the location of zeros of a polynomial
with complex coefficients, A. L Cauchy [4] gave a very simple expression of the region containing all the
zeros in terms of the coefficients of a polynomial. He proved the following theorem.

Theorem 1.3. If P(z) = zn + zn−1cn−1 + zn−2cn−2 + ... + zc1 + c0, is a complex polynomial of degree n, then all the
zeros of P(z) lie inside the disc |z| < 1 + max

0≤ν≤n−1
|cν|.

M.Fujiwara [15], generalized Theorem 1.3 by proving the following result.

Theorem 1.4. If λ1, λ2, λ3, ..., λn are positive numbers such that λ1 + λ2 + λ3 + ... + λn = 1 .Then all the zeroes of
the polynomial P(z) = zn + anzn−1 + an−1zn−2 + ... + a1z + a0 of degree n lie in the circle.

|z| ≤Max
(
|an− j|

λ j

) 1
j

, j = 1, 2, ...,n

In view of the applications of the zeros of quaternionic polynomials, various authors have shown interest
in this field and have successfully extended various results concerning the location of the zeros of complex
polynomials to the quaternion setting (For reference see [1], [10], [2], [3]).
Recently, Dar et al. [8] extended Theorem 1.3 to the quaternions settings by proving the following result.

Theorem 1.5. If 1(q) = qn+qn−1an−1+qn−2an−2+...+qa1+a0, is a quaternion polynomial with quaternion coefficients
and q is quaternionic variable, then all the zeroes of 1(q) lie in the ball |q| < 1 + max

0≤ν≤n−1
|aν|.

2. Main results

In this paper, we will use various matrix tools including Theorem 1.2 to prove the various results concerning
the location of zeros of quaternionic polynomials. We begin by proving the following generalization of
Theorem 1.5.

Theorem 2.1. Let 1(q) = qn + qn−1an−1 + ... + qa1 + a0 be a quaternion polynomial with quaternion coefficients and
q be a quaternion variable, then for any positive numbers α1, α2, ..., αn−1 with α0 = 0 and αn = 1, all zeroes of 1(q) lie
in the ball{

q ∈H : |q| ≤ max
{
αi

αi+1
+
|ai|

αi+1
: i = 0, 1, 2, ...,n − 1

}}
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Remark 2.2. For α1 = α2 = α3 = ... = αn = 1, Theorem 2.1 reduces to Theorem 1.5. On the other hand if we take

α1 = |a1|, α2 = |a2|, ..., αn−1 = |an−1|.

Then
α1

α2
=
|a1|

|a2|
,
α2

α3
=
|a2|

|a3|
, ...,
αn−1

αn
= |an−1|.

In the view of this and the fact that αn = 1, Theorem 2.1 reduces to the following result.

Corollary 2.3. All the zeroes of polynomial 1(q) = qn + qn−1an−1 + ... + qa1 + a0 lie in the ball

|q| ≤ max
{∣∣∣∣∣a0

a1

∣∣∣∣∣, 2∣∣∣∣∣a1

a2

∣∣∣∣∣, ..., 2|an−1|

}
.

Next, we extend Theorem 1.4 to quaternionic settings, More precisely we prove:

Theorem 2.4. If λ1, λ2, λ3, ..., λn are positive numbers such that λ1 + λ2 + λ3 + ... + λn = 1 .Then all the zeros of
the quaternionic polynomial f (q) = qn + an−1qn−1 + an−2qn−2 + ... + a1q + a0 lie in the ball{

q ∈H : |q| ≤ max
{(
|an− j|

λ j

) 1
j

: j = 1, 2, ...,n
}}
.

Now we turn towards lucunary type of quaternionic polynomials and prove some interesting results, which
in turn will yield various extensions of Theorem 1.3 to the quaternionic settings including Theorem 2.1 as
special cases.

Theorem 2.5. Let p(q) = qn + arqr + ... + a1q + a0, ar , 0, 0 ≤ r ≤ n − 1 be a quaternionic polynomial and q be the

quaternion variable. If λ =
{

max
0≤ j ≤r

|a j|

} 1
n

, then all the zeros of p(q) lie in the ball

{
q ∈H : |q| ≤ (λ + λ2 + ... + λr+1),where 1 ≤ r ≤ n − 1

}
(1)

Theorem 2.6. Let h(q) = qn + qrar + ... + qa1 + a0, ar , 0, 0 ≤ r ≤ n − 1 be a quaternionic polynomial and q be the

quaternion variable. If λ =
{

max
0≤ j ≤r

|a j|

} 1
n

, then all the zeros of h(q) lie in the ball

{
q ∈H : |q| ≤ λ +max(λ2, λr+1), where 1 ≤ r ≤ n − 1

}
(2)

Remark 2.7. It is easy to see that for 1 ≤ r < n − 1, the bound given by (2) is stronger than (1). On the other hand
if we take r = n − 2 in Theorem 2.5 and Theorem 2.6, we get following two results.

Corollary 2.8. All the zeros of the quaternionic polynomial p(q) = qn + an−2qn−2 + ... + a1q + a0 lie in the ball

|q| ≤ λ + λ2 + λ3 + ... + λn−1,

where λ is defined in Theorem 2.5.

Corollary 2.9. All the zeros of the quaternionic polynomial h(q) = qn + qn−2an−2 + ... + qa1 + a0 lie in the ball

|q| ≤ λ +max{λ2, λn−1
},

where λ is defined in Theorem 2.5.
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3. Auxiliary results

For the proof of our main results, we need the following two Lemmas of Dar et al. [8] and Rather et al[12].

Lemma 3.1. All the left eigenvalues of a n × n matrix A = (aµν) of quaternions lie in the union of the n Geršgorin
balls defined by Bµ = {q ∈H : |q − aµµ| ≤ ρµ(A)} where ρµ(A) =

∑n
ν=1
ν,µ
|aµν|.

Lemma 3.2. Let P(q) be a quaternion polynomial with quaternionic coefficients and C be the companion matrix of
P(q), then for any diagonal matrix D = dia1(d1, d2, ..., dn−1, dn), where d1, d2, ..., dn are positive real numbers, the left
eigenvalues of D−1CD and the zeros of P(q) are same.

4. Proof of the main theorems

Proof of theorem 2.1: Let C1 be the companion matrix of the polynomial 1(q) and T = dia1[α1, α2, ..., αn−1, 1]
be a diagonal matrix. Then

T−1C1T =



1
α1

0 0 0 . . . 0 0
0 1

α2
0 0 . . . 0 0

. . . . . . . . .
0 0 0 0 . . . 1

αn−1
0

0 0 0 0 . . . . 1




0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
. . . ... . .
0 0 0 ... 1 −an−1



α1 0 0 0 . . . 0 0
0 α2 0 0 . . . 0 0
. . . . . . . . .
0 0 0 0 . . . αn−1 0
0 0 0 0 . . . . 1



=


0 0 0 ... 0 −a0

α1
α1
α2

0 0 ... 0 −a1
α2

0 α2
α3

0 ... 0 −a2
α3

. . . ... . .
0 0 0 ... αn−1 −an−1


Applying Lemma 3.1 to the matrix T−1C1T, it follows that all the left eigenvalues of the matrix T−1C1T lie
in the union of balls.

|q| ≤
|a0|

α1
<
α0

α1
+
|a0|

α1

|q| ≤
α1

α2
+
|a1|

α2

− − − − −−

− − − − −−

and
|q| ≤ αn−1 + |an−1|.

That is, all the left eigenvalues of the matrix T−1C1T lie in the union of the balls

|q| ≤
{
αi

αi+1
+
|ai|

αi+1

}
, i = 0, 1, 2, . . . ,n − 1 with αn = 1. (3)

In other words, all the left eigenvalues of the matrix T−1C1T lie in the ball

|q| ≤ max
{
αi

αi+1
+
|ai|

αi+1
, i = 0, 1, 2, . . . ,n − 1

}
where αn = 1. (4)

Since T is a diagonal matrix with real positive entries, by Lemma 3.2, it follows that the left eigenvalues of
T−1C1T are the zeros of 1(q). Hence, all the zeros of 1(q) lie in the ball given by (4).
That completes the proof of Theorem 2.1.
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Proof of theorem 2.4: Let C f be the companion matrix of the polynomial f (q) and T = dia1
[

1
ln−1 ,

1
ln−2 , ...,

1
l , 1
]

be a diagonal matrix , where l is a positive real number. Then

T−1C f T =



0 l 0 0 . . . 0 0
0 0 l 0 . . . 0 0
0 0 0 l . . . 0 0
. . . . . . . . .
0 0 0 0 . . . 0 l
−

a0
ln−1 −

a1
ln−2 −

a2
ln−3 −

a3
ln−4 . . . − an−2

l −an−1


Applying Lemma 3.1 to the matrix T−1C f T, it follows that all the left eigenvalues of the matrix T−1C f T lie
in the union of balls |q| ≤ l and |q + an−1| ≤

|a0 |

ln−1 +
|a1 |

ln−2 + ... +
|an−2 |

l .
Since

|q| = |q + an−1 − an−1|

≤ |q + an−1| + |an−1|

≤

n∑
j=1

|an− j|

l j−1
.

That is, all the left eigenvalues of the matrix T−1C f T lie in the ball

|q| ≤ max
{
l,

n∑
j=1

|an− j|

l j−1

}
. (5)

We now choose

l = max
{
|an− j|

λ j

} 1
j

, j = 1, 2, 3, ..,n

then
|an− j|

λ j
≤ l j

∀ j = 1, 2, 3, ...n,

which gives
|an− j|

l j−1
≤ l · λ j

so that

n∑
j=1

|an− j|

ł j−1
≤

n∑
j−1

lλ j = l(λ1 + λ2 + λ3 + ... + λn) = l.

Using this in (5), it follows that all the left eigenvalues of T−1C f T lie in the ball

|q| ≤ max
{(
|an− j|

λ j

) 1
j

, j = 1, 2, ...,n
}
. (6)

Since T is a diagonal matrix with real positive entries, by Lemma 3.2, it follows that the left eigenvalues of
T−1C f T are the zeros of f (q). Hence, all the zeros of f (q) lie in the ball given by (6).
That completes the proof of Theorem 2.4.

Proof of Theorem 2.5: Let Cp be the companion matrix of the polynomial p(q),we take a matrix

T = dia1
[ 1
λn−1 ,

1
λn−2 , ...,

1
λ
, 1
]
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where λ is positive real number then

T−1CpT

=



λn−1 0 0 0 . . . 0 0
0 λn−2 0 0 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . λ 0
0 0 0 0 . . . . 1





0 1 0 ... 0 . 0
0 0 1 ... 0 . 0
0 0 0 ... 0 . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 ... 0 . 1
−a0 −a1 −a2 ... −ar . 0





1
λn−1 0 0 0 . . . 0 0
0 1

λn−2 0 0 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 1

λ 0
0 0 0 0 . . . . 1



=


0 λ ... 0 ... 0
0 0 ... 0 ... 0
. . ... . ... .
0 0 ... λ ... 0
−a0
λn−1

−a1
λn−2 ... −ar

λn−r−1 ... 0


Applying Lemma 3.2 to the matrix T−1CpT. It follows all the left eigenvalues of the matrix T−1CpT lie in the
union of the balls |q| ≤ λ and

|q| ≤
∣∣∣∣∣ a0

λn−1

∣∣∣∣∣ + ∣∣∣∣∣ a1

λn−2

∣∣∣∣∣ + ... + ∣∣∣∣∣ ar

λn−r−1

∣∣∣∣∣ = r∑
j=0

|a j|

λn− j−1

that is , all the left eigenvalues of the matrix T−1CpT lie in the ball

|q| ≤ max
{
λ,

r∑
j=0

|a j|

λn− j−1

}
. (7)

Since by hypothesis
λn = max

0≤ j ≤r
|a j|, λ , 0

we have
|a j| ≤ λ

n.

Therefore from (7), we have

|q| ≤ max
{
λ,

r∑
j=0

λ j+1
}

= max{λ, λ + λ2 + λ3 + ...λr+1
}

= λ + λ2 + ... + λr+1,

that is,

|q| ≤ λ + λ2 + ... + λr+1. (8)

Since T is a diagonal matrix with real positive entries, by Lemma 3.2, it follows that the left eigenvalues of
T−1CpT are the zeros of p(q). Hence, all the zeros of p(q) lie in the ball given by (8).
That completes the proof of Theorem 2.5.
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Proof of Theorem 2.6:
Let Ch be the companion matrix of h(q) = qnan + qrar + ... + qa1 + a0, ar , 0, 0 ≤ r ≤ n − 1 and let T =
dia1
[
λn−1, λn−2, ..., λ, 1

]
be a diagonal matrix with positive entries, then

T−1ChT =



0 0 ... 0 ... 0 −a0
λn−1

λ 0 ... 0 ... 0 −a1
λn−2

. . ... . ... . .
0 0 ... λ ... 0 −ar

λn−r−1

. . ... . ... . .
0 0 ... 0 ... λ 0


Applying Lemma 3.1 to the matrix T−1ChT, it follows that all the left eigenvalues of the matrix T−1ChT lie in
the ball

|q| ≤ max
1≤ȷ≤r

{
|a0|

λn−1 , λ +
|a j|

λn− j−1

}

≤ max
1≤ȷ≤r
{λ, λ + λ j+1

},

that is, all the left eigenvalues of the matrix T−1ChT lie in the ball

|q| ≤ max{λ, λ + λ2, λ + λ3, ..., λ + λr+1
}

= λ +max{λ2, λ3, ..., λr+1
}

= λ +max(λ2, λr+1).

Since T is a diagonal matrix with real positive entries, by Lemma 3.2, it follows that the left eigenvalues of
T−1ChT are the zeros of h(q). Hence, all the zeros of h(q) lie in the ball given by (2).
That completes the proof of Theorem 2.6.
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