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Abstract. In this paper, we give a complete classification of pseudo-Ricci-Bourguignon soliton on real
hypersurfaces in the complex hyperbolic space CHn = SU1,n/S(U1Un). Next as an application we give a
complete classification of gradient pseudo-Ricci-Bourguignon soliton on Hopf real hypersurfaces in the
complex hyperbolic space CHn.

1. Introduction

In the class of Hermitian symmetric spaces of non-compact type with rank 1, we highlight the example
of complex hyperbolic space CHn = SU1,n/S(U1Un), which is geometrically distinct from rank 2 cases. It
has a Kähler structure J such that ∇̄J = 0, and is equipped with a Bergmann metric 1 that has constant
holomorphic sectional curvature −4 (see Romero [28, 29], Smyth [30], Suh [33, 34], and Hwang-Suh [19]).
The complex hyperbolic space CHn is a real Grassmann manifold of non-compact type with rank 1 (see
Kobayashi-Nomizu [22]).

In the complex hyperbolic spaceCHn, we have provided a classification of Ricci-Bourguignon soliton real
hypersurfaces (see Suh [34]). In the complex hyperbolic quadric Qn∗ = SOo

2,n/SO2SOn, Ricci solitons, Ricci-
Bourguignon solitons, and pseudo-Einstein real hypersurfaces have been studied by Kimura-Ortega [21]
and Suh [31, 32]. More recently, Chaubey-Lee-Suh [11], Chaubey-De-Suh [10, 13, 15], and Wang [36, 37]
have investigated Yamabe solitons and Ricci solitons on almost co-Kähler manifolds, three dimensional
N(k)-contact manifolds, and complex quadrics Qm. The study of the Yamabe flow was initially introduced
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by Hamilton [17], Morgan-Tian [26], and Perelman [27], providing a geometric method for constructing
Yamabe metrics on Riemannian manifolds.

On the other hand, it is well-known that real hypersurfaces in Hermitian symmetric space of com-
pact type have two focal submanifolds, whereas those in non-compact types, such as complex hyperbolic
spaceCHn, have only one focal submanifold (see Helgason [18] and Wang [38, 39]). Among these, we exam-
ine two types of real hypersurfaces in CHn: those with isometric Reeb flow and contact real hypersurfaces.
Using the Hopf fibration

π̃ : H2n+1
1 (1)→ CHn, z→ [z],

which is a Riemannian submersion from anti-de Sitter space H2n+1
1 (1) to complex hyperbolic space CHn,

Montiel-Romero [25] classified real hypersurfaces with isometric Reeb flow as follows:

Theorem 1.1 ([25]). Let M be a real hypersurface in the complex hyperbolic space CHn, where n ≥ 3. Then, the Reeb
flow on M is isometric if and only if M is an open part of a tube of radius r around a totally geodesic CHk in CHn for
some k ∈ {0, · · · ,n − 1}, or a horosphere in the complex hyperbolic space CHn.

When a real hypersurface M in CHn satisfies the formula

Aϕ + ϕA = 2ϱϕ, ϱ , 0 constant,

we say that M is a contact real hypersurface in CHn. In works by Blair [3], Vernon [35] and Yano-Kon [40],
the classification of contact real hypersurfaces in CHn is given as follows:

Theorem 1.2 ([3, 35, 40]). Let M be a connected orientable real hypersurface in the complex hyperbolic space CHn,
n ≥ 3. Then M is contact if and only if M is congruent to one of the following:

(i) a horosphere in CHn,

(ii) a geodesic hypersphere in CHn,

(iii) a tube around an n-dimensional totally geodesic real hyperbolic space RHn in CHn,

(iv) a tube around the totally geodesic complex hyperbolic space CHn−1 in CHn.

Motivated by these results, we consider some characterizations of real hypersurfaces in the complex
hyperbolic space CHn with respect to a geometric flow introduced by Bourguignon, [4] and [5], which
generalizes the Ricci-Bourguignon flow. This flow is an intrinsic geometric flow on Riemannian manifolds,
where its fixed points are solitons. Specifically, a solution to the Ricci flow equation ∂

∂t1(t) = −2Ric(1(t)) is
given by

1
2

(LV1)(X,Y) + Ric(X,Y) = Ω1(X,Y),

where Ω denotes the Ricci soliton constant, and LV is the Lie derivative along the direction of the vector
field V (see Chaubey-De-Suh [10], Morgan-Tian [26], Perelman [27], and Wang [36, 37]). A solution
(M,V,Ω, 1) is called a Ricci soliton with potential vector field V and Ricci soliton constantΩ. In the complex
two-plane Grassmannian G2(Cn+2), Jeong-Suh [20] classified Ricci solitons for real hypersurfaces.

As a generalization of the Ricci flow concept, the Ricci-Bourguignon flow (see Bourguignon [4, 5] and
Catino-Cremaschi-Djadli-Mantegazza-Mazzieri [7]) is defined by

∂
∂t
1(t) = −2(Ric(1(t)) − ργ1(t)), 1(0) = 10,

where γ represents the scalar curvature and ρ is any constant. When ρ = 0, this family of geometric flows
reduces to the Ricci flow ∂

∂t1(t) = −2Ric(1(t)), 1(0) = 10. Furthermore, by appropriately rescaling time, when
ρ is nonpositive, the Ricci-Bourguignon flow can be viewed as an interpolation between the Ricci flow
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and the Yamabe flow, the latter emerging as a limit when ρ → −∞ (see Brendle [6], Chaubey-Suh-De [13],
De-Chaubey-Shenawy [14], and Ye [41]). In [16], Fischer studied a conformal version of this flow where
the scalar curvature is constrained along the flow. Similarly, in [23], Lu-Qing-Zheng established additional
results on the conformal Ricci–Bourguignon flow. For results concerning solitons of the Ricci–Bourguignon
flow see Catino-Mazzieri [8].

Now, let us introduce the Ricci-Bourguignon soliton (M,V,Ω, ρ, γ, 1), which is a solution of the Ricci-
Bourguignon flow. It satisfies the following equation:

1
2

(LV1)(X,Y) + Ric(X,Y) = (Ω+ ργ)1(X,Y) (1.1)

for any tangent vector fields X and Y on M, where Ω denotes the Ricci soliton constant, and ρ is any
constant. When the soliton constant Ω > 0, Ω = 0, and Ω < 0, we refer to the Ricci-Bourguignon soliton as
shrinking, steady, and expanding, respectively.

On the other hand, when the Reeb vector field ξ satisfies Aξ = αξ for the shape operator A on a real
hypersurface M in the complex hyperbolic spaceCHn, M is said to be Hopf hypersurface. Using this concept,
it can be easily shown in section 5 that a Hopf Ricci-Bourguignon soliton (M, ξ,Ω, ρ, γ, 1) in the complex
hyperbolic spaceCHn also satisfies the generalized pseudo-anti-commuting property, i.e., Ricϕ+ϕRic = ℓϕ,
where ℓ , 0 is constant.

If the Ricci operator Ric of a real hypersurface M in CHn satisfies

Ric(X) = aX + bη(X)ξ (1.2)

for smooth functions a, b on M, then M is said to be pseudo-Einstein. We now present a complete classification
of pseudo-Einstein Hopf real hypersurfaces in the complex hyperbolic space CHn due to Montiel [24], as
follows:

Theorem 1.3 ([24]). Let M be a pseudo-Einstein real hypersurface in the complex hyperbolic space CHn, n ≥ 3.
Then M is locally congruent to one of the following:

(i) a geodesic hypersphere,

(ii) a horosphere,

(iii) a tube of arbitrary radius r around a totally geodesic hyperbolic hyperplane CHn−1 in CHn.

As a further generalization of the Ricci-Bourguignon flow, we introduce the pseudo-Ricci-Bourguignon
flow, given by

∂
∂t
1(t) = −2(Ric(1(t)) + ψη ⊗ η(1(t)) − ργ1(t)), 1(0) = 10,

where γ denotes the scalar curvature and ρ and ψ are any constants. In this paper, we consider a pseudo-
Ricci-Bourguignon soliton (M,V, η,Ω, ρ, γ, 1) satisfying the following equation:

1
2

(LV1)(X,Y) + Ric(X,Y) + ψη(X)η(Y) = (Ω+ ργ)1(X,Y) (1.3)

for any tangent vector fields X and Y on M, where Ω is referred to as the pseudo-Ricci-Bourguignon
soliton constant, ρ and ψ are any constants, γ is the scalar curvature on M, and LV denotes the Lie
derivative along the vector field V. When the functionψvanishes identically, the pseudo-Ricci-Bourguignon
soliton (M,V, η,Ω, ρ, γ, 1) reduces to a Ricci-Bourguignon soliton (M,V,Ω, ρ, γ, 1). This generalizes the Ricci-
Bourguignon soliton (M,V,Ω, ρ, γ, 1) (see Hamilton [17] and Morgan-Tian [26]). Any solution is then called
a pseudo-Ricci-Bourguignon soliton with potential vector field V and pseudo-Ricci-Bourguignon soliton
constant Ω. Furthermore, the pseudo-Ricci-Bourguignon soliton is categorized as shrinking, steady, or
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expanding depending on the pseudo-Ricci-Bourguignon soliton constant functionΩ > 0,Ω = 0, andΩ < 0,
respectively.

In section 5, we use the concept of the generalized pseudo-anti-commuting property, defined by

Ricϕ + ϕRic = ℓϕ, ℓ , 0 : constant,

to show that a Hopf pseudo-Ricci-Bourguignon soliton real hypersurface in the complex hyperbolic
space CHn satisfies this property. Consequently, we can confirm that a real hypersurface with a pseudo-
Ricci-Bourguignon soliton has constant principal curvatures. This fact allows us to present a classification
theorem due to Berndt [1]. From this classification, we can determine whether a horosphere, a geodesic
hypersphere of type A1, a real hypersurface of type A2, or a real hypersurface of type B admit a Ricci-
Bourguignon soliton. Building on this, in section 6 we can assert the following:

Theorem 1.4. Let M be a Hopf pseudo-Ricci-Bourguignon soliton in the complex hyperbolic space CHn, n≥3. Then
M is pseudo-Einstein and locally congruent to one of the following:

(i) a geodesic hypersphere satisfying Ω+ ργ = −2n + 2(n − 1)coth2(r), and ψ = −2n,

(ii) a horosphere satisfying Ω+ ργ = −2, and ψ = −2n,

(iii) a tube of radius r around a totally geodesic hyperbolic hyperplane CHn−1 satisfying Ω + ργ = −2n + 2(n −
1)tanh2(r), and ψ = −2n.

Let D f denote the gradient vector field of the function f on M, which is defined by 1(D f ,X) =
1(grad f ,X) = X( f ) for any tangent vector field X on M. We now consider a gradient pseudo-Ricci-
Bourguignon soliton (M,D f ,Ω, ρ, γ, 1) (see Catino-Mazzieri [8], Cernea-Guan [9]), which satisfies the equa-
tion

Hess( f ) + Ric + ψη⊗η = (Ω+ ργ)1,

where Hess( f ) is defined as Hess( f ) = ∇D f , for any tangent vector fields X and Y on M, in such a way that

Hess( f )(X,Y) = 1(∇XD f ,Y).

Thus, the gradient pseudo-Ricci-Bourguignon soliton satisfies

∇XD f + Ric(X) + ψη(X)ξ = (Ω+ ργ)X (1.4)

for any vector field X tangent to M in CHn. Using Theorem 1.1, we can state the following theorem for
gradient pseudo-Ricci-Bourguignon solitons (M,D f ,Ω, ρ, γ, 1):

Theorem 1.5. Let M be a Hopf gradient pseudo-Ricci-Bourguignon soliton with isometric Reeb flow in the complex
hyperbolic space CHn, n≥3. Then M is pseudo-Einstein and locally congruent to one of the following:

(i) a geodesic hypersphere satisfying Ω+ ργ = −2n + 2(n − 1)coth2(r), and ψ = −2n,

(ii) a horosphere satisfying Ω+ ργ = −2, and ψ = −2n,

(iii) a tube of radius r around a totally geodesic hyperbolic hyperplane CHn−1 satisfying Ω + ργ = −2n + 2(n −
1)tanh2(r), and ψ = −2n.

Based on Theorem 1.2, we give another theorem for a gradient pseudo-Ricci-Bourguignon soliton on a
contact real hypersurface M in the complex hyperbolic space CHn as follows:

Theorem 1.6. Let M be a Hopf gradient pseudo-Ricci-Bourguignon soliton in the complex hyperbolic space CHn,
n≥3. If M is contact, then M is pseudo-Einstein and locally congruent to one of the following:

(i) a horosphere satisfying Ω+ ργ = −2, and ψ = −2n,

(ii) a tube of radius r around a totally geodesic hyperbolic hyperplane CHn−1 satisfying Ω + ργ = −2n + 2(n −
1)tanh2(r) for r→∞, and ψ = −2n.



D. H. Hwang et al. / Filomat 39:12 (2025), 3931–3949 3935

2. The complex hyperbolic space

This section is due to Berndt and Suh [2]. Let (M̄, 1, J) be a Kähler manifold and R̄ the Riemannian
curvature tensor of (M̄, 1). Since ∇̄J = 0, we immediately see that

R̄(X,Y)JZ = JR̄(X,Y)Z

holds for all X,Y,Z ∈ Tx(M̄), x ∈ M̄. From the curvature identities in Kobayashi and Nomizu [22] we also
get

1(R̄(X,Y)Z,W) = 1(R̄(JX, JY)Z,W) = 1(R̄(X,Y)JZ, JW).

A Kähler manifold M is said to have constant holomorphic sectional curvature if the holomorphic sectional
curvature function

K(V) = K(X, JX) = 1(R̄(X, JX)JX,X)

is constant for any holomorphic section V = Span{X, JX} ∈ Tx(M̄). Related to this one, the Riemannian
curvature tensor R̄ on a Kähler manifold (M̄, 1, J) is given by the following

Theorem 2.1. A Kähler manifold (M̄, 1, J) has constant holomorphic sectional curvature c ∈ R if and only if its
Riemannian curvature tensor R̄ is of the form

R̄(X,Y)Z =
c
4

{
1(Y,Z)X − 1(X,Z)Y + 1(JY,Z)JX − 1(JX,Z)JY − 21(JX,Y)JZ

}
for any vector fields X,Y and Z on M̄.

The construction for the complex hyperbolic space CHn can be given as follows: For any points z, w in
complex Minkowski space Cn+1

1 , let us write

F(z,w) = −z0w̄0 +

n∑
k=1

zkw̄k

and let < z,w >= Re F(z,w). Then the anti-de Sitter space of radius 1 in Cn+1
1 can be defined by

H2n+1
1 (1) = {z ∈ Cn+1

1 :< z, z >= −1}.

We denote H2n+1
1 (1) byH for short. We use the same identification of Cn+1

1 with R2n+2
2 so that

< z,w >=< u, v >= −u0v0 − u1v1 +

2n+1∑
k=2

ukvk.

For z ∈ H ,
TzH = {w ∈ Cn+1

1 :< z,w >= 0}.

Restricting <,> toH gives a Lorentz metric whose Levi-Civita connection ∇̃ satisfies

DXY = ∇̃XY+ < X,Y >
z
r2

for X,Y tangent toH at z. The Gauss equation takes the form

R̄(X,Y) = −X ∧ Y (2.1)

where R̄ denotes the curvature tensor ofH and X ∧ Y is defined by

(X ∧ Y)Z =< Y,Z > X− < X,Z > Y
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for any vector fields X,Y and Z tangent toH at z.

Again take V = Jz = iz and we get the analogous orthogonal decomposition

TzH = Span{V} ⊕ V⊥.

Let us denote by CHn the image of the canonical projection π to complex hyperbolic space,

π : H → CHn
⊂ CPn.

Then CHn is said to be a complex hyperbolic space. Thus, topologically, CHn is an open subset of CPn.
However, as Riemannian manifolds, they have quite different structures. Then a complex hyperbolic space
CHn is a Kähler manifold with negative constant holomorphic sectional curvature.

From Theorem 2.1 above, let us put that the complex hyperbolic space (CHn, J, 1) is a complex space
form with constant holomorphic sectional curvature −4. Then the Riemannian curvature tensor R̄ of CHn

can be given for any vector fields X, Y and Z in Tz(CHn), z ∈ CHn as follows:

R̄(X,Y)Z = −1(Y,Z)X + 1(X,Z)Y − 1(JY,Z)JX + 1(JX,Z)JY + 21(JX,Y)JZ.

3. Some general equations

Let M be a real hypersurface in the complex hyperbolic space CHn and denote by (ϕ, ξ, η, 1) the induced
almost contact metric structure. Note that ξ = −JN, where N is a (local) unit normal vector field of M.
Then the vector field ξ is said to be the Reeb vector field on M in CHn. The tangent bundle TM of M splits
orthogonally into TM = C⊕Rξ, where C = ker(η) is the maximal complex subbundle of TM. The structure
tensor field ϕ restricted to C coincides with the complex structure J restricted to C, and ϕξ = 0.

In a different way, the complex hyperbolic space CHn is defined by using the fibration

π̃ : H2n+1
1 (1)→ CHn, z→ [z],

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for a
real hypersurface in the complex hyperbolic space CHn as follows:

M′ = π̃−1(M) ĩ
−−−−−→ H2n+1

1 (1) ⊂ Cn+1
1

π

y π̃

y
M i

−−−−−→ CHn

We now assume that M is a Hopf hypersurface in a complex hyperbolic space CHn. Then we have

Aξ = αξ,

where A denotes the shape operator of M in CHn and the smooth function α is defined by α = 1(Aξ, ξ)
on M. When we consider the transform by the Kähler structure J on CHn of any vector field X on M in CHn,
we may put

JX = ϕX + η(X)N

for a unit normal vector field N to M.
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By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in CHn induced from
the curvature tensor R̄ of CHn can be described in terms of the almost contact structure tensor ϕ and the
shape operator A of M in CHn as follows:

R(X,Y)Z = −1(Y,Z)X + 1(X,Z)Y − 1(ϕY,Z)ϕX + 1(ϕX,Z)ϕY + 21(ϕX,Y)ϕZ
+ 1(AY,Z)AX − 1(AX,Z)AY

(3.1)

for any vector fields X,Y,Z ∈ TzM, z ∈ M. From this, contracting Y and Z on M in CHn, we get the Ricci
tensor of a real hypersurface M in CHn as follows:

Ric(X) = −(2n + 1)X + 3η(X)ξ + (TrA)AX − A2X. (3.2)

Then by contracting the Ricci operator in (3.2) the scalar curvature γ of M in CHn is given by

γ = −4(n2
− 1) + h2

− TrA2, (3.3)

where the function h denotes the trace of the shape operator A of M in CHn.

Now let us introduce the equation of Codazzi for a Hopf real hypersurface M in the complex hyperbolic
space CHn as follows:

1((∇XA)Y − (∇YA)X,Z) = −η(X)1(ϕY,Z) + η(Y)1(ϕX,Z) + 2η(Z)1(ϕX,Y)

for any X,Y and Z tangent to M. Putting Z = ξ we get

1((∇XA)Y − (∇YA)X, ξ) = 21(ϕX,Y).

Since we have assumed that M is Hopf in CHn, differentiating Aξ = αξ gives

(∇XA)ξ = (Xα)ξ + αϕAX − AϕAX.

From this, the left side of the above equation becomes

1((∇XA)Y − (∇YA)X, ξ) = 1((∇XA)ξ,Y) − 1((∇YA)ξ,X)
= (Xα)η(Y) − (Yα)η(X) + α1((Aϕ + ϕA)X,Y) − 21(AϕAX,Y).

Putting X = ξ in above two equations and using the almost contact structure of (M, 1), we have

Yα = (ξα)η(Y)

for any Y tangent to M. Inserting this formula into two previous equation implies

0 = 21(AϕAX,Y) − α1((ϕA + Aϕ)X,Y) + 21(ϕX,Y).

By virtue of this equation, we can assert the following

Lemma 3.1. Let M be a Hopf real hypersurface in CHn, n ≥ 3. Then we obtain

2AϕAX = α(Aϕ + ϕA)X − 2ϕX

for any tangent vector field X on M.

In the proof of our Theorems 1.4 and 1.5, we want to obtain more information on Hopf hypersurfaces
in the complex hyperbolic space. By using the formulas given in this section we want to introduce an
important lemma due to Berndt-Suh [2] and Montiel-Romero [25] as follows:

Lemma 3.2. Let M be a Hopf hypersurface in CHn. Then the Reeb function α is constant. Moreover, let X ∈ C be a
principal curvature vector of M with principal curvature λ. Then

• If α2
− 4 = 0, then all principal curvatures λ = ±1.

• If α2
− 4 , 0, then 2λ , α and ϕX is a principal curvature vector of M with principal curvature αλ−2

2λ−α , where
C denotes the orthogonal complement of the Reeb vector field ξ on M.
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4. Some important propositions

In Theorem 1.1, we have mentioned that the Reeb flow on M inCHn is isometric if and only if M is locally
congruent to a horosphere of type (A0) or a tube around a totally geodesicCHk inCHn for k ∈ {0, 1, · · ·,n−1}.
Then for k = 0 we say that M is a geodesic hypersphere of type (A1) with two distinct principal curvatures.

The tube of radius r around CH0 has therefore two distinct constant principal curvatures α = 2coth(2r)
and λ = coth(r) with multiplicities 1 and 2(n − 1), respectively. Now by using (3.2) and (3.3), we introduce
an important proposition due to Montiel-Romero [25] as follows:

Proposition 4.1. Let M be the tube of radius 0 < r < ∞ around the totally geodesic CH0 for k = 0 in CHn. That is,
a geodesic hypersphere in CHn. Then the following statements hold:

(1) M is a Hopf hypersurface.

(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
λ = coth(r) C = (RJN)⊥ 2(n − 1)
α = 2coth(2r) RJN 1

(3) The shape operator A commutes with the structure tensor field ϕ as

Aϕ = ϕA.

(4) The trace h of the shape operator A and its square h2 becomes respectively

h = (2n − 1)coth(r) + tanh(r),

and
h2 = (2n − 1)2coth2(r) + tanh2(r) + 2(2n − 1).

(5) The trace of the matrix A2 is given by

TrA2 = (2n − 1)coth2(r) + tanh2(r) + 2.

(6) The scalar curvature γ of the geodesic hypersphere is given by

γ = −4(n2
− 1) + h2

− TrA2

= −4n(n − 1) + 2(2n − 1)(n − 1)coth2(r).

Next we want to give a definition of the horosphere H(t) in CHn. Let us consider a Lorentzian hyper-
surface in H2n+1

1 (1) given by
H′(t) = {z ∈ H2n+1

1 (1) | | z0 − z1 |
2 = t}.

Then H′(t) is S1-invariant, where S1 = {eiθ
|θ ∈ R}. So H(t) = π(H′(t)) becomes a horosphere in CHn,

and N = (π∗)N′ is a unit normal vector field to the horosphere H(t). Then it becomes a totally η-umbilical
hypersurface with two distinct constant principal curvatures 2 and 1 of multiplicities 1 and 2n−2 respectively.
Of course, the horosphere H(t) becomes a pseudo-Einstein real hypersurface inCHn with a = −2 and b = 2n.

By taking the radius r→∞ in Proposition 4.1, we can assert α = 2 and λ = 1 as follows:

Proposition 4.2. Let M be a horosphere in the complex hyperbolic space CHn. Then the following statements hold:

(1) M is a Hopf hypersurface.
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(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
λ = 1 C = (RJN)⊥ 2(n − 1)
α = 2 RJN 1

(3) The shape operator A commutes with the structure tensor field ϕ as Aϕ = ϕA, and also satisfies the contact
condition as Aϕ + ϕA = 2ϕ.

(4) The trace h of the shape operator A and its square h2 becomes respectively

h = 2n,

and
h2 = 4n2.

(5) The trace of the matrix A2 is given by
TrA2 = 2(n + 1).

(6) The scalar curvature γ of the horosphere is given by

γ = −2(n − 1).

A proposition concerned with another kind of geodesic hypersphere in CHn can be introduced as
follows:

Proposition 4.3. Let M be a tube of radius r around the totally geodesicCHn−1 in the complex hyperbolic spaceCHn.
Then the following statements hold:

(1) M is a Hopf real hypersurface.

(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
µ = tanh(r) C = (RJN)⊥ 2(n − 1)
α = 2coth(2r) RJN 1

(3) The shape operator A commutes with the structure tensor field ϕ as

Aϕ = ϕA.

(4) The trace h of the shape operator A and its square h2 becomes respectively

h = (2n − 1)tanh(r) + coth(r),

and
h2 = (2n − 1)2tanh2(r) + coth2(r) + 2(2n − 1).

(5) The trace of the matrix A2 is given by

TrA2 = (2n − 1)tanh2(r) + coth2(r) + 2.

(6) The scalar curvature γ of the horosphere is given by

γ = −4n(n − 1) + 2(2n − 1)(n − 1)tanh2(r).
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Let us introduce some examples due to Montiel-Romero [25] as follows:
Let k, ℓ be natural numbers such that k + ℓ = n − 1 and t ∈ R with 0 < t < 1. Then we can define the

Lorentzian hypersurface M′

k,ℓ(t) in anti-de Sitter space H2n+1
1 (1) by the equations

M′

k,ℓ(t) =
{
z ∈ H2n+1

1 (1)
∣∣∣ t(−|z0| +

∑k

j=1
|z j|

2) = −
∑n

j=k+1
|z j|

2
}
.

Then M′

k,ℓ(t) is isometric to H2k+1
1 ( 1

t−1 )×S2ℓ+1( t
1−t ), where 1

t−1 and t
1−t denotes the square of the respective

radii. From this, if we put
Mk,ℓ(t) = π(M′

k,ℓ(t))

for a compatible fibration π from the fibration π̃: H2n+1
1 (1) → CHn, then a unit normal vector field N of

Mk,ℓ(t) is defined by Nπ(z) = (π∗)zN′z for a unit normal N′ on M′

k,ℓ(t), which is S1-invariant.

Accordingly, the space Mk,ℓ(t) has three constant principal curvatures tanh(r) =
√

t, coth(r) = 1
√

t
, and

2coth(2r) =
√

t+ 1
√

t
with multiplicities 2k, 2ℓ and 1 respectively. Moreover, Montiel-Romero [25] assert that

Mk,ℓ(t) = π(M′

k,ℓ(t)) is a tube over a totally geodesic complex submanifold CHk in the complex hyperbolic
space CHn.

When the integer k = 0, the hypersurface M0,ℓ(t) = π(H1
1×S2n+1) becomes a geodesic hypersphere inCHn.

In fact it becomes a pseudo-Einstein real hypersurface in CHn with a = −2n + (2n − 2)coth2(r) and b = 2n.

When ℓ = 0, the hypersurface Mk,0(t) is a tube of radius r over a complex hyperplane CHn−1 in CHn. In
this case, it becomes also pseudo-Einstein in CHn with a = −2n + (2n − 2)tanh2(r) and b = 2n.

For k ∈ {1, · · ·,n − 2}, M is locally congruent to a tube over CHk in CHn and said to be of type (A2) with
three distinct constant principal curvatures, respectively. By using (3.2) and (3.3), together with the result
due to Montiel-Romero [25], we introduce another important proposition as follows:

Proposition 4.4. Let M be a tube of radius 0 < r < ∞ around the totally geodesic CHk, k ∈ {1, · · ·,n − 2} in the
complex hyperbolic space CHn. Then the following statements hold:

(1) M is a Hopf real hypersurface.

(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
λ = coth(r) Tλ 2ℓ
µ = tanh(r) Tµ 2k
α = 2coth(2r) Tα = RJN 1

where ℓ = n − k − 1.

(3) The shape operator A commutes with the structure tensor field ϕ as

Aϕ = ϕA.

(4) The trace h of the shape operator A and its square h2 becomes the following respectively

h = (2ℓ + 1)coth(r) + (2k + 1)tanh(r),

and
h2 = (2ℓ + 1)2coth2(r) + (2k + 1)2tanh2(r) + 2(2ℓ + 1)(2k + 1).

(5) The trace of the matrix A2 is given by

TrA2 = (2ℓ + 1)coth2(r) + (2k + 1)tanh2(r) + 2.
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(6) The scalar curvature γ of the tube M is given by

γ = −4(n − 1)n + 8kℓ + 2(2ℓ + 1)ℓcoth2(r) + 2(2k + 1)ktanh2(r).

Finally we introduce an example due to Montiel [24]. Then we can define the Lorentzian hypersurface
M′(t) in an anti-de Sitter space H2n+1

1 (1) by the equations

M′(t) =
{

z ∈ H2n+1
1 (1)

∣∣∣ | − z2
0 +
∑n

j=1
z2

j |
2 = t

}
.

Then M′(t) is S1-invariant. From this, if we put M(t) = π(M′(t)) for a compatible fibration π from the
fibration π̃: H2n+1

1 → CHn, the unit normal vector field N of M(t) is defined by Nπ(z) = (π∗)zN′z for a unit
normal N′ on M′, because M′(t) is S1-invariant.

Accordingly, when t , 4, the space M(t) has constant principal curvatures tanh(r) =
√

t+1
√

t−1
, coth(r) =

√
t−1
√

t−1
,

and 2tanh(2r) = 2
√

t−1
√

t
with multiplicities n − 1, n − 1 and 1 respectively. Moreover, Montiel [24] assert that

M(t) = π(M′(t)) is a tube of radius r over a totally geodesic totally real hyperbolic spaceRHn in the complex
hyperbolic space CHn. It is neither totally η-umbilical nor pseudo-Einstein.

When t = 4, the hypersurface M(4) is a tube of radius r = ln 1+
√

3
√

2
over the real hyperbolic space RHn in

CHn. It has two distinct constant principal curvatures and is not totally η-umbilic.

For the type (B) in the complex hyperbolic space CHn, let us introduce some results on contact hyper-
surfaces due to Berndt-Suh [2], Montiel [24], and Montiel-Romero [25], as follows:

Proposition 4.5. Let M be a tube of radius 0 < r < ∞ around the totally geodesic and totally real hyperbolic space
RHn in CHn. Then the following statements hold:

(1) M is a Hopf real hypersurface.

(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
λ = coth(r) Tλ n − 1
µ = tanh(r) Tµ n − 1
α = 2tanh(2r) RJN 1

(3) The shape operator A and the structure tensor field ϕ satisfy

Aϕ + ϕA = kϕ, k = 2ρ , 0 : constant.

(4) The trace h of the shape operator A and its square h2 becomes the following respectively

h = 2tanh(2r) + 2(n − 1)coth(2r),

and
h2 = 4tanh2(2r) + 4(n − 1)2coth2(2r) + 8(n − 1).

(5) The trace of the matrix A2 is given by

TrA2 = 4tanh2(2r) + 4(n − 1)coth2(2r) − 2(n − 1).

(6) The scalar curvature γ of the tube M is given by

γ = −2(n − 1)(2n − 3) + 4(n − 1)(n − 2)coth2(2r).
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5. Hopf Pseudo-Ricci-Bourguignon solitons in CHn

Now let us introduce pseudo-Ricci-Bourguignon solitons (M,V,Ω, ρ, γ, 1) which are solutions of the
pseudo-Ricci-Bourguignon flow as follows:

1
2

(LV1)(X,Y) + Ric(X,Y) + ψη(X)η(Y) = (Ω+ ργ)1(X,Y),

for any tangent vector fields X and Y on M, whereΩ is a Ricci-Bourguignon soliton constant, ρ any constant
and γ the scalar curvature on M, and LV denotes the Lie derivative along the direction of the vector field
V (see Chaubey-Siddiqi-Prakasha [12], and Morgan-Tian [26]). Then let us consider the Reeb vector field ξ
as the pseudo-Ricci-Bourguignon soliton vector field V as follows:

1
2

(Lξ1)(X,Y) + Ric(X,Y) + ψη(X)η(Y) = (Ω+ ργ)1(X,Y) (5.1)

for any X,Y tangent to M. Then by virtue of the Lie derivative (Lξ1)(X,Y) = 1(∇Xξ,Y) + 1(∇Yξ,X), the
formula (5.1) can be given by

Ric(X) =
1
2

(Aϕ − ϕA)X − ψη(X)ξ + (Ω+ ργ)X (5.2)

for any X tangent to M. From this, by applying the structure tensor ϕ to both sides, we get the following
two formulas

Ric(ϕX) =
1
2

(Aϕ2
− ϕAϕ)X − ψη(ϕX)ξ + (Ω+ ργ)ϕX,

and
ϕRic(X) =

1
2

(ϕAϕ − ϕ2A)X − ψη(X)ϕξ + (Ω+ ργ)ϕX.

By using the almost contact structure (ϕ, ξ, η, 1) in the right side above, we know that the generalized
pseudo-anti-commuting property holds as follows:

Ric(ϕX) + ϕRic(X) = 2(Ω+ ργ)ϕX. (5.3)

Then by Lemmas 3.1 and 3.2, if X ∈ Tλ, then ϕX ∈ Tµ, where µ = αλ−2
2λ−α if 2λ − α , 0. If 2λ − α = 0 in

Lemma 3.1, then α = ±2 and λ = ±1. Now let us consider the case 2λ−α , 0. Then (5.3) becomes for X ∈ Tλ

λ2 + µ2
− h(λ + µ) = k, (5.4)

where the function k is given by k = −2(ν+ ργ)− 2(2n+ 1). Then substituting µ = αλ−2
2λ−α into (5.4), it gives the

following

4λ4
− 4(α + h)λ3 + 2(α2 + αh − 2k)λ2

− 4(α − h − αk)λ + 4 − 2αh − kα2 = 0. (5.5)

Let λ1, λ2, λ3 and λ4 be the roots of the above biquadric equation. Then from the relations of the roots and
coefficients of the equation (5.4) it follows that

λ1 + λ2 + λ3 + λ4 = α + h

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = (α2 + αh − 2k)/2
λ1λ2λ3 + λ1λ3λ4 + λ2λ3λ4 + λ1λ2λ4 = α − h − αk

λ1λ2λ3λ4 = (4 − 2αh − kα2)/4.

(5.6)

Here we consider the trace h of the shape operator A of M in complex hyperbolic space CHn. Then it is
defined by

h = α +m1λ1 +m2λ2 +m1
αλ1 − 2
2λ1 − α

+m2
αλ2 − 2
2λ2 − α

.
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From this, together with (5.6) and the fact that the principal curvature α is constant, and that the scalar
curvature γ in (3.3) is

γ = −4(n2
− 1) + h2

− TrA2,

where TrA2 is given by

TrA2 = α2 +m1λ
2
1 +m2λ

2
2 +m1

(αλ1 − 2
2λ1 − α

)2
+m2

(αλ2 − 2
2λ2 − α

)2
.

Substituting h and k into (5.6), we can see that (5.6) consists of four linearly independent equations with
constant multiplicities m1 and m2 of the principal curvatures λ1 and λ2 respectively. Consequently, it can
be asserted that M has at most 5 distinct constant principal curvatures in CHn. Then we can introduce a
well known result due to Berndt [1] as follows:

Theorem 5.1. Let M be a connected Hopf real hypersurfaces in complex hyperbolic spaceCHn with constant principal
curvatures. Then M is holomorphic congruent to an open part of the following hypersurfaces in CHn:

(i) a horosphere,

(ii) a tube of arbitrary radius r around a totally geodesic embedded submanifold CHk in CHn for some k ∈
{0, · · ·,n − 1},

(iii) a tube of arbitrary radius r around a totally geodesic embedded n-dimensional real hyperbolic space RHn.

Now a horosphere, a geodesic hypersphere (k = 0, k = n − 1) and a tube of radius r over CHk in CHn for
some k ∈ {1, · · ·,n−2}, belong to the classes of tubes of the first and second type in Theorem 5.1, respectively.
That is, all of these 4 kinds of tubes mentioned in Propositions 4.1, 4.2, 4.3 and 4.4 are included in the above
classes of type (i) and (ii), respectively. So by Theorem 1.1, they are characterized by having commuting
shape operator. That is, Aϕ = ϕA. Accordingly, from the notion of pseudo-Ricci-Bourguignon soliton
(M, ξ,Ω, ρ, γ, 1) of M, (5.2) becomes

Ric = (Ω+ ργ)1 − ψη ⊗ η. (5.7)

This means that those hypersurfaces are pseudo-Einstein. Then, bearing in mind Theorem 1.3 we have:
For any X ∈ Tλ, λ = coth(r) with multiplicity 2(n − 1) in Proposition 4.1, from (3.2) we get

Ric(X) = −(2n + 1)X + {(2n − 1)coth2(r) + 1}X − coth2(r)X

= −2nX + 2(n − 1)coth2(r)X
(5.8)

and

Ric(ξ) = −2(n − 1)ξ + α(h − α)ξ = 2(n − 1)(αλ − 1)ξ

= 2(n − 1)
{
2 coth(2r) coth(r) − 1

}
ξ

= 2(n − 1)coth2(r)ξ.

(5.9)

Then by the pseudo-Einstein property, Ric(X) = (Ω+ ργ)X −ψη(X)ξ for any X ∈ TxM, x ∈M, (5.8) and (5.9)
give respectively that for any X ∈ Tλ, λ = coth(r)

(Ω+ ργ)X = {−2n + 2(n − 1)coth2(r)}X

and
Ric(ξ) = 2(n − 1)coth2(r)ξ.

Then from (5.7), it gives the following

Ω+ ργ = −2n + 2(n − 1)coth2(r) and ψ = −2n.
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For a horosphere it could be enough for us to consider r → ∞. Then we get Ω + ργ = −2 and ψ = −2n.
Similarly, by Proposition 4.3, we get the following

Ω+ ργ = −2n + 2(n − 1)tanh2(r) and ψ = −2n.

Then by virtue of Theorem 1.3 in the introduction, we give a complete proof of our Theorem 1.4 for the first
and second cases (i) and (ii) in Theorem 5.1.

Next, in the remained case let us check that real hypersurfaces of type (B) in Proposition 4.5, that is, the
third case (iii) in Theorem 5.1 satisfy our condition. It is characterized by Aϕ + ϕA = ℓϕ, where ℓ , 0 is
constant. Moreover, by Proposition 4.5, the principal curvatures are given by λ = coth(r), µ = tanh(r) and
α = 2tanh(2r). So ℓ = 4

α . For any X ∈ Tλ the vector field ϕX ∈ Tµ. So (5.2) gives

Ric(X) = (µ − λ)ϕX − ψη(X)ξ + (Ω+ ργ)X
= (µ − λ)ϕX + (Ω+ ργ)X

(5.10)

for X ∈ Tλ.

On the other hand, from (3.2) the left side of (5.8) becomes the following for any X ∈ Tλ

Ric(X) = {−(2n + 1) + (h − λ)λ}X, (5.11)

where the function h denotes the trace of the shape operator A of M in CHn. By virtue of (5.11), the first
term in the right side of (5.10) is skew-symmetric and the other terms are symmetric. Accordingly, if we
take the inner product of (5.10) with any ϕX ∈ Tµ for X ∈ Tλ and use (5.8), naturally we get λ = µ. This
means that coth(r) = 1. That is the radius r becomes∞. So this gives a contradiction in Proposition 4.5 for
the radius 0 < r < ∞.

Consequently, summing up all the facts mentioned above, we give a complete proof of our Theorem 1.4
in the introduction.

6. Gradient Pseudo-Ricci-Bourguignon solitons with isometric Reeb flow in CHn

In this section, let us assume that M admits a gradient pseudo-Ricci-Bourguignon soliton (M,W, η, ρ, γ, 1).
Then we could consider the soliton vector field W as W = D f for a smooth function on M. Then the gradient
pseudo-Ricci-Bourguignon soliton equation becomes

∇XD f + Ric(X) + ψη(X)ξ = (Ω+ ργ)X.

Here, by Theorem 1.1 we want to consider only a tube over CHk, k ∈ {1, · · ·,n − 1}, or a horosphere. Then
the shape operator of A in the complex hyperbolic space CHn with isometric Reeb flow can be expressed as

A =



α 0 · · · 0 0 · · · 0
0 coth(r) · · · 0 0 · · · 0
...

...
. . .

...
... · · ·

...
0 0 · · · coth(r) 0 · · · 0
0 0 · · · 0 tanh(r) · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · tanh(r)


with three constant principal curvatures α, coth(r) and tanh(r) with multiplicities 1, 2ℓ and 2k respectively,
where ℓ = n − k − 1.
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Then, by putting X = ξ in (3.2), and using Aξ = αξ, we have the following

Ric(ξ) = −(2n + 1)ξ + 3ξ + hAξ − A2ξ

= −2(n − 1)ξ + (hα − α2)ξ
= κξ,

where we have put κ = 2(n − 1) + hα − α2. So by Proposition 4.4, the constant κ is given by

κ = −2(n − 1) + (hα − α2)

= −2(n − 1) + {(2ℓ + 1)coth(r) + (2k + 1)tanh(r)}2coth(2r) − (2coth(2r))2

= −2(n − 1) + 2{ℓcoth2(r) + ktanh2(r) + (k + ℓ)}

= 2ℓcoth2(r) + 2ktanh2(r).

Then by taking the covariant derivative we get the following two formulas

(∇XRic)ξ = κϕAX − Ric(ϕAX),

and

(∇ξRic)X = h(∇ξA)X − (∇ξA2)X.

Since M admits a gradient pseudo-Ricci-Bourguignon soliton (M,D f , ξ,Ω, ρ, γ, 1), we could consider the
soliton vector field W as W = D f for any smooth function f on M. In the introduction we have noted that
Hess( f ) is defined by Hess( f ) = ∇D f for any tangent vector fields X and Y on M in such a way that

Hess( f )(X,Y) = 1(∇XD f ,Y).

Then the gradient pseudo-Ricci-Bourguignon soliton (M,D f , ξ,Ω, ρ, γ, 1) can be given by

∇XD f + Ric(X) + ψη(X)ξ = (Ω+ ργ)X.

for any tangent vector field X on M. Then by covariant differentiation, it gives

∇X∇YD f + (∇XRic)(Y) + Ric(∇XY) + ψ(∇Xη)(Y) + ψη(∇XY)ξ + ψη(Y)∇Xξ

= X(Ω+ ργ)Y + (Ω+ ργ)∇XY

for any vector fields X and Y tangent to M inCHn. From this, together with the above two formulas (∇XRic)ξ
and (∇ξRic)X, it follows that

R(ξ,Y)D f = ∇ξ∇YD f − ∇Y∇ξD f − ∇[ξ,Y]D f
= (∇YRic)ξ − (∇ξRic)Y + ψϕAY

= (k + ψ)ϕAY − Ric(ϕAY) − h(∇ξA)Y + (∇ξA2)Y.
(6.1)

Moreover, we have the following for a real hypersurface M in CHn with isometric Reeb flow

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y + 1(AY,D f )Aξ − 1(Aξ,D f )AY. (6.2)

From this, let us take a vector field Y ∈ Tλ, λ = coth(r). Moreover, we can decompose the tangent space
TCHn as

TCHn = Tλ ⊕ Tµ ⊕Rξ ⊕RN,

where λ = coth(r) and µ = tanh(r). If M is of type (A1), that is, a geodesic hypersphere in CHn, it can be
decomposed as

TCHn = Tλ ⊕Rξ ⊕RN,
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or otherwise
TCHn = Tµ ⊕Rξ ⊕RN.

Then for any Y ∈ Tλ (3.1) gives

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y + αλ1(Y,D f )ξ − αλ1(ξ,D f )Y
= (−1 + αλ){1(Y,D f )ξ − 1(ξ,D f )Y}.

(6.3)

Then by taking the inner product of (6.2) with the Reeb vector field ξ and using the fact that 1((∇ξA)Y, ξ) = 0
and 1((∇ξA2)Y, ξ) = 0 in (6.1) for any Y ∈ Tλ, it follows that (−1 + αλ)1(Y,D f ) = coth2(r)1(Y,D f ) = 0. But
coth2(r) , 0 of M. Then we get

1(Y,D f ) = 0 (6.4)

for any Y ∈ Tλ.

Now let us check (6.2) for Y ∈ Tµ, µ = tanh(r). Then (6.2) gives

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y + αµ1(Y,D f )ξ − αµ1(ξ,D f )Y. (6.5)

Then by taking the inner product of (6.5) with the Reeb vector field ξ and Y ∈ Tµ respectively and using
(6.1), we get

(−1 + αµ)1(Y,D f ) = 0 and (−1 + αµ)1(ξ,D f ) = 0, (6.6)

where 1(R(ξ,Y)D f , ξ) = 0 and the left side 1(R(ξ,Y)D f ,Y) = 0 is given by virtue of the following formulas

1(ϕAY,Y) = µ1(ϕY,Y) = 0,

Ric(ϕAY) = µ{(2n + 1) + µh − µ2
}ϕY,

and

1((∇ξA)Y,Y) = µ1(∇ξY,Y) − µ1(∇ξY,Y) = 0.

Since −1 + αµ = −1 + (coth(r) + tanh(r))tanh(r) = tanh2(r) , 0 for r > 0 as M has isometric Reeb flow, (6.6)
implies that

1(Y,D f ) = 0 and 1(ξ,D f ) = 0 (6.7)

for any Y ∈ Tµ, µ = tanh r. For a geodesic hypersphere of type (A1) in CHn it holds either 1(Y,D f ) = 0 for
Y ∈ Tλ = C or for Y ∈ Tµ = C from the above decomposition, where C denotes the orthogonal complement
of the Reeb vector field ξ in the tangent space TM of M in CHn. Of course, it also holds 1(ξ,D f ) = 0 for a
geodesic hypersphere in CHn.

Now finally let us check that M is locally congruent to a horosphere. The radius r becomes infinity ∞,
and its principal curvatures are α = 2, λ = µ = 1 with multiplicities 1 and 2(n − 1), respectively. Then, (6.4)
holds for α = 2 and λ = 1, and (6.7) for α = 2 and µ = 1, because −1 + αλ = 1 and −1 + αµ = 1 respectively.
Accordingly, the gradient vector field D f of the smooth function f is vanishing on M.

Summing up (6.4), (6.7) and the above facts, the gradient of the smooth function f is identically vanishing,
that is, D f = 0 on M in CHn. Consequently, we can conclude that the gradient pseudo-Ricci-Bourguignon
soliton (M,D f , ξ,Ω, ρ, γ, 1) is trivial. So it becomes pseudo-Einstein. That is,

Ric(X) = (Ω+ ργ)X − ψη(X)ξ

for any X ∈ TxM, x ∈ M. Then by Theorem 1.3, we get a complete proof of our Theorem 1.5 in the
Introduction.
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7. Gradient Pseudo-Ricci-Bourguignon soliton on contact real hypersurfaces in CHn

In this section let us consider that M is a tube of radius r over the real hyperbolic space RHn. It is
said to be of type (B) and a contact real hypersurface in the complex hyperbolic space CHn. Here the real
hypersurface M in CHn is contact if and only if the shape operator A of M in CHn satisfies

Aϕ + ϕA = kϕ, k , 0,

where the constant k and the Reeb curvature α satisfies kα = 4. By Proposition 4.5, it has 3 constant principal
curvatures α = 2tanh(2r), λ = coth(r) and µ = tanh(r) with multiplicities 1, n − 1 and n − 1 respectively.

Then, by putting X = ξ in (3.2), we have the following

Ric(ξ) = −2(n − 1)ξ + (hα − α2)ξ
= ℓξ,

where by Proposition 4.5 the above constant ℓ is given by

ℓ = −2(n − 1) + hα − α2

= −2(n − 1) + {2tanh(2r) + 2(n − 1)coth(2r)}2tanh(2r) − (2tanh(2r))2

= 2(n − 1).

The gradient pseudo-Ricci-Bourguignon soliton (M,D f , ξ,Ω, ρ, γ, 1) must satisfy

∇XD f + Ric(X) + ψη(X)ξ = (Ω+ ργ)X. (7.1)

By differentiating (7.1), the curvature tensor of M gives

R(X,Y)D f = ∇X∇YD f − ∇Y∇XD f − ∇[X,Y]D f
= −(∇XRic)Y − Ric(∇XY) − ψ(∇Xη)(Y)ξ − ψη(∇XY)ξ
− ψη(Y)∇Xξ + (Ω+ θγ)∇XY
+ (∇YRic)X + Ric(∇YX) + ψ(∇Yη)(X)ξ + ψη(∇YX)ξ
+ ψη(X)∇Yξ − (Ω+ θγ)∇YX
+ Ric([X,Y]) − (Ω+ θγ)[X,Y] + ψη([X,Y])ξ
= (∇YRic)X − (∇XRic)Y − ψ(∇Xη)(Y)ξ + ψ(∇Yη)(X)ξ
− ψη(Y)∇Xξ + ψη(X)∇Yξ

(7.2)

for any vector fields X and Y tangent to M. From this, together with the above two formulas, it follows that

R(ξ,Y)D f = (∇YRic)ξ − (∇ξRic)Y
− ψ(∇ξη)(Y)ξ + ψ(∇Yη)(ξ)ξ − ψη(Y)∇ξξ + ψη(ξ)∇Yξ

= (ℓ + ψ)ϕAY − Ric(ϕAY) − h(∇ξA)Y + (∇ξA2)Y.
(7.3)

Let us suppose that a contact real hypersurface M in CHn admits a gradient pseudo-Ricci-Bourguignon
soliton. Then by Proposition 4.5, M is Hopf. So the scalar curvature γ is constant. Accordingly, let us take
Y ∈ Tλ, λ = coth(r), then (7.3) becomes

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y + α1(AY,D f )ξ − αλ1(ξ,D f )Y

= (−1 + αλ)
{
1(Y,D f )ξ − 1(ξ,D f )Y

}
=
{
− 1 + 2tanh(2r)coth(r)

}{
1(Y,D f )ξ − 1(ξ,D f )Y

}
.

(7.4)
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Here we note that −1+αλ = coth2(r) , 0 for the radius r > 0. Accordingly, by taking the inner product (7.3)
with the Reeb vector field ξ and Y ∈ Tλ, λ = coth(r), and use 1(R(ξ,Y)D f , ξ) = 0 and 1(R(ξ,Y)D f ,Y) = 0 for
Y ∈ Tλ we get the following respectively

1(ξ,D f ) = 0 and 1(Y,D f ) = 0 (7.5)

for any Y ∈ Tλ. Next, let us consider Y ∈ Tµ. Then (7.4) with Y ∈ Tµ gives

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y + α1(AY,D f )ξ − αµ1(ξ,D f )Y

= (−1 + αµ)
{
1(Y,D f )ξ − 1(ξ,D f )Y

}
.

(7.6)

Finally, let us take the inner product of (7.6) with Y ∈ Tµ, and use AY = µY, AϕY = λϕY for a contact
hypersurface in CHn and use (7.3). Then we have

−(−1 + αµ)1(ξ,D f ) = (ℓ + ψ)1(ϕAY,Y) − 1(Ric(ϕAY),Y) − h1((∇ξA)Y,Y) + 1((∇ξA2)Y,Y)

= −h1(∇ξ(AY) − A∇ξY,Y) + 1(∇ξ(A2Y) − A2
∇ξY,Y)

= 0,

(7.7)

where in the second equality we have used the following formulas

Ric(ϕAY) = −(2n + 1)ϕAY + hAϕAY − A2ϕAY

= µ{−(2n + 1) + λh − λ2
}ϕY,

1(Ric(ϕAY),Y) = 0,

and

1((∇ξA)Y,Y) = 1(∇ξ(AY) − A∇ξY,Y)
= 1(µ∇ξY − A∇ξY,Y) = 0.

Here we note that −1+αµ = tanh2(r) , 0 for the radius r > 0. Then (7.7) implies 1(Y,D f ) = 0 for any Y ∈ Tµ.
From this, together with (7.4), we can assert that D f = 0. Then from (7.1) M becomes pseudo-Einstein. That
is,

Ric(X) = (Ω+ ργ)X − ψη(X)ξ

for any X ∈ TxM, x ∈M. Since M is a contact hypersurface, it should satisfy the condition of Aϕ+ϕA = kϕ,
k , 0 constant. So in order to satisfy the contact condition, the radius r in Propositions 4.1, 4.2 and 4.3
becomes r→∞. In fact, if a geodesic hypersphere in CHn satisfies the contact condition, then k = 4

α . So this
gives 2coth(r) = 2tanh(2r), which implies coth2(r) = 1. So we may put coth(r) = 1 for r→ ∞. Accordingly,
a geodesic hypersphere in Proposition 4.1 should be a horosphere in Proposition 4.2.

Consequently, by Theorems 1.2 and 1.3, we give a complete classification of contact hypersurfaces in
complex hyperbolic space CHn which admits a gradient pseudo-Ricci-Bourguignon soliton.

Summing up all the discussions mentioned above, we give a complete proof of our Theorem 1.6.
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[41] R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39(1994), no. 1, 35-50.


