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Abstract. Let R be a ∗-ring and 1, e ∈ E(R), the set of idempotents of R. The ring R is said to be a (resp.
dual) ∗ (1, e) quasi-normal ring if 1ae = 0 implies (resp. 1∗Rae = 0) 1aRe∗ = 0. We prove that R is (resp. dual)
∗ (1, e) quasi-normal if and only if (resp. 1∗R(1−1)Re = 0) 1R(1− e)Re∗ = 0. As by-products, we give a ∗-ring,
which is clean, almost clean, ∗-clean, almost ∗-clean, ∗-regular and unit regular. Moreover, we use some
matrix rings to describe (dual) ∗ (1, e) quasi-normal rings. Finally, we consider the relations between (dual)
∗ (1, e) quasi-normal rings and other generalized inverses.

1. Introduction

Throughout the paper, all rings are associative with identity. The symbols Z2, E(R), Z(R), U(R), M2(R)
and T2(R) stand for the ring of integers modulo the positive integer 2, the set of all idempotents, the center,
the set of all invertible elements of R, 2 × 2 matrix ring over R, and 2 × 2 upper triangular matrix ring over
R, respectively. In a ring R, an idempotent e ∈ E(R) is called left (resp. right) semicentral if ae = eae (resp.
ea = eae) for each a ∈ R. The set of all left (resp. right) semicentral idempotents in R is denoted by Sl(R)
(resp. Sr(R)). In [7], Lam said an idempotent e in a ring R q-central if eR(1 − e)Re = 0. In particular, R is
q-abelian if each idempotent in R is q-central. In [1] and [22], q-central idempotents and q-abelian rings
are called inner Peirce trivial idempotents and quasi-normal rings, respectively. Furthermore, in [22], Wei
defined quasi-normal rings, which are q-abelian rings. We need to point out that in [5, 18, 20], q-central
idempotents and q-abelian rings are seen as “2-central rings” and “2-Abelian rings”, respectively. Then
Meng et al. defined and studied e-symmetric rings, weakly e-symmetric rings, (1, e)-symmetric rings in
[8, 9, 11, 13].

A ring R is called an involution ring (or a ∗-ring) if there exists a bijection ∗ : R→ R, a 7→ a∗ such that for
any a, b ∈ R,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.
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In a ∗-ring, idempotents also play an important role. For examples, the concepts of ∗-regular rings [3],
∗-clean rings and almost ∗-clean rings [21] are related to idempotents or projections. Inspired the previous
works, in this paper, we define ∗ (1, e) quasi-normal rings and dual ∗ (1, e) quasi-normal rings. Many
properties of these two rings are obtained.

2. ∗ (1, e) quasi-normal ring

In this section, we will give the definitions of ∗ (1, e) quasi-normal rings and dual ∗ (1, e) quasi-normal
rings. Moreover, many properties of these two kinds of rings are studied.

Definition 2.1. Let R be a ∗-ring and 1, e ∈ E(R). The ring R is called a ∗ (1, e) quasi-normal ring if 1ae = 0 implies
1aRe∗ = 0 for any a ∈ R.

Theorem 2.2. Let R be a ∗-ring and 1, e ∈ E(R). Then the following statements are equivalent:
(1) R is ∗ (1, e) quasi-normal;
(2) 1R(1 − e)Re∗ = 0;
(3) 1abe∗ = 1aebe∗ for any a, b ∈ R.

Proof. (1)⇒(2) Since 1a(1 − e)e = 0 for any a ∈ R, 1a(1 − e)Re∗ = 0, which implies 1R(1 − e)Re∗ = 0.
(2)⇒(3) It is obvious.
(3)⇒(1) By hypothesis, assume 1ae = 0, then 1aRe∗ = (1ae)Re∗ = 0. Hence, R is ∗ (1, e) quasi-normal.

Definition 2.3. Let R be a ∗-ring and e ∈ E(R). The idempotent e is said to be ∗-q-central if e∗R(1 − e)Re∗ = 0.
The set of all ∗-q-central idempotents of R is denoted by q∗-idem(R). In particular, R is called ∗-quasi-normal if
e ∈ q∗-idem(R) for each e ∈ E(R).

Remark 2.4. Let R be a ∗-ring and e ∈ E(R). Then e ∈ q∗-idem(R) if and only if R is a ∗ (e∗, e) quasi-normal ring.

Recall that in a ∗-ring, an element a ∈ R is called a partial isometry if a = aa∗a [16]. The symbol RPI stands
for the set of all partial isometries of R.

Proposition 2.5. Let R be a ∗-ring and e ∈ RPI
∩ Sl(R). Then R is ∗ (1, e) quasi-normal for any 1 ∈ E(R).

Proof. On one hand, e = ee∗e implies 1R(1 − e)Re∗ = 1R(1 − e)Re∗ee∗ ⊆ 1R((1 − e)Re)e∗. On the other hand,
e ∈ Sl(R) shows (1 − e)Re = 0. Hence, 1R(1 − e)Re∗ = 0.

By Proposition 2.5, we have the following.

Theorem 2.6. Let R be a ∗-ring and e ∈ Sl(R). Then R is ∗ (1 − e, e) quasi-normal if and only if e ∈ RPI.

Proof. ⇒ By hypothesis, (1 − e)R(1 − e)Re∗ = 0. Hence, (1 − e)Re∗ = 0, i.e., eae∗ = ae∗. Taking a = e∗, then
ee∗ = e∗, so e∗(ee∗) = e∗e∗ = e∗.
⇐ It follows from Proposition 2.5.
Similar to Proposition 2.5 and Theorem 2.6, we have the following.

Proposition 2.7. Let R be a ∗-ring. Then following statements hold.
(1) If e ∈ RPI

∩ Sr(R), then R is ∗ (1, 1 − e∗) quasi-normal for any 1 ∈ E(R).
(2) If e ∈ Sr(R), then R is ∗ (e∗, 1 − e∗) quasi-normal if and only if e ∈ RPI.

Recall that a (∗) ring is called (1, e) quasi-normal if 1R(1 − e)Re = 0, where 1, e ∈ E(R).

Theorem 2.8. Let R be a ∗-ring, 1 ∈ E(R) and e ∈ E(R) ∩ RPI. Then R is (1, e) quasi-normal if and only if R is ∗
(1, e) quasi-normal.

Proof. ⇒ By hypothesis, e = ee∗e and 1R(1 − e)Re = 0. Hence, 1R(1 − e)Re∗e ⊆ 1R(1 − e)Re = 0. It follows that
1R(1 − e)Re∗ = (1R(1 − e)Re∗e)e∗ = 0.
⇐ Similarly, one can prove this conclusion.
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Remark 2.9. In Propositions 2.5, 2.7 and Theorems 2.6, 2.8, if we replace RPI by PE(R), the new conclusions all
hold.

Note that an idempotent e in a ∗-ring R is ∗-q-central implies e = ee∗e. Hence, by Theorem 2.8, we have
the following.

Proposition 2.10. Let R be a ∗-ring, 1 ∈ E(R) and e ∈ q∗-idem(R). Then R is (1, e) quasi-normal if and only if R is
∗ (1, e) quasi-normal.

Corollary 2.11. Let R be a ∗ quasi-normal ring. Then R is (1, e) quasi-normal if and only if R is ∗ (1, e) quasi-normal
for any 1, e ∈ E(R).

An involution ∗ in a ring is called proper if any nonzero element a ∈ R, aa∗ = 0 implies a = 0.

Proposition 2.12. Let R be a ∗ ring and 1, e, e∗e ∈ E(R) with ∗ being proper. Then R is (1, e) quasi-normal if and
only if R is ∗ (1, e) quasi-normal.

Proof. It is sufficient to show e = ee∗e, and the rest proof follows from the proof of Theorem 2.8. In fact,

(e∗ − e∗ee∗)(e∗ − e∗ee∗)∗ = (e∗ − e∗ee∗)(e − ee∗e)
= e∗e − e∗ee∗e − e∗ee∗e + e∗ee∗ee∗e
= 0.

Hence, by ∗ is proper, e = ee∗e.

Remark 2.13. In Proposition 2.12, if e∗e is replaced by ee∗, then the conclusion also holds.

Recall that an element a in a ∗-ring R is said to be normal if aa∗ = a∗a [4]. The set of all normal elements
of R is denoted by RNor. It is easy to see that if e ∈ E(R) ∩ RNor, then ee∗, e∗e ∈ E(R). Hence, by Proposition
2.12, we infer the following.

Proposition 2.14. Let R be a ∗-ring and e ∈ E(R) ∩ RNor. Then R is (1, e) quasi-normal if and only if R is ∗ (1, e)
quasi-normal.

An element a ∈ R is said to be regular if a ∈ aRa [2]. The set of all regular elements in R is denoted
by Rre1. An element b ∈ R is called a inner inverse of a if a = aba, which is denoted by a−. In general, if
a ∈ Rre1, the inner inverse of a is not unique. The set of all inner inverses of a is written by a{1}. Obviously,
E(R) ⊆ Rre1. A ring R is called regular if each element in R is regular. A ∗-ring R is said to be ∗-regular if
R is regular and the involution of R is proper, or equivalently if R is regular and for any x ∈ R, there is a
projection p ∈ R such that xR = pR [3].

Proposition 2.15. Let R be a ∗-regular ring, e ∈ PE(R), 1 ∈ E(R) and 1R = e∗R. Then e ∈ q∗-idem(R) if and only if
R is ∗ (1, e) quasi-normal.

In the following, we consider a ∗-regular ring. Let R0 = Z2[x]/(x3
− 1) and define ∗ : α0 + α1x + α2x2

7→

α0 + α2x + α1x2, where α2, α1, α2 ∈ Z2. Then it is easy to check that R0 is a ∗-ring. Moreover, note that for
any a = α0 + α1x + α2x2

∈ R0, we have

a2 = (α0 + α1x + α2x2)2

= α2
0 + α

2
1x2 + α2

2x

= α0 + α2x + α1x2

= (α0 + α1x + α2x2)∗

= a∗.
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Lemma 2.16. E(R0) = PE(R0) = {0, 1, x + x2, 1 + x + x2
}.

Proof. Let a = α0 + α1x + α2x2
∈ R0, αi ∈ Z2, i = 0, 1, 2. Then

a∗ = (α0 + α1x + α2x2)∗ = α0 + α2x + α1x2.

a∗ = a implies that α1 = α2. Thus, E(R0) = PE(R0) = {0, 1, x + x2, 1 + x + x2
}.

Remark 2.17. In R0, taking e = x, then (1 − e)e∗ = (1 − x)x2 = x2
− 1 , 0. However, (1 − e)e = 0. This shows that

a ring is (1, e) quasi-normal can not yield that it is ∗ (1, e) quasi-normal.

Next, we prove that R0 is regular.

Theorem 2.18. Rre1
0 = R0.

Proof. Notice that the number of the elements in R0 is finite, so we can consider each element of R0. Let
a = α0 + α1x + α2x2

∈ R0.
Case I: 0, 1. It is obvious that 0, 1 ∈ Rre1

0 , 0{1} = R0 and 1{1} = {1}.
Case II: x. By a straightforward computation, we have

xax = x2(α0 + α1x + α2x2)

= α1 + α2x + α0x2

= x.

Then a = x2, which shows that x ∈ Rre1
0 , and x{1} = {x2

}. Similar to the case of x, one can check that x2
∈ Rre1

0 ,
and x2

{1} = {x}.
Case III: 1 + x. By a direct calculation, we have

(1 + x)a(1 + x) = (1 + x2)(α0 + α1x + α2x2)

= (α0 + α1) + (α1 + α2)x + (α0 + α2)x2

= 1 + x.

Thus, we get the following equalities
α0 + α1 = 1,
α1 + α2 = 1,
α0 + α2 = 0.

(1)

It is easy to compute that (1) has the following two solutions:

{
α0 = α2 = 0
α1 = 1,

{
α0 = α2 = 1
α1 = 0.

It follows that 1+x ∈ Rre1
0 , and 1+x{1} = {x, 1+x2

}. Similarly, it is not difficult to check that 1+x2, x+x2
∈ Rre1

0 ,
and 1 + x2

{1} = {x2, 1 + x}, x + x2
{1} = {1, x + x2

}.
Case IV: 1 + x + x2. It is easy to compute

(1 + x + x2)a(1 + x + x2) = (1 + x + x2)(α0 + α1x + α2x2)

= (α0 + α1 + α2)(1 + x + x2).

Hence, we get the following equality
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α0 + α1 + α2 = 1,

which shows that 1 + x + x2
∈ Rre1

0 , and 1 + x + x2
{1} = {1, x, x2, 1 + x + x2

}. Thus, the proof is completed.

Proposition 2.19. R0 is a ∗-regular ring.

Proof. By Theorem 2.18, R0 is regular, it suffices to show that the involution ∗ in R0 is proper. In fact, for any
a = α0 + α1x + α2x2, we have a∗ = α0 + α1x2 + α2x. A direct computation shows

aa∗ = (α0 + α1x + α2x2)(α0 + α1x2 + α2x)

= α2
0 + α0α1x + α0α2x

+ α0α1x2 + α2
1 + α1α2x

+ α0α2x + α1α2x2 + α2
2

= (α2
0 + α

2
1 + α

2
2) + (α0α1 + α0α2 + α1α2)x

= (α0 + α1 + α2) + (α0α1 + α0α2 + α1α2)x.

If aa∗ = 0, then either a = 0 or αi = 0 and α j = αk = 1, where {i, j, k} = {0, 1, 2}. Assume that αi = 0 and
α j = αk = 1, then α0α1 + α0α2 + α1α2 = 1 , 0, a contradiction. Hence, the involution ∗ in R0 is proper.

Remark 2.20. In R0, taking any 1 = e ∈ E(R0), then 1R0 = e∗R0, which illustrates Proposition 2.15. Moreover, if
we take 1 , e ∈ E(R0), then 1R0 , e∗R0.

A ring is clean (resp. almost clean) if its every element can be written as the sum of a unit (resp. regular
element) and an idempotent [17] (resp. [12]). As a generalization, a ∗-ring is ∗-clean (resp. almost ∗-clean)
if its every element can be written as the sum of a unit (resp. regular element) and a projection [21]. Here,
we first give a result about regular elements in a ∗-ring.

Lemma 2.21. Let R be a ∗-ring. Then U(R) ⊆ Rre1. Moreover, if a ∈ U(R), then a{1} = {a−1
}.

Proposition 2.22. U(R0) = {1, x, x2
}.

Proof. It is evident to see that 1, x, x2
∈ U(R0), and 1−1 = 1, x−1 = x2, (x2)−1 = x. In order to prove that

U(R0) = {1, x, x2
}, it is enough to show that 1+ x, 1+ x2, x+ x2, 1+ x+ x2 are not invertible. We first consider

1 + x, assume that 1 + x ∈ U(R0), then by Lemma 2.21, we know that (1 + x)−1 = x or (1 + x)−1 = 1 + x2.
However, by a direct computation,

(1 + x)x = (1 + x)(1 + x2) = x + x2 , 1,

a contradiction. Hence, 1 + x < U(R0). Similarly, we can get the following results

(1 + x2)x2 = (1 + x2)(1 + x) = (x + x2)2 = x + x2 , 1,

and

(1 + x + x2)x = (1 + x + x2)x2 = (1 + x + x2)2 = 1 + x + x2 , 1.

This completes the proof.
By Proposition 2.22, we have the following.

Proposition 2.23. R0 is clean, almost clean, ∗-clean and almost ∗-clean.

An element a in a ring is called unit regular if a = aua for some invertible element u. In particular, a ring
is said to be unit regular if each element is unit regular [6].

Proposition 2.24. R0 is unit regular.
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Remark 2.25. In [14], the author proposed a question that can we find a ∗-regular ring being not unit regular. It is
a pity that the example R0 is false.

Let R be a ring and 1, e ∈ E(R). Then ring R is called dual (1, e) quasi-normal if 1R(1 − 1)Re = 0.

Definition 2.26. Let R be a ∗-ring and 1, e ∈ E(R). The ring R is said to be dual ∗ (1, e) quasi-normal if 1ae = 0
implies 1∗R(1 − 1)Re = 0.

Similar to the condition of ∗ (1, e) quasi-normal rings, we have the following.

Proposition 2.27. Let R be a ∗-ring and 1, e ∈ E(R). Then
(1) The following statements are equivalent:
(a) R is dual ∗ (1, e) quasi-normal;
(b) 1R∗(1 − 1)Re = 0;
(c) 1∗abe = 1∗a1be for any a, b ∈ R.
(2) e ∈ q∗-idem(R) if and only if R is dual ∗ (e, e∗) quasi-normal.
(3) If 1 ∈ RPI

∩ Sr(R), then R is dual ∗ (1, e) quasi-normal.
(4) If e ∈ Sr(R), then R is dual ∗ (e, 1 − e) quasi-normal if and only if e ∈ RPI.
(5) If 1 ∈ RPI

∩ Sl(R), then R is dual ∗ (1 − 1∗, e) quasi-normal.
(6) If e ∈ Sl(R), then R is dual ∗ (1 − e∗, e∗) if and only if e ∈ RPI.
(7) If 1 ∈ E(R) ∩ RPI, then R is dual (1, e) quasi-normal if and only if R is dual ∗ (1, e) quasi-normal.
(8) In (3), (4), (5), (6), if RPI is replaced by PE(R), then the results also hold.
(9) If 1 ∈ q∗-idem(R), then R is dual (1, e) quasi-normal if and only if R is dual ∗ (1, e) quasi-normal.
(10) If R is ∗-quasi-normal, then R is dual (1, e) quasi-normal if and only if R is dual ∗ (1, e) quasi-normal.
(11) If the involution ∗ in R is proper and 11∗ ∈ E(R) (or 1∗1 ∈ E(R)), then R is dual (1, e) quasi-normal if and

only if R is dual ∗ (1, e) quasi-normal.
(12) If 1 ∈ E(R) ∩ RNor. then R is dual (1, e) quasi-normal if and only if R is dual ∗ (1, e) quasi-normal.

3. Relations with matrix rings

In this section, we will use matrix rings to characterize ∗ (1, e) quasi-normal and dual ∗ (1, e) quasi-
normal rings. Let R be a ∗-ring, throughout the following in this section, for 1, e ∈ E(R), we always consider

G =
(
1 0
0 1

)
and E =

(
e 0
0 e

)
.

Let R be a ∗-ring and M2(R) = {
(
a b
c d

)
|a, b, c, d ∈ R}. Define ∗ : M2(R)→M2(R),

(
a b
c d

)
7→

(
a∗ c∗

b∗ d∗

)
. By [23,

Proposition 2], we know that M2(R) is a ∗-ring.

Proposition 3.1. Let R be a ∗-ring and 1, e ∈ E(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and only if
M2(R) is ∗ (G,E) (resp. dual ∗ (G,E)) quasi-normal.

Proof. ⇒ Since R is ∗ (1, e) quasi-normal, 1R(1 − e)Re∗ = 0. For any A =
(
a b
c d

)
,B =

(
f h
i j

)
∈ M2(R). A

straightforward computation shows

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a b
c d

) (
1 − e 0

0 1 − e

) (
f h
i j

) (
e∗ 0
0 e∗

)
=

(
(1a(1 − e) f + 1b(1 − e)i)e∗ (1a(1 − e)h + 1b(1 − e) j)e∗

(1c(1 − e) f + 1d(1 − e)i)e∗ (1c(1 − e)h + 1d(1 − e) j)e∗

)
.

By 1R(1 − e)Re∗ = 0, we have GA(1 − E)BE∗ = 0. Hence, M2(R) is ∗ (G,E) quasi-normal.
⇐ By “⇒”,
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0 = GA(1 − E)BE∗ =
(
(1a(1 − e) f + 1b(1 − e)i)e∗ (1a(1 − e)h + 1b(1 − e) j)e∗

(1c(1 − e) f + 1d(1 − e)i)e∗ (1c(1 − e)h + 1d(1 − e) j)e∗

)
.

This shows 1R(1 − e)Re∗ = 0. Hence, R is ∗ (1, e) quasi-normal.
Similarly, one can prove that the case “dual” holds.

Let R be a ∗-ring and T2(R) = {
(
a b
0 c

)
|a, b, c ∈ R}. Define ∗ : T2(R) → T2(R),

(
a b
0 c

)
7→

(
a∗ 0
0 c∗

)
. Then it is

easy to check that T2(R) is a ∗-ring.

Proposition 3.2. Let R be a ∗-ring and 1, e ∈ E(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and only if
T2(R) is ∗ (G,E) (resp. dual ∗ (1, e)) quasi-normal.

Proof. ⇒ For any A =
(
a b
0 c

)
,B =

(
d f
0 h

)
∈ T2(R). By a direct computation, we have

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a b
0 c

) (
1 − e 0

0 1 − e

) (
d f
0 h

) (
e∗ 0
0 e∗

)
=

(
1a(1 − e)de∗ (1a(1 − e) f + 1b(1 − e)h)e∗

0 1c(1 − e)he∗

)
.

Since 1R(1 − e)Re∗ = 0, GA(1 − E)BE∗ = 0. It follows that T2(R) is ∗ (G,E) quasi-normal.
⇐ By “⇒”, we have

0 = GA(1 − E)BE∗ =
(
1a(1 − e)de∗ (1a(1 − e) f + 1b(1 − e)h)e∗

0 1c(1 − e)he∗

)
,

which implies 1R(1 − e)Re∗ = 0. Hence, R is ∗ (1, e) quasi-normal.
Similarly, one can check that the case “dual” holds.

Remark 3.3. In M2(R), if we define ∗ : M2(R)→ M2(R),
(
a b
c d

)
7→

(
a∗ 0
0 d∗

)
, then M2(R) is a ∗-ring. Moreover, in

this case, the revised Proposition 3.1 is true.

Let R be a ∗-ring and L2(R) = {
(
a 0
b a − b

)
|a, b ∈ R}. Define ∗ : L2(R)→ L2(R),(

a 0
b a − b

)
7→

(
a∗ 0
0 a∗

)
. One can easily check that L2(R) is a ∗-ring.

Proposition 3.4. Let R be a ∗-ring and 1, e ∈ E(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and only if
L2(R) is ∗ (G,E) (resp. dual ∗ (1, e)) quasi-normal.

Proof. ⇒ For any A =
(
a 0
b a − b

)
,B =

(
c 0
d c − d

)
∈ L2(R). It is easy to compute

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a 0
b a − b

) (
1 − e 0

0 1 − e

) (
c 0
d c − d

) (
e∗ 0
0 e∗

)
=

(
1a(1 − e)ce∗ 0

(1b(1 − e)c + 1(a − b)(1 − e)d)e∗ 1(a − b)(1 − e)(c − d)e∗

)
.

By 1R(1 − e)Re∗ = 0, we have GA(1 − E)BE∗ = 0. Hence, L2(R) is ∗ (G,E) quasi-normal.
⇐ By “⇒”, we have

0 = GA(1 − E)BE∗ =
(

1a(1 − e)ce∗ 0
(1b(1 − e)c + 1(a − b)(1 − e)d)e∗ 1(a − b)(1 − e)(c − d)e∗

)
.



L. Cao et al. / Filomat 39:13 (2025), 4383–4393 4390

It follows that 1R(1 − e)Re∗ = 0, and so R is ∗ (1, e) quasi-normal.
Similarly, one can show that the case “dual” is true.

Let R be a ∗-ring and V2(R) = {
(
a b
0 a

)
|a, b ∈ R}. Define ∗ : V2(R)→ V2(R),(

a b
0 a

)
7→

(
a∗ 0
0 a∗

)
. It is not difficult to check that V2(R) is a ∗-ring.

Proposition 3.5. Let R be a ∗-ring and 1, e ∈ E(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and only if
V2(R) is ∗ (G,E) (resp. dual ∗ (1, e)) quasi-normal.

Proof. ⇒ For any A =
(
a b
0 a

)
,B =

(
c d
0 c

)
∈ V2(R). One can easily compute

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a b
0 a

) (
1 − e 0

0 1 − e

) (
c d
0 c

) (
e∗ 0
0 e∗

)
=

(
1a(1 − e)ce∗ (1a(1 − e)d + 1b(1 − e)c)e∗

0 1a(1 − e)ce∗

)
.

Since 1R(1 − e)Re∗ = 0, GA(1 − E)BE∗ = 0. Hence, V2(R) is ∗ (G,E) quasi-normal.
⇐ By “⇒”,

0 = GA(1 − E)BE∗ =
(
1a(1 − e)ce∗ (1a(1 − e)d + 1b(1 − e)c)e∗

0 1a(1 − e)ce∗

)
,

which implies 1R(1 − e)Re∗ = 0, and hence R is ∗ (1, e) quasi-normal.
Similarly, one can prove that the condition “dual” is true.

Let R be a ring and V( f )
2 (R) = {

(
a b
0 a

)
|a, b ∈ R}, where f ∈ E(R). For any A =

(
a b
0 a

)
and B =

(
c d
0 c

)
,

where a, b, c, d ∈ R. Define the addition and multiplication of V( f )
2 (R) as follows:

A + B =
(

a + c b + d
0 a + c

)
, AB =

(
ac ad + bc − f bd
0 ac

)
.

It is not difficult to check that V( f )
2 (R) is a ring if and only if f ∈ Z(R). Furthermore, if R is a ∗-ring,

f ∈ E(R) ∩ Z(R), define ∗ : V( f )
2 (R)→ V( f )

2 (R),
(
a b
0 a

)
7→

(
a∗ 0
0 a∗

)
, then one can prove that V( f )

2 (R) is a ∗-ring.

Theorem 3.6. Let R be a ∗-ring, 1, e ∈ E(R) and f ∈ E(R)∩Z(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal
if and only if V( f )

2 (R) is ∗ (G,E) (resp. dual ∗ (1, e)) quasi-normal.

Proof. ⇒ For any A =
(
a b
0 a

)
,B =

(
c d
0 c

)
∈ V( f )

2 (R). A straightforward computation shows

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a b
0 a

) (
1 − e 0

0 1 − e

) (
c d
0 c

) (
e∗ 0
0 e∗

)
=

(
1a(1 − e)ce∗ (1a(1 − e)d + 1b(1 − e)c)e∗ − f1b(1 − e)de∗

0 1a(1 − e)ce∗

)
.

By 1R(1 − e)Re∗ = 0, we have GA(1 − E)BE∗ = 0. Hence, V( f )
2 (R) is ∗ (G,E) quasi-normal.

⇐ By “⇒”,
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0 = GA(1 − E)BE∗ =
(
1a(1 − e)ce∗ (1a(1 − e)d + 1b(1 − e)c)e∗ − f1b(1 − e)de∗

0 1a(1 − e)ce∗

)
.

It follows that 1R(1 − e)Re∗ = 0. Hence, R is ∗ (1, e) quasi-normal.
Similarly, we can show that the case “dual” holds.

Let R be a ring and T( f )
2 (R) = {

(
a b
0 c

)
|a, b, c ∈ R}, where f ∈ E(R). For any A =

(
a b
0 c

)
and B =

(
d e
0 1

)
,

where a, b, c, d, e, 1 ∈ R. In T( f )
2 (R), addition and multiplication are determined by

A + B =
(

a + d b + e
0 c + 1

)
, AB =

(
ad ae + b1 f
0 c1

)
.

It has been shown that T( f )
2 (R) is a ring if and only if f ∈ Sl(R) [13, Theorem 3.4]. In particular, if R is a ∗-ring,

f ∈ Sl(R), and define ∗ : T( f )
2 (R)→ T( f )

2 (R),
(
a b
0 c

)
7→

(
a∗ 0
0 c∗

)
, then T( f )

2 (R) is a ∗-ring.

Theorem 3.7. Let R be a ∗-ring, 1, e ∈ E(R) and f ∈ Sl(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and
only if T( f )

2 (R) is ∗ (G,E) (resp. dual ∗ (1, e)) quasi-normal.

Proof. ⇒ For any A =
(
a b
0 c

)
,B =

(
d h
0 i

)
∈ T( f )

2 (R). It is easy to compute

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a b
0 c

) (
1 − e 0

0 1 − e

) (
d h
0 i

) (
e∗ 0
0 e∗

)
=

(
1a(1 − e)de∗ (1a(1 − e)h + 1b(1 − e) f i f )e∗ f

0 1c(1 − e)ie∗

)
.

Since f ∈ Sl(R), GA(1 − E)BE∗ can be reduced as(
1a(1 − e)de∗ (1a(1 − e)h + 1b(1 − e)i)e∗ f

0 1c(1 − e)ie∗

)
.

Hence, 1R(1 − e)Re∗ = 0 shows GA(1 − E)BE∗ = 0. It follows that T( f )
2 (R) is ∗ (G,E) quasi-normal.

⇐ By “⇒”,

0 = GA(1 − E)BE∗ =
(
1a(1 − e)de∗ (1a(1 − e)h + 1b(1 − e)i)e∗ f

0 1c(1 − e)ie∗

)
.

It follows that 1R(1 − e)Re∗ = 0, and hence R is ∗ (1, e) quasi-normal.
Similarly, we can prove that the condition “dual” holds.
Let R be a ring and f ∈ E(R). Write ( f )T2(R) = T2(R) as a set. In ( f )T2(R), addition and multiplication are

given by

A + B =
(

a + d b + e
0 c + 1

)
, AB =

(
ad f ae + b1
0 c1

)
.

It has been proven that ( f )T2(R) is a ring if and only if f ∈ Sr(R) [13, Theorem 3.5]. Moreover, if R is a ∗-ring,

f ∈ Sr(R) and define ∗ : ( f )T2(R)→ ( f )T2(R),
(
a b
0 c

)
7→

(
a∗ 0
0 c∗

)
, then ( f )T2(R) is a ∗-ring.
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Theorem 3.8. Let R be a ∗-ring, 1, e ∈ E(R) and f ∈ Sr(R). Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and
only if ( f )T2(R) is ∗ (G,E) (resp. dual ∗ (1, e)) quasi-normal.

Proof. ⇒ For any A =
(
a b
0 c

)
,B =

(
d h
0 i

)
∈

( f )T2(R). A direct computation implies

GA(1 − E)BE∗ =
(
1 0
0 1

) (
a b
0 c

) (
1 − e 0

0 1 − e

) (
d h
0 i

) (
e∗ 0
0 e∗

)
=

(
1a(1 − e)de∗ f (1a(1 − e)h + 1b(1 − e)i)e∗

0 1c(1 − e)ie∗

)
.

By 1R(1 − e)Re∗ = 0, we have GA(1 − E)BE∗ = 0. Hence, ( f )T2(R) is ∗ (G,E) quasi-normal.
⇐ By “⇒”,

0 = GA(1 − E)BE∗ =
(
1a(1 − e)de∗ f (1a(1 − e)h + 1b(1 − e)i)e∗

0 1c(1 − e)ie∗

)
.

It follows that 1R(1 − e)Re = 0. Hence, R is ∗ (1, e) quasi-normal.
Similarly, we can show that the case “dual” is true.

4. Relations with other generalized inverses

In this section, we will discuss the relations among ∗ (1, e), dual ∗ (1, e) quasi-normal rings and other
generalized inverses.

Theorem 4.1. Let R be a ∗-ring, 1, e ∈ E(R) and f ∈ 1{1} ∩ E(R). Then R is ∗ (1, e) quasi-normal if and only if R is ∗
( f1, e) quasi-normal.

Proof. ⇒ By assumption, 1 = 1 f1 and 1R(1− e)Re∗ = 0. Hence, ( f1)2 = f (1 f1) = f1, which shows f1 ∈ E(R).
Moreover, it is clear f1R(1 − e)Re∗ = 0. It follows that R is ∗ ( f1, e) quasi-normal.
⇐ The proof follows from 1R(1 − e)Re∗ = 1( f1R(1 − e)Re∗) = 0.
By Theorem 4.1, we have the following.

Proposition 4.2. Let R be a ∗-ring, 1, e ∈ E(R) and f ∈ e{1} ∩ E(R). Then R is dual ∗ (1, e) quasi-normal if and only
if R is dual ∗ (1, e f ) quasi-normal.

Definition 4.3. An element a in a ∗-ring R is called Moore-Penrose invertible (MP-invertible) (see [19]) if there
exists x ∈ R such that axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa.

The element x in Definition 4.3 is is said to be the Moore-Penrose inverse of a, which is unique if it exists
and written by a†. The set of all MP-invertible elements in R is denoted by R†.

Theorem 4.1 and Proposition 4.2 implies the following.

Corollary 4.4. Let R be a ∗-ring and 1, e ∈ E(R)∩R†. Then R is ∗ (1, e) (resp. dual ∗ (1, e)) quasi-normal if and only
if R is ∗ (1†1, e) (resp. dual (1, ee†)) quasi-normal.

In particular, in Definition 4.3, if we only consider (1) axa = a, (2) xax = x, then all elements satisfying
(1) and (2) in R are denoted by a{1, 2}, and x is called a {1, 2}-inverse of a, and denoted by a(1,2), the set of all
{1, 2}-inverses of R is denoted by R{1,2} [19].

Proposition 4.5. Let R be a ∗-ring, 1 ∈ E(R) ∩ R{1,2}, and e ∈ E(R). Then for any 1(1,2)
∈ E(R), R is ∗ (1, e)

quasi-normal if and only if R is ∗ (1(1,2), e) quasi-normal.
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Proof. ⇒ Since 1(1,2)R(1− e)Re∗ = 1(1,2)11(1,2)R(1− e)Re∗ ⊆ 1(1,2)1R(1− e)Re∗, by hypothesis, 1(1,2)R(1− e)Re∗ = 0.
⇐ The proof is similar to the proof of “⇒”.
Similarly, we have the following.

Proposition 4.6. Let R be a ∗-ring, e ∈ E(R) ∩ R{1,2}, and 1 ∈ E(R). Then for any e(1,2)
∈ E(R), R is dual ∗ (1, e)

quasi-normal if and only if R is dual ∗ (1, e(1,2)) quasi-normal.

Corollary 4.7. Let R be a ∗-ring, 1, e ∈ E(R). Then
(1) If 1† ∈ E(R), then R is ∗ (1, e) quasi-normal if and only if R is ∗ (1†, e) quasi-normal.
(2) If e† ∈ E(R), then R is dual ∗ (1, e) quasi-normal if and only if R is ∗ (1, e†) quasi-normal.

Remark 4.8. The conclusions in Corollaries 4.4 and 4.7 can be generalized to the case of “1 (or e) is an SEP element”.
For the concept of SEP elements, one can refer to [15].
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