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Abstract. It is known that there are some extensions of fuzzy sets that can be used to solve various real-life
problems. In this paper, we propose a novel extension of a fuzzy subalgebras, fuzzy ideals, and fuzzy filters.
We define SR-fuzzy subalgebras, SR-fuzzy ideals and SR-fuzzy filters on Sheffer stroke Hilbert algebras.
Moreover, we provide some examples to illustrate these definitions.

1. Introduction

The Sheffer operation, also known as the Sheffer stroke or NAND operator, was first introduced by H.
M. Sheffer [31]. In 2002, M. McCune et al. ([23]) applied the Sheffer stroke operation to Boolean algebras
and showed that there is no shorter axiom in terms of the Sheffer stroke. Algebraic structures play a
prominent role in mathematics with wide-ranging applications in many disciplines such as theoretical
physics, computer sciences, control engineering, information sciences, coding theory, topological spaces
and so on. This provides sufficient motivation to researchers to simplify axioms for some different algebraic
structures e.g., see [9], [10] and [19]–[29]. In 1950, L. Henkin [14] introduced the notion of an “implicative
model”, which serves as a model of positive implicative propositional calculus. In 1960, A. Monteiro
[24] gave the name “Hilbert algebras” to the dual algebras of Henkin’s implicative models. In 1966, A.
Diego ([12]) intensively studied and developed some properties of Hilbert algebras. In 2021, T. Oner et
al. ([27]) investigated the relation between the Sheffer stroke and Hilbert algebras. Also, see [18]. In 1965,
L. A. Zadeh ([32]) proposed a new theory called fuzzy set theory. Since then several researchers studied
various extensions and generalizations of this theory, e.g., intuitionistic fuzzy sets [6], L-fuzzy sets [13],
type-2 fuzzy sets [22], interval valued fuzzy sets [15], multi fuzzy sets [30], bipolar-valued fuzzy sets [21]
and m-polar fuzzy sets [11] etc.. In 2005, Y. B. Jun [17] introduced the concept of (α, β)-fuzzy ideal of a
BCK/BCI-algebra and discussed related results. In 2019, A. Al-Masarwah and A. G. Ahmad [1] focused on
combining the concepts of m-polar fuzzy sets and m-polar fuzzy points to introduce a new notion called
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m-polar (α, β)-fuzzy ideals in BCK/BCI-algebras. They showed that the defined notion is a generalization of
fuzzy ideals, bipolar fuzzy ideals, (α, β)-fuzzy ideals, and bipolar (α, β)-fuzzy ideals in BCK/BCI-algebras.
In 2021, T. Oner et al. [25] explored fuzzy structures in Sheffer stroke Hilbert algebras and defined fuzzy
filters. In 2022, T. M. Al-Shami et al. [5] as a novel extension of fuzzy set, defined the concept of SR-Fuzzy
sets and compared it with the other types of fuzzy sets. Additionally, they defined a score function for the
ranking of SR-Fuzzy sets and applied their results to Decision-Making. In 2023, R. A. Borzooei et al [8]
discussed fuzzy weak filters of Sheffer stroke Hilbert algebras and investigated their properties. In 2024,
H. S. Kim et al. [20] applied the notion of bipolar-valued fuzzy sets to filters and deductive systems in
Sheffer stroke Hilbert algebras. They investigated the conditions under which the bipolar-valued fuzzy set
can be a bipolar-valued fuzzy filter. In recent years, fuzzy sets with different powers have been extensively
studied, leading to significant advancements in both theory and applications. For instance, (2, 1)-fuzzy
sets have been explored for their properties, weighted aggregated operators, and applications to multi-
criteria decision-making methods [2], (3, 2)-Fuzzy sets have been applied to topology and optimal choices,
providing a robust framework for handling complex decision-making scenarios [15], (m,n)-fuzzy sets,
have been developed and applied to multi-criteria decision-making methods, offering greater flexibility
in modeling uncertainty [4], (a, b)-fuzzy soft sets, have been introduced to address limitations in existing
models and enhance their applicability to real-world problems [3], kn

m-rung picture fuzzy sets have been
proposed as a powerful extension of traditional fuzzy sets, enabling more nuanced representations of
uncertainty and imprecision in decision-making processes [16].

It is now natural to investigate similar argument of extensions and generalizations of the existing fuzzy
subsystems of other algebraic structures. It is motivated us to define SR- fuzzy subalgebra, SR-fuzzy ideal
and SR-fuzzy filter on Sheffer stroke Hilbert algebras and discuss their main properties.

2. Preliminaries

Recall the definitions and results from [5], [27], and [31] for the reader’s convenience.

Definition 2.1. [31] Let H = ⟨H, |⟩ be a groupoid. The operation | is said to be a Sheffer stroke operation if it satisfies
the following conditions:

(S1) x|y = y|x
(S2) (x|x)|(x|y) = x
(S3) x|((y|z)|(y|z)) = ((x|y)|(x|y))|z
(S4) (x|((x|x)|(y|y)))|(x|((x|x)|(y|y))) = x.

Definition 2.2. [27] A Sheffer stroke Hilbert algebra is a structure ⟨H, |⟩ of type (2), in which H is a non-empty set
and | is a Sheffer stroke operation on H such that the following identities are satisfied for all x, y, z ∈ H:

1. (x|((y|(z|z))|(y|(z|z))))|(((x|(y|y))|((x|(z|z))|(x|(z|z))))|((x|(y|y))|((x|(z|z))|(x|(z|z))))) = x|(x|x),
2. If x|(y|y) = y|(x|x) = x|(x|x), then x = y.

Lemma 2.3. [27] Let ⟨A, |⟩ be a Sheffer stroke Hilbert algebra. Then, there exists a unique 1 ∈ A, such that the
following identities hold for all x ∈ A: 1.x|(x|x) = 1.
2.x|(1|1) = 1.
3.1|(x|x) = 1.

Proposition 2.4. [27] Let ⟨A, |⟩ be a Sheffer stroke Hilbert algebra. Then the binary relation x ≤ y if and only if
(x|(y|y)) = 1 is a partial order on A. Moreover, 1 is greatest element of A.

Lemma 2.5. [27] Let ⟨A, |⟩ be a Sheffer stroke Hilbert algebra with the least element 0 and the greatest element 1.
Then 0|0 = 1 and 1|1 = 0.

Definition 2.6. [27] A nonempty subset G of a Sheffer stroke Hilbert algebra X is called a subalgebra of X if
(x|(y|y))|(x|(y|y)) ∈ G for all x, y ∈ G.
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Definition 2.7. [27] A nonempty subset G of a Sheffer stroke Hilbert algebra X is called an ideal of X if for all x, y ∈ G
1. 0 ∈ G,
2. (x|(y|y))|(x|(y|y)) ∈ G and y ∈ G⇒ x ∈ G.

Definition 2.8. [5] Let X be a universal set. Then the pair S = (µS, γS) in X, where µS is a membership grade, and
γS is a non-membership grade, is called an SR-fuzzy set in X if it satisfies 0 ≤ (µS(a))2 +

√
γS(a) ≤ 1 for all a ∈ X.

3. SR-fuzzy subalgebras of Sheffer stroke Hilbert algebras

In this section, we introduce the concept of SR-fuzzy subalgebras in the context of Sheffer stroke Hilbert
algebras. Unless explicitly stated otherwise, X will denote a Sheffer stroke Hilbert algebra.

Definition 3.1. An SR-fuzzy set S = (µS, γS) in X is called SR-fuzzy subalgebra of X if it satisfies

(∀x, y ∈ X)
(

(µS((x|(y|y))|(x|(y|y))))2
≥ min{(µS(x))2, (µS(y))2

}√
γS((x|(y|y))|(x|(y|y))) ≤ max{

√
γS(x),

√
γS(y)}

)
(1)

Example 3.2. Consider the Sheffer stroke Hilbert algebra in Tabel 1.

Table 1: Sheffer stroke Hilbert algebra (X, |)
| a b c d e f g h
a b a d c f e h g
b a a a a a a a a
c d a d a a d d a
d c a a c f g f g
e f a a f f a f a
f e a d g a e d g
g h a d f f d h a
h g a a g a g a g

Let µS and γS be fuzzy sets in X given by the Table 2:

Table 2: fuzzy sets µS and γS of X
X a b c d e f 1 h
µS(x) 0.1 0.6 0.5 0.4 0.6 0.2 0.3 0.4
γS(x) 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1

Then the SR-fuzzy set S := (µS, γS) is given by the Table 3.

Table 3: SR-fuzzy set S = (µS, γS) of X
X a b c d e f 1 h

(µS(x))2 0.01 0.36 0.25 0.16 0.36 0.04 0.09 0.16√
γS(x) 0.4472 0.3162 0.4472 0.4472 0.4472 0.4472 0.4472 0.3162

where
√
γS(x) is calculated to four decimal places. Then the SR-fuzzy set S = (µS, γS) is a SR-fuzzy subalgebra

of X.

Definition 3.3. Let S = (µS, γS) be an SR-fuzzy set in X and (t, s) ∈ [0, 1]2 be such that 0 ≤ t2 +
√

s ≤ 1. Consider
the following sets:

S(µS, t) = {x ∈ X|µS(x) ≥ t}

and

R(γS, s) = {x ∈ X|γS(x) ≤ s}.
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Example 3.4. From Example 3.2, we can observe that, if t = 0.3 and s = 0.4, then 0 ≤ t2 +
√

t = 0.09 + 0.6325 =
0.7225 ≤ 1 and

S(µS, 0.3) = {x ∈ X|µS(x) ≥ 0.3} = {c, d, e, f , h}

and
R(γS, 0.4) = {x ∈ X|γS(x) ≤ 0.4} = {a, b, c, d, e, f , h}

Theorem 3.5. An SR-fuzzy set S = (µS, γS) in X is an SR-fuzzy subalgebra of X if and only if the nonempty sets
S(µS, t) and R(γS, s) are subalgebras of X for all (t, s) ∈ [0, 1]2 satisfying 0 ≤ t2 +

√
s ≤ 1.

Proof. Assume S = (µS, γS) is an SR-fuzzy subalgebra of X. Let (t, s) ∈ [0, 1]2 such that 0 ≤ t2 +
√

s ≤ 1, and
let x, y ∈ S(µS, t) ∩ R(γS, s). By definition:

(µS(x))2
≥ t2, (µS(y))2

≥ t2,
√
γS(x) ≤

√
s,

√
γS(y) ≤

√
s.

Suppose (x|(y|y))|(x|(y|y)) < S(µS, t) or (x|(y|y))|(x|(y|y)) < R(γS, s). Then:

µS((x|(y|y))|(x|(y|y))) < t or γS((x|(y|y))|(x|(y|y))) > s.

This implies:

(µS((x|(y|y))|(x|(y|y)))2 < t2
≤ min{(µS(x))2, (µS(y))2

},

or √
γS((x|(y|y))|(x|(y|y))) >

√
s ≥ max{

√
γS(x),

√
γS(y)},

which contradicts the definition of an SR-fuzzy subalgebra. Hence,

(x|(y|y))|(x|(y|y)) ∈ S(µS, t) ∩ R(γS, s),

proving S(µS, t) and R(γS, s) are subalgebras.
Conversely, assume S(µS, t) and R(γS, s) are subalgebras for all (t, s) ∈ [0, 1]2 with 0 ≤ t2 +

√
s ≤ 1.

Suppose for contradiction that there exist a, b ∈ X such that:

(µS((a|(b|b))|(a|(b|b))))2 < min{(µS(a))2, (µS(b))2
},

or √
γS((a|(b|b))|(a|(b|b))) > max{

√
γS(a),

√
γS(b)}.

Define t = min{(µS(a))2, (µS(b))2
} and s = max{

√
γS(a),

√
γS(b)}. Then a, b ∈ S(µS, t) ∩ R(γS, s). However,

(a|(b|b))|(a|(b|b)) < S(µS, t) ∩ R(γS, s),

contradicting the assumption that these sets are subalgebras. Thus, for all x, y ∈ X:

(µS((x|(y|y))|(x|(y|y))))2
≥ min{(µS(x))2, (µS(y))2

},√
γS((x|(y|y))|(x|(y|y))) ≤ max{

√
γS(x),

√
γS(y)},

proving S is an SR-fuzzy subalgebra of X.

Theorem 3.6. For a subset D of X, let S = (µS, γS) be an SR-fuzzy set in X, which is defined as follows:

µS(x) =
{

t i f x ∈ D,
0 otherwise, γS(x) =

{
s i f x ∈ D,
1 otherwise

where (t, s) ∈ (0, 1] × [0, 1) with 0 ≤ t2 +
√

s ≤ 1. Then S = (µS, γS) is an SR-fuzzy subalgebra of X if and only if D
is a subalgebra of X.
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Proof. Assume that S = (µS, γS) is an SR-fuzzy subalgebra of X. Then S(µS, t) and R(γS, s) are nonempty
subalgebra of X. Let x, y ∈ X be such that x ∈ D and y ∈ D. Then

µS(x) = t = µS(y)

and √
γS(x) = s =

√
γS(y),

Thus,

(µS((x|(y|y))|(x|(y|y))))2
≥ min{(µS(x))2, (µS(y))2

} = t2

and √
γS((x|(y|y))|(x|(y|y))) ≤ max{

√
γS(x),

√
γS(y)} =

√
s.

Therefore, µS((x|(y|y))|(x|(y|y))) = t and
√
γS((x|(y|y))|(x|(y|y))) = s. This shows that (x|(y|y))|(x|(y|y)) ∈ D.

Therefore, D is a subalgebra of X.
Conversely, let D be a subalgebra of X. Let x, y ∈ X. If x ∈ D and y ∈ D, then (x|(y|y))|(x|(y|y)) ∈ D. Hence

(µS((x|(y|y))|(x|(y|y))))2 = t2 = min{(µS(x))2, (µS(y))2
}

and √
γS((x|(y|y))|(x|(y|y))) =

√
s = max{

√
γS(x),

√
γS(y)}.

If x < D or y < D, then (µS(x))2 = 0 and
√
γS(x) = 1, or (µS(x))2 = 0 and

√
γS(y) = 1. Thus

(µS((x|(y|y))|(x|(y|y))))2
≥ 0 = min{(µS(x))2, (µS(y))2

}

and √
γS((x|(y|y))|(x|(y|y))) ≤ 1 = max{

√
γS(x),

√
γS(y)}.

Therefore, S = (µS, γS) is an SR-fuzzy subalgebra of X.

Theorem 3.7. Let X be a Sheffer stroke Hilbert algebra with least element 0. If SR-fuzzy set S = (µS, γS) in X is a
SR-fuzzy subalgebra of X, then (µS(0))2

≥ (µS(x))2 and
√
γS(0) ≤

√
γS(x) for all x ∈ X.

Proof. Given x ∈ X. Then we have

(µS(0))2 = (µS(1|1))2 = (µS((x|(x|x))|(x|(x|x))))2
≥ min{(µS(x))2, (µS(x))2

} = (µS(x))2,

and √
γS(0) =

√
γS(1|1) =

√
γS((x|(x|x))|(x|(x|x))) ≤ max{

√
γS(x),

√
γS(x)} =

√
γS(x),

proving the theorem.

Converse of the above theorem need to be true.

Example 3.8. Consider the Sheffer stroke Hilbert algebra in Tabel 4.
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Table 4: Sheffer stroke Hilbert algebra (X, |)
| 0 a b c d e f g
0 a 0 c b e d g f
a 0 0 0 0 0 0 0 0
b c 0 c 0 0 c c 0
c b 0 0 b e f e f
d e 0 0 e e 0 e 0
e d 0 c f 0 d c f
f g 0 c e e c g 0
g f 0 0 f 0 f 0 f

Let µS and γS be fuzzy sets in X given by the Table 5:

Table 5: fuzzy sets µS and γS of X
X 0 a b c d e f 1

µS(x) 0.7 0.6 0.5 0.4 0.6 0.2 0.3 0.7
γS(x) 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.1

Then the SR-fuzzy set S := (µS, γS) is given by the Table 6.

Table 6: SR-fuzzy set S = (µS, γS) of X
X 0 a b c d e f 1

(µS(x))2 0.49 0.36 0.25 0.16 0.36 0.04 0.09 0.49√
γS(x) 0.3162 0.5477 0.4472 0.4472 0.4472 0.4472 0.4472 0.3162

where
√
γS(x) is calculated to four decimal places. Then the SR-fuzzy set S = (µS, γS) in X satisfies

(µS(0))2
≥ (µS(x))2 and

√
γS(0) ≤

√
γS(x) for all x ∈ X.

But it is not SR-fuzzy subalgebra of X since

(µS((0|(d|d))|(0|(d|d))))2 = (µS((0|e)|(0|e)))2 = (µS(d|d))2 = (µS(e))2 = 0.04

and
min{(µS(0))2, (µS(d))2

} = min{0.49, 0.36} = 0.36

but
(µS((0|(d|d))|(0|(d|d))))2 ≱ min{(µS(0))2, (µS(d))2

}.

Theorem 3.9. Let X be a Sheffer stroke Hilbert algebra with least element 0. If a Sheffer stroke Hilbert algebra (X, |)
is linearly ordered, then every SR-fuzzy set S = (µS, γS) satisfying (µS(0))2

≥ (µS(x))2 and
√
γS(0) ≤

√
γS(x) for

all x ∈ X is an SR-fuzzy subalgebra of X.

Proof. Let S = (µS, γS) be SR-fuzzy set that satisfies (µS(0))2
≥ (µS(x))2 and

√
γS(0) ≤

√
γS(x) for all x ∈ X.

For every x, y ∈ X we have x ≤ y or y ≤ x since X is linearly ordered. If x ≤ y then x|(y|y) = 1. Hence

(µS((x|(y|y))|(x|(y|y))))2 = (µS(1|1))2 = (µS(0))2
≥ min{(µS(x))2, (µS(y))2

}

and √
γS((x|(y|y))|(x|(y|y))) =

√
γS(1|1) =

√
γS(0) ≤ max{

√
γS(x),

√
γS(y)}.

Hence S = (µS, γS) is an SR-fuzzy subalgebra of X. Similarly, we can prove the result when y ≤ x.
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Proposition 3.10. For a SR-fuzzy subalgebra of X satisfies

(∀ x, y ∈ X)
( {

(µS((x|(y|y))|(x|(y|y))))2
≥ (µS(y))2√

γS((x|(y|y))|(x|(y|y)))) ≤
√
γS(y)

} )
(2)

if and only if (µS(0))2 = (µS(x))2 and
√
γS(0) =

√
γS(x).

Proof. We have

(µS(x))2 = (µS((x|x)|(x|x)))2

= (µS((1|((x|x)|(x|x)))|(1|((x|x)|(x|x)))))2

= (µS((x|1)|(x|1)))2

= (µS((x|(0|0))|(x|(0|0))))2

≥ (µS(0))2

and √
γS(x) =

√
γS((x|x)|(x|x))

=
√
γS((1|((x|x)|(x|x)))|(1|((x|x)|(x|x))))

=
√
γS((x|1)|(x|1))

=
√
γS((x|(0|0))|(x|(0|0)))

≤
√
γS(0).

Then by Theorem 3.7, we have (µS(0))2 = (µS(x))2 and
√
γS(0) =

√
γS(x). The converse is clear.

4. SR-fuzzy ideals of Sheffer stroke Hilbert algebras

In this section, we introduce the concept of SR-fuzzy ideals in the context of Sheffer stroke Hilbert
algebras. Through out this section, X means Sheffer stroke Hilbert algebra with the least element 0.

Definition 4.1. An SR-fuzzy set S = (µS, γS) in X is called SR-fuzzy ideal of X if it satisfies: for all x, y ∈ X

(µS(0))2
≥ (µS(x))2

≥ min{(µS((x|(y|y))|(x|(y|y))))2, (µS(y))2
}√

γS(0) ≤
√
γS(x) ≤ max{

√
γS((x|(y|y))|(x|(y|y)))),

√
γS(y)}

(3)

Example 4.2. Consider the Sheffer stroke Hilbert algebra in Table 7.

Table 7: Sheffer stroke Hilbert algebra (X, |)
| 0 1 a b c d e f
0 1 1 1 1 1 1 1 1
1 1 0 b a d c f e
a 1 b b 1 1 b b 1
b 1 a 1 a d e d e
c 1 d 1 d d 1 d 1
d 1 c b e 1 c b e
e 1 f b d d b f 1
f 1 e 1 e 1 e 1 e

Let µS and γS be fuzzy sets in X given by the Table 8:

Table 8: fuzzy sets µS and γS of X
X 0 1 a b c d e f
µS(x) 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7
γS(x) 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05
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Then the SR-fuzzy set S := (µS, γS) is given by the Table 9.

Table 9: SR-fuzzy set S = (µS, γS) of X
X a b c d e f 1 h

(µS(x))2 0.49 0.36 0.36 0.36 0.36 0.36 0.36 0.49√
γS(x) 0.2236 0.3162 0.3162 0.3162 0.3162 0.3162 0.3162 0.2236

where
√
γS(x) is calculated to four decimal places. Then SR-fuzzy set S = (µS, γS) is a SR-fuzzy ideal of X.

Lemma 4.3. If S = (µS, γS) is a SR-fuzzy ideal of X, then

(∀ x, y ∈ X)
(

x ≤ y ⇒
{

(µS(x))2
≥ (µS(y))2√

γS(x) ≤
√
γS(y)

)
. (4)

Proof. Let S = (µS, γS) be a SR-fuzzy ideal of X and x ≤ y. Then by Theorem 3.7, we have

(µS(x))2
≥ min{(µS((x|(y|y))|(x|(y|y))))2, (µS(y))2

} = min{(µS(0))2, (µS(y))2
} = (µS(y))2

and √
γS(x) ≤ max{

√
γS((x|(y|y))|(x|(y|y))),

√
γS(y)} = max{

√
γS(0),

√
γS(y)} =

√
γS(y)

for all x, y ∈ X.

Theorem 4.4. Let S = (µS, γS) be a SR-fuzzy set of X. Then S = (µS, γS) is a SR-fuzzy ideal of X if and only if, for
all x, y, z ∈ X

(x|(y|y))|(x|(y|y)) ≤ z implies
{

(µS(x))2
≥ min{(µS(y))2, (µS(z))2

}√
γS(x) ≤ max{

√
γS(y),

√
γS(z)}

(5)

Proof. Let S = (µS, γS) be a SR-fuzzy ideal of X and (x|(y|y))|(x|(y|y)) ≤ z. Then

(((x|(y|y))|(x|(y|y)))|(z|z))|(((x|(y|y))|(x|(y|y)))|(z|z)) = 1|1 = 0.

But

(µS((x|(y|y))|(x|(y|y))))2
≥ min{(µS(((((x|(y|y))|(x|(y|y)))|(z|z))|(((x|(y|y))|(x|(y|y)))|(z|z))))2, (µS(z))2

}

= min{(µS(0))2, (µS(z))2
}

= (µS(z))2,

and √
γS((x|(y|y))|(x|(y|y)))) ≤ max{

√
γS(((((x|(y|y))|(x|(y|y)))|(z|z))|(((x|(y|y))|(x|(y|y)))|(z|z))),

√
γS(z)}

= max{
√
γS(0),

√
γS(z)}

=
√
γS(z).

Hence
(µS(x))2

≥ min{(µS((x|(y|y))|(x|(y|y))))2, (µS(y))2
} ≥ min{(µS(y))2, (µS(z))2

}

and √
γS(x) ≤

√
γS(x) ≤ max{

√
γS((x|(y|y))|(x|(y|y)))),

√
γS(y)} ≤ max{

√
γS(y),

√
γS(z)}.

Conversely, let S = (µS, γS) be a SR-fuzzy set of X satisfies the condition (5).
Since (0|(x|x))|(0|(x|x)) = ((x|x)|(1|1))|((x|x)|(1|1)) = 1|1 = 0 ≤ z,

(µS(0))2
≥ (µS(x))2 and

√
γS(0) ≤

√
γS(x); for all x ∈ H.

Since ((x|(x|(y|y)))|(x|(x|(y|y))))|(y|y) = (x|(y|y))|((x|(y|y))|(x|(y|y))) = 1, (x|(x|(y|y)))|(x|(x|(y|y))) ≤ y. Since

(x|(((x|(y|y))|(x|(y|y)))|((x|(y|y))|(x|(y|y)))))|(x|(((x|(y|y))|(x|(y|y)))|((x|(y|y))|(x|(y|y))))) = (x|(x|(y|y)))|(x|(x|(y|y)))
≤ y,

(µS(x)2
≥ min{(µS((x|(y|y))|(x|(y|y))))2, (µS(y))2

} and
√
γS(x) ≥ min{

√
γS((x|(y|y))|(x|(y|y)))),

√
γS(y))} for all

x, y, z ∈ X. Thus, S = (µS, γS) is a SR-fuzzy ideal of X.
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The following theorem can be proved similarly to Theorem 3.5.

Theorem 4.5. An SR-fuzzy set S = (µS, γS) in X is an SR-fuzzy ideal of X if and only if the nonempty sets S(µS, t)
and R(γS, s) are ideals of X for all (t, s) ∈ [0, 1]2 be such that 0 ≤ t2 +

√
s ≤ 1.

The following theorem can be proved similarly to Theorem 3.6.

Theorem 4.6. For a subset D of X, let S = (µS, γS) be an SR-fuzzy set in X, which is defined as follows:

µS(x) =
{

t i f x ∈ D,
0 otherwise, γS(x) =

{
s i f x ∈ D,
1 otherwise

where (t, s) ∈ (0, 1] × [0, 1) with 0 ≤ t2 +
√

s ≤ 1. Then S = (µS, γS) is an SR-fuzzy ideal of X if and only if D is an
ideal of X.

Theorem 4.7. Every SR-fuzzy ideal of a X is a SR-fuzzy subalgebra of X.

Proof. Let S = (µS, γS) be a SR-fuzzy ideal of X. Then

(µS((x|(y|y))|(x|(y|y))))2
≥ min{(µS((((x|(y|y))|(x|(y|y)))|(x|x))|(((x|(y|y))|(x|(y|y)))|(x|x))))2, (µS(x))2

}

= min{(µS(((y|y)|((x|(x|x))|(x|(x|x))))|((y|y)|((x|(x|x))|(x|(x|x))))))2, (µS(x))2
}

= min{(µS(((y|y)|(1|1))|((y|y)|(1|1)))2, (µS(x))2
}

= min{(µS(1|1))2, (µS(x))2
}

= min{(µS(0))2, (µS(x))2
}

= (µS(x))2

≥ min{(µS(x))2, (µS(y))2
}

and √
γS((x|(y|y))|(x|(y|y))) ≤ max{

√
γS((((x|(y|y))|(x|(y|y)))|(x|x))|(((x|(y|y))|(x|(y|y)))|(x|x))),

√
γS(x)}

= max{
√
γS(((y|y)|((x|(x|x))|(x|(x|x))))|((y|y)|((x|(x|x))|(x|(x|x))))),

√
γS(x)}

= max{
√
γS(((y|y)|(1|1))|((y|y)|(1|1))),

√
γS(x)}

= max{
√
γS(1|1),

√
γS(x)}

= max{
√
γS(0),

√
γS(x)}

=
√
γS(x)

≤ max{
√
γS(x),

√
γS(y)}.

Hence S = (µS, γS) is a SR-fuzzy ideal of X.

Definition 4.8. We define the following subsets of X,

µx = {x ∈ X : (µS(x))2
≥ (µS(xt))2

},

and

γx = {x ∈ X :
√
γS(x) ≤

√
γS(xt)},

for all x, xt ∈ X.

Theorem 4.9. If S = (µS, γS) is a SR-fuzzy ideal of X, then µx and γx are ideals of X, where x ∈ X.

Proof. Let S = (µS, γS) be a SR-fuzzy ideal of X. Let y2 ∈ µx and y3 ∈ γx. Then

(µS(y2))2
≥ (µS(xt))2 and

√
γS(y3) ≤

√
γS(xt).
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This shows that
(µS((y2|(x2|x2))|(y2|(x2|x2))))2

≥ (µS(y2))2
≥ (µS(xt))2

and √
γS((y3|(x3|x3))|(y3|(x3|x3))) ≤

√
γS(y3) ≤

√
γS(xt).

Therefore, (y2|(x2|x2))|(y2|(x2|x2)) ∈ µx and (y3|(x3|x3))|(y3|(x3|x3)) ∈ γx.
Let x2, (y2|(x2|x2))|(y2|(x2|x2)) ∈ µx and x3, (y3|(x3|x3))|(y3|(x3|x3)) ∈ γx. Then

(µS(x2))2
≥ (µS(xt))2, (µS((y2|(x2|x2))|(y2|(x2|x2))))2

≥ (µS(xt))2

and √
γS(x3) ≤

√
γS(xt),

√
γS((y3|(x3|x3))|(y3|(x3|x3))) ≤

√
γS(xt).

It follows that
(µS(y2))2

≥ min{(µS(x2))2, (µS((y2|(x2|x2))|(y2|(x2|x2))))2
} ≥ (µS(xt))2

and √
γS(y3) ≤ max{

√
γS(x3),

√
γS((y3|(x3|x3))|(y3|(x3|x3)))} ≤

√
γS(xt).

Hence y2 ∈ µS(xt) and y3 ∈ γS(xt). Therefore, µx and γx are ideals of X.

Theorem 4.10. If S = (µS, γS) is a SR-fuzzy subalgebra of X, then µx and γx are subalgebras of X, where a, xt ∈ X.

Proof. Let S = (µS, γS) be a SR-fuzzy subalgebra of X. Let x2, y2 ∈ µx and x3, y3 ∈ γx. Then µS(x2) ≥ µS(xt),
(µS(y2))2

≥ (µS(xt))2 and√
γS(x3) ≤

√
γS(xt),

√
γS(y3) ≤

√
γS(xt). Then

(µS(x2|(y2|y2))|(x2|(y2|y2))))2
≥ min{(µS(x2))2, (µS(y2))2

} ≥ (µS(xt))2

and √
γS(x3|(y3|y3))|(x3|(y3|y3))) ≤ max{

√
γS(x3),

√
γS(y3)} ≤

√
γS(xt).

Hence (x2|(y2|y2))|(x2|(y2|y2)) ∈ µx and (x3|(y3|y3))|(x3|(y3|y3)) ∈ γx. Thus, µx and γx are subalgebras of X.

5. SR-fuzzy filters of Sheffer stroke Hilbert algebras

In this section, we introduce the concept of SR-fuzzy filters in the context of Sheffer stroke Hilbert
algebras.

Definition 5.1. An SR-fuzzy set S = (µS, γS) in X is called SR-fuzzy deductive system of X if it satisfies

(∀x ∈ X)
(

(µS(1))2
≥ (µS(x))2,

√
γS(1) ≤

√
γS(x)

)
, (6)

(∀x, y ∈ X)
(

(µS(y))2
≥ min{(µS(x))2, (µS(x|(y|y))))2

}√
γS(y) ≤ max{

√
γS(x),

√
γS(x|(y|y)))}

)
. (7)

Definition 5.2. An SR-fuzzy set S = (µS, γS) in X is called SR-fuzzy filter of X if it satisfies (6) and

(∀x ∈ X)
(

(µS(x|(y|y))))2
≥ (µS(y))2,

√
γS(x|(y|y))) ≤

√
γS(y)

)
, (8)

(∀x, y ∈ X)
(

(µS(((x|(y|z))|(y|z)))2
≥ min{(µS(y))2, (µS(z))2

}√
γS(((x|(y|z))|(y|z))) ≤ max{

√
γS(y),

√
γS(z)}

)
. (9)
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Example 5.3. Consider the Sheffer stroke Hilbert algebra in Table 10.

Table 10: Sheffer stroke Hilbert algebra (X, |)
| 0 1 a b c d e f
0 1 1 1 1 1 1 1 1
1 1 0 b a d c f e
a 1 b b 1 d e d e
b 1 a 1 a 1 a a 1
c 1 d d 1 d 1 d 1
d 1 c e a 1 c a e
e 1 f d a d a f 1
f 1 e e 1 1 e 1 e

Let µS and γS be fuzzy sets in X given by the Table 11:

Table 11: fuzzy sets µS and γS of X
X 0 1 a b c d e f
µS(x) 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.6
γS(x) 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.06

Then the SR-fuzzy set S := (µS, γS) is given by the Table 12.

Table 12: SR-fuzzy set S = (µS, γS) of X
X a b c d e f 1 h

(µS(x))2 0.36 0.49 0.49 0.36 0.36 0.36 0.36 0.36√
γS(x) 0.2449 0.2236 0.2236 0.2449 0.2449 0.2449 0.2449 0.2449

where
√
γS(x) is calculated to four decimal places. Then the SR-fuzzy set S satisfies the conditions of Definition

5.2, making it an SR-fuzzy filter of X.

Theorem 5.4. Given a SR-fuzzy set S = (µS, γS) in X, the following are equivalent to each other.
1. S = (µS, γS) is a SR-fuzzy deductive system of X.
2. S = (µS, γS) is a SR-fuzzy filter of X.

Proof. Assume that S = (µS, γS) is a SR-fuzzy deductive system of X and let x, y, z ∈ X. Note that
y|((x|(y|y))|(x|(y|y))) = 1. Then√

γS(x|(y|y)) ≤ max{
√
γS(y),

√
γS(y|((x|(y|y))|(x|(y|y))))}

= max{
√
γS(y),

√
γS(1)}

=
√
γS(y)

and

(µS(x|(y|y)))2
≥ min{(µS(y))2, (µS(y|((x|(y|y))|(x|(y|y)))))2

}

= min{(µS(y))2, (µS(1))2
}

= (µS(y))2.

Note that

y|(((y|z)|z)|((y|z)|z)) = y|(((y|z)|((z|z)|(z|z)))|((y|z)|((z|z)|(z|z))))
= (y|z)|((y|((z|z)|(z|z)))|(y|((z|z)|(z|z))))
= (y|z)|((y|z)|(y|z))
= 1.
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It follows that√
γS((y|z)|z) ≤ max{

√
γS(y),

√
γS(y|(((y|z)|z)|((y|z)|z)))}

= max{
√
γS(y),

√
γS(1)}

=
√
γS(y)

and

(µS((y|z)|z))2
≥ min{(µS(y))2, (µS(y|(((y|z)|z)|((y|z)|z))))2

}

= min{(µS(y))2, (µS(1))2
}

= (µS(y))2.

Since z|(((y|z)|(y|z))|((y|z)|(y|z))) = z|(y|z) = (y|z)|z, we obtain√
γS((y|z)|(y|z)) ≤ max{

√
γS(z),

√
γS(z|(((y|z)|(y|z))|((y|z)|(y|z))))}

= max{
√
γS(z),

√
γS((y|z)|z)}

≤ max{
√
γS(z),

√
γS(y)}

and

(µS((y|z)|(y|z)))2
≥ min{(µS(z))2, (µS(z|(((y|z)|(y|z))|((y|z)|(y|z)))))2

}

= min{(µS(z))2, (µS((y|z)|z))2
}

≥ min{(µS(z))2, (µS(y))2
}.

Hence√
γS((x|(y|z))|(y|z))

=
√
γS((x|(((y|z)|(y|z))|((y|z)|(y|z))))|(((y|z)|(y|z))|((y|z)|(y|z))))

≤
√
γS((y|z)|(y|z))

≤ max{
√
γS(z),

√
γS(y)}

and
(µS((x|(y|z))|(y|z)))2

= (µS((x|(((y|z)|(y|z))|((y|z)|(y|z))))|(((y|z)|(y|z))|((y|z)|(y|z)))))2

≥ (µS((y|z)|(y|z)))2

≥ min{(µS(z))2, (µS(y))2
}.

Therefore, S = (µS, γS) is a SR-fuzzy filter of X.
Conversely, assume that S = (µS, γS) is a SR-fuzzy filter of X and let x, y, z ∈ X. If we replace y, z and x

with x, x|(y|y) and y, respectively, in (9), then√
γS(y) =

√
γS(((x|x)|(1|1))|(y|y))

=
√
γS(((x|x)|((y|(y|y))|(y|(y|y))))|(y|y))

=
√
γS(((((x|x)|y)|((x|x)|y))|(y|y))|(y|y))

=
√
γS((y|((x|x)|y))|((x|x)|y))

=
√
γS(((((x|x)|y)|y)|y)|(((x|x)|y)|y))

=
√
γS((y|(x|(x|(y|y))))|(x|(x|(y|y))))

≤ max{
√
γS(x),

√
γS(x|(y|y))}
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and

(µS(y))2 = (µS(((x|x)|(1|1))|(y|y)))2

= (µS(((x|x)|((y|(y|y))|(y|(y|y))))|(y|y)))2

= (µS(((((x|x)|y)|((x|x)|y))|(y|y))|(y|y)))2

= (µS((y|((x|x)|y))|((x|x)|y)))2

= (µS(((((x|x)|y)|y)|y)|(((x|x)|y)|y)))2

= (µS((y|(x|(x|(y|y))))|(x|(x|(y|y)))))2

≥ min{(µS(x))2, (µS(x|(y|y)))2
}
′

Consequently, S = (µS, γS) is a SR-fuzzy deductive system of X.

Proposition 5.5. Every SR-fuzzy filter S = (µS, γS) of X satisfies

(∀x, y ∈ X)
( √
γS((x|(y|y))|(y|y)) ≤

√
γS(x)

(µS((x|(y|y))|(y|y)))2
≥ (µS(x))2

)
, (10)

and

(∀ x, y ∈ X)
(

x ≤ y ⇒
{

(µS(y))2
≥ (µS(x))2√

γS(y) ≤
√
γS(x)

)
. (11)

Proof. Let S = (µS, γS) be a SR-fuzzy filter of X. Then√
γS((x|(y|y))|(y|y)) =

√
γS((y|(x|x))|(x|x))

≥ max{
√
γS(x),

√
γS(x)}

=
√
γS(x),

and

(µS((x|(y|y))|(y|y)))2 = (µS((y|(x|x))|(x|x)))2

≤ min{(µS(x))2, (µS(x))2
}

= (µS(x))2

for all x, y ∈ X. Therefore, (10) is valid. Let x, y ∈ X be such that x ≤ y. Then x|(y|y) = 1, and so√
γS(y) =

√
γS(1|(y|y))

=
√
γS((x|(y|y))|(y|y))

≤
√
γS(x)

and

(µS(y))2 = (µS(1|(y|y)))2

= (µS((x|(y|y))|(y|y)))2

≥ (µS(x))2,

proving the proposition.

Theorem 5.6. A SR-fuzzy set S = (µS, γS) in L is a SR-fuzzy filter of X if and only if it satisfies the condition (11)
and

(∀x, y ∈ X)
( √
γS((x|y)|(x|y)) ≤ max{

√
γS(x),

√
γS(x)}

(µS((x|y)|(x|y))2
≥ min{(µS(x))2, (µS(y))2

}

)
. (12)
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Proof. Let S = (µS, γS) be a SR-fuzzy filter of X. Then the condition (11) is valid. Then√
γS((x|y)|(x|y)) =

√
γS(((1|1)|(x|y))|(x|y))

≤ max{
√
γS(x),

√
γS(y)}

and (µS((x|y)|(x|y)))2 = (µS(((1|1)|(x|y))|(x|y)))2
≥ min{(µS(x))2, (µS(y))2

} for all x, y ∈ X.
Conversely, assume that S = (µS, γS) satisfies (11) and (12). Since x ≤ 1 and y ≤ x|(y|y) for all x, y ∈ X,√
γS(1) ≤

√
γS(x), (µS(1))2

≤ (µS(x))2,
√
γS(x|(y|y)) ≤

√
γS(y), and (µS(x|(y|y)))2

≤ (µS(y))2. So we have√
γS((x|(y|z))|(y|z)) ≤

√
γS((y|z)|(y|z)) ≤ max{

√
γS(y),

√
γS(z)}. and (µS((x|(y|z))|(y|z)))2

≤ (µS((y|z)|(y|z)))2
≤

min{(µS(y))2, (µS(z))2
} for all x, y ∈ X. Therefore, S = (µS, γS) is a SR-fuzzy filter of X.

6. Conclusion and future work

We introduced a novel extension of fuzzy structures, namely SR-fuzzy subalgebra, SR-fuzzy ideal, and
SR-fuzzy filter, within the framework of Sheffer stroke Hilbert algebras. By leveraging the concept of
SR-fuzzy sets, we generalized existing fuzzy structures and provided illustrative examples to demonstrate
the applicability and relevance of these definitions. Our work builds on the foundational studies of
Sheffer stroke operations, Hilbert algebras, and various extensions of fuzzy set theory, contributing to
the ongoing exploration of algebraic structures and their applications in diverse fields such as computer
science, information sciences, and decision-making. The proposed SR-fuzzy structures not only extend the
existing theory but also provide a new perspective for analyzing fuzzy subsystems in algebraic systems. By
pursuing the following directions, the proposed SR-fuzzy structures can be further developed and applied
to a wide range of mathematical and practical problems, contributing to the advancement of both theoretical
and applied research in fuzzy algebra and related fields.

• The concepts of SR-fuzzy subalgebra, SR-fuzzy ideal, and SR-fuzzy filter can be extended to other
algebraic structures, such as BCK/BCI-algebras, BE/CI-algebras, MV-algebras, and residuated lattices,
etc., to explore their properties and applications.

• The SR-fuzzy sets and their associated structures can be applied to real-world problems in decision-
making, control engineering, and information sciences, leveraging their ability to handle uncertainty
and imprecision.

• A detailed comparison of SR-fuzzy structures with other fuzzy extensions, such as intuitionistic
fuzzy sets, bipolar-valued fuzzy sets, and m-polar fuzzy sets, can provide deeper insights into their
advantages and limitations.

• Future research can focus on developing computational algorithms and score functions for ranking
SR-fuzzy sets, enabling their practical implementation in decision-making processes.

• Further investigation into the properties of SR-fuzzy subalgebras, ideals, and filters, such as homo-
morphisms, congruences, and quotient structures, can enrich the theoretical framework and enhance
its applicability.

• Combining SR-fuzzy sets with other fuzzy extensions or hybrid models (e.g., neutrosophic sets or soft
sets) may lead to the development of more robust and versatile tools for handling complex real-life
problems.
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