

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear *-Lie n-type derivations on *-algebras

Nadeem ur Rehmana, Shaheen Khana, Junaid Nisarb

^aDepartment of Mathematics, Aligarh Muslim University, Aligarh-202002 India ^bDepartment of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Lavale, Pune, India

Abstract. Let \mathcal{M} be an *-algebra containing a non-trivial projection with unit I. In this paper, we study the characterization of nonlinear *-Lie type derivations on *-algebras. For any $S, T \in \mathcal{M}$, a product $[S, T]_* = ST - T^*S$ is called *-Lie product. In this article it is shown that, if a map $\Theta : \mathcal{M} \longrightarrow \mathcal{M}$ (not necessarily linear) satisfies $\Theta(q_n(S_1, S_2, \ldots, S_n)) = \sum_{i=1}^2 q_n(S_1, \ldots, S_{i-1}, \Theta(S_i), S_{i+1}, \ldots, S_n)$ ($n \ge 3$) for all $S_1, S_2, \ldots, S_n \in \mathcal{M}$, then Θ is additive. Moreover, if $\Theta(iI)$ is self- adjoint, then Θ is an additive *-derivation. As an application, we can also apply our result on von Neumann algebras, standard operator algebras and prime *-algebras.

1. Introduction

Let \mathcal{M} ba an *-algebra over the field \mathbb{C} . The expressions [S,T]=ST-TS and $[S,T]_*=ST-T^*S$ for any $S,T\in\mathcal{M}$, represent the Lie product and the Lie *-product. The study of these products has gained significant attention in various research areas, as highlighted in the works of numerous authors, including [1,4,5,14,18,21].

Let \mathcal{M} be an additive mapping. Then $\Theta: \mathcal{M} \to \mathcal{M}$ is said to be additive derivation if $\Theta(ST) = \Theta(S)T + S\Theta(T)$ for every pair of elements $S, T \in \mathcal{M}$. Furthermore, if Θ also fulfills the condition $\Theta(S^*) = \Theta(S)^*$ for every $S \in \mathcal{M}$, we call Θ is an additive *-derivation. In other way, let $\Theta: \mathcal{M} \to \mathcal{M}$ be a non additive mapping, then we call Θ , nonlinear Lie derivation or *-Lie derivation if it satisfies the condition

$$\Theta([S,T]) = [\Theta(S),T] + [S,\Theta(T)]$$

or

$$\Theta([S,T]_*) = [\Theta(S),T]_* + [S,\Theta(T)]_*$$

for all $S, T \in \mathcal{M}$. This concept of a nonlinear Lie derivation or Lie *-derivation can be extended naturally. Specifically, Θ is called a nonlinear Lie triple derivation or nonlinear *-Lie triple derivation if it meets the condition

$$\Theta([[S, T], U]) = [[\Theta(S), T], U] + [[S, \Theta(T)], U] + [[S, T], \Theta(U)]$$

2020 Mathematics Subject Classification. Primary 47B47; Secondary 16W25, 46K15.

Keywords. *-derivation, *-Lie n-derivation, *-algebra.

Received: 05 November 2024; Revised: 05 March 2025; Accepted: 06 March 2025

Communicated by Dijana Mosić

Email addresses: nu.rehman.mm@amu.ac.in (Nadeem ur Rehman), shaheenkalg3@gmail.com (Shaheen Khan), junaid.nisar@sitpune.edu.in (Junaid Nisar)

ORCID iDs: https://orcid.org/0000-0003-3955-7941 (Nadeem ur Rehman), https://orcid.org/0009-0007-0208-9976 (Shaheen Khan), https://orcid.org/0000-0002-1825-0097 (Junaid Nisar)

^{*} Corresponding author: Shaheen Khan

or

$$\Theta([[S,T]_*,U]_*) = [[\Theta(S),T]_*,U]_* + [[S,\Theta(T)]_*,U]_* + [[S,T]_*,\Theta(U)]_*$$

for all $S, T, U \in \mathcal{M}$. Based on the definition of *-Lie derivation, Jing [16] gave the complete characterization of nonlinear *-Lie derivation on standard operator algebra and proved that every nonlinear *-Lie derivation is linear and inner *-derivation. To continue the study of characterization of the Lie derivation to Lie-triple derivation. Li et al. [20] studied nonlinear skew Lie triple derivation on factor von Neumann algebra and proved that every nonlinear skew Lie triple derivation on factors is an additive *-derivation. Similarly, Kong et al. [17] concentrated on characterizing a kind of non-global nonlinear skew Lie triple derivations Θ on factor von Neumann algebras satisfying

$$\Theta([[S,T]_*,U]_*) = [[\Theta(S),T]_*,U]_* + [[S,\Theta(T)]_*,U]_* + [[S,T]_*,\Theta(U)]_*$$

for all $S, T, U \in \mathcal{M}$ with $S^*T^*U = 0$.

In recent years, several researchers have explored Lie n-derivations across various types of algebras (see [22], [23] and related references). In [19], the authors proved that a map Θ between two-factor von Neumann algebras is a *-ring isomorphism if and only if $\Theta([a,b]_*) = [\Theta(a),\Theta(b)_*]$, where $[a,b]_* = ab-ba^*$. In [7], Ferreira and Costa extended these new products and defined two other types of applications, named multiplicative *-Jordan n-map and multiplicative *-Lie n-map and used it to impose conditions such that a map between C^* -algebras is a *-ring isomorphism. Further, Andrade et al. [3] study the characterization of multiplicative *-Lie-type maps and as application, they obtained the result on alternative W^* -algebras. In [2], the authors provide the characterization of multiplicative *-Jordan-type maps on alternative algebras.

Many authors have studied Lie- type derivations in structure like *-algebras, matrix rings, and even more general structures like alternative algebras see[15]-[9]. Building on the concepts of Lie derivation and Lie triple derivation, we were inspired to explore similar questions in the context of nonlinear *-Lie-type derivations on *-algebras. For a fixed positive integer n, where $n \ge 2$, we define polynomials sequence as

$$q_{1}(S_{1}) = S_{1},$$

$$q_{2}(S_{1}, S_{2}) = [q_{1}(S_{1}), S_{2}]_{*} = [S_{1}, S_{2}]_{*},$$

$$q_{3}(S_{1}, S_{2}, S_{3}) = [q_{2}(S_{1}, S_{2}), S_{3}]_{*} = [[S_{1}, S_{2}]_{*}, S_{3}]_{*},$$

$$\dots$$

$$q_{n}(S_{1}, S_{2}, \dots, S_{n}) = [q_{n-1}(S_{1}, S_{2}, \dots, S_{n-1}), S_{n}]_{*}.$$

The polynomial $q_n(S_1, S_2, ..., S_n)$ is known as $(n-1)^{th}$ commutator.

The definition of nonlinear *-Lie type derivations is first presented. A map $\Theta: \mathcal{S} \to \mathcal{S}$ that is additive is known as Lie *n*-derivation or n-type derivation, if the following is satisfied:

$$\Theta(q_n(S_1, S_2, ..., S_n)) = \sum_{i=1}^n q_n(S_1, ..., S_{i-1}, \Theta(S_i), S_{i+1}, ..., S_n)$$

for all $S_1, S_2, ..., S_n \in S$. More generally, removing the additivity of Θ , we get Θ is a nonlinear *-Lie nderivation. It is evident that all derivations are Lie derivations, and every Lie derivation is, in turn, a Lie triple derivation.

2. Main Result

Now take a projection $\mathcal{P}_1 \in \mathcal{M}$ and let $\mathcal{P}_2 = I - \mathcal{P}_1$. We write $\mathcal{M}_{jk} = \mathcal{P}_j \mathcal{M} \mathcal{P}_k$ for j, k = 1, 2. Then by the Peirce decomposition of \mathcal{M} , we have $\mathcal{M} = \mathcal{M}_{11} \oplus \mathcal{M}_{12} \oplus \mathcal{M}_{21} \oplus \mathcal{M}_{22}$. Note that any operator $S \in \mathcal{M}$ can be expressed as $S = S_{11} + S_{12} + S_{21} + S_{22}$ and $S_{jk}^* \in \mathcal{M}_{kj}$ for any $S_{jk} \in \mathcal{M}_{jk}$.

Theorem 2.1. Let \mathcal{M} be a *-algebra having unit I that contains a nontrivial projection \mathcal{P} such that:

$$X\mathcal{MP} = 0 \implies X = 0$$
 (∇)

$$X\mathcal{M}(I-\mathcal{P})=0 \implies X=0.$$
 (\triangle)

If $\Theta: \mathcal{M} \to \mathcal{M}$ *satisfies*

$$\Theta(q_n(S_1, S_2, ..., S_n)) = \sum_{i=1}^n q_n(S_1, ..., S_{i-1}, \Theta(S_i), S_{i+1}, ..., S_n)$$

for all $S_1, S_2, \ldots, S_n \in \mathcal{S}$, then Θ is additive. Moreover, if $\Theta(iI)$ is self- adjoint, then Θ is an additive *-derivation.

The proof is organized in a series of lemmas. Since the sequence q_n is defined as:

$$q_n(S_1, S_2, S_3, ..., S_n) := [[...[[S_1, S_2]_*, S_3]_*, ..., S_{n-1}]_*, S_n]_*.$$

Lemma 2.2. For any, $S \in \mathcal{M}$ and for any integer $n \ge 2$, we have

$$q_n(S, \mathcal{P}_1, \dots, \mathcal{P}_1) = \mathcal{P}_2 S \mathcal{P}_1 + (-1)^{n-1} \mathcal{P}_1 S \mathcal{P}_2.$$
 (1)

$$q_n(S, \mathcal{P}_2, \dots, \mathcal{P}_2) = \mathcal{P}_1 S \mathcal{P}_2 + (-1)^{n-1} \mathcal{P}_2 S \mathcal{P}_1. \tag{2}$$

Lemma 2.3. $\Theta(0) = 0$.

Proof. It is trivial to prove that

$$\Theta(0) = \Theta(q_n(0,0,\ldots,0))$$

$$= q_n(\Theta(0),0,\ldots,0) + q_n(0,\Theta(0),\ldots,0) + \ldots + q_n(0,0,\ldots,\Theta(0))$$

$$= 0.$$

Lemma 2.4. For any $S_{11} \in \mathcal{M}_{11}$, $S_{12} \in \mathcal{M}_{12}$, $S_{21} \in \mathcal{M}_{21}$, $S_{22} \in \mathcal{M}_{22}$, we have

$$\Theta(S_{11} + S_{12}) = \Theta(S_{11}) + \Theta(S_{12})$$

 $\Theta(S_{21} + S_{22}) = \Theta(S_{21}) + \Theta(S_{22}).$

Proof. For any $S_{11} \in \mathcal{M}_{11}, S_{12} \in \mathcal{M}_{12}$, Let $M = \Theta(S_{11} + S_{12}) - (\Theta(S_{11}) + \Theta(S_{12}))$. We have

$$\Theta(q_n(S_{11} + S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(S_{11} + S_{12}), \mathcal{P}_2, \dots, \mathcal{P}_2) + q_n(S_{11} + S_{12}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(S_{11} + S_{12}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

Now, it is easy to see that $q_n(S_{11}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$ and using Lemma 2.3, we have

$$\Theta(q_{n}(S_{11} + S_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= \Theta(q_{n}(S_{11}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})) + \Theta(q_{n}(S_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= q_{n}(\Theta(S_{11}) + \Theta(S_{12}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2}) + q_{n}(S_{11} + S_{12}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})
+ \dots + q_{n}(S_{11} + S_{12}, \mathcal{P}_{2}, \dots, \Theta(\mathcal{P}_{2})).$$

Above two relations implies that $q_n(M, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, using Lemma 2.2, we have $\mathcal{P}_1 M \mathcal{P}_2 + (-1)^{n-1} \mathcal{P}_2 M \mathcal{P}_1 = 0$. By multiplying \mathcal{P}_1 on both sides, we get $\mathcal{P}_1 M \mathcal{P}_2 = 0$. Hence, it follows from (∇) and (Δ) , we obtain $M_{12} = 0$.

Similarly, by multiplying \mathcal{P}_2 on both sides and using (∇) and (Δ) , we get $M_{21}=0$. Now, it is observe that $q_n(S_{11},X_{21},\mathcal{P}_2,\ldots,\mathcal{P}_2)=0$. Using Lemma 2.3, we have

$$\Theta(q_n(S_{11} + S_{12}, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)) = q_n(\Theta(S_{11} + S_{12}), X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{11} + S_{12}, \Theta(X_{21}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{11} + S_{12}, X_{21}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(S_{11} + S_{12}, X_{21}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

Whereas,

$$\Theta(q_{n}(S_{11} + S_{12}, X_{21}, \mathcal{P}_{2}, \dots \mathcal{P}_{2}))
= \Theta(q_{n}(S_{11}, X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})) + \Theta(q_{n}(S_{12}, X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= q_{n}(\Theta(S_{11}) + \Theta(S_{12}), X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(S_{11} + S_{12}, \Theta(X_{21}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(S_{11} + S_{12}, X_{21}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})
+ \dots + q_{n}(S_{11} + S_{12}, X_{21}, \mathcal{P}_{2}, \dots, \Theta(\mathcal{P}_{2})).$$

It follows from above two expressions that $q_n(M, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now using Lemma 2.2, (∇) and (\triangle) implies that $M_{22} = 0$.

Again, we have $q_n(X_{12}, S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Using Lemma 2.3, we have

$$\Theta(q_n(X_{12}, S_{11} + S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(X_{12}), S_{11} + S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) + q_n(X_{12}, \Theta(S_{11} + S_{12}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(X_{12}, S_{11} + S_{12}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2) + \dots + q_n(X_{12}, S_{11} + S_{12}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

On the other hand, we get

$$\Theta(q_n(X_{12}, S_{11} + S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= \Theta(q_n(X_{12}, S_{11}, \mathcal{P}_2, \dots, \mathcal{P}_2)) + \Theta(q_n(X_{12}, S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(X_{12}), S_{11} + S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) + q_n(X_{12}, \Theta(S_{11}) + \Theta(S_{12}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+q_n(X_{12}, S_{11} + S_{12}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2) + \dots + q_n(X_{12}, S_{11} + S_{12}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

Which will give us $q_n(X_{12}, M, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, using Lemma 2.3, (∇) and (\triangle), we obtain $X_{12}M\mathcal{P}_2 - \mathcal{P}_1M^*X_{12} = 0$. Since $M_{22} = 0$. Therefore, we get $M_{11} = 0$. Hence, we have M = 0, i.e.,

$$\Theta(S_{11} + S_{12}) = \Theta(S_{11}) + \Theta(S_{12}).$$

The other case can be prove analogously. This concludes the proof. \Box

Lemma 2.5. For any $S_{11} \in \mathcal{M}_{11}$, $S_{12} \in \mathcal{M}_{12}$, $S_{21} \in \mathcal{M}_{21}$, $S_{22} \in \mathcal{M}_{22}$, We have

$$\Theta(S_{11} + S_{12} + S_{21} + S_{22}) = \Theta(S_{11}) + \Theta(S_{12}) + \Theta(S_{21}) + \Theta(S_{22})$$

Proof. Let $M = \Theta(S_{11} + S_{12} + S_{21} + S_{22}) - \Theta(S_{11}) - \Theta(S_{12}) - \Theta(S_{21}) - \Theta(S_{22})$. Now, it is easily seen that $q_n(S_{11}, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2) = q_n(S_{12}, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Using Lemma 2.2 and Lemma 2.4, we obtain

$$\Theta(q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= \Theta(q_{n}(S_{11}, X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})) + \Theta(q_{n}(S_{12}, X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
+ \Theta(q_{n}(S_{21} + S_{22}, X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= q_{n}(\Theta(S_{11}) + \Theta(S_{12}) + \Theta(S_{21}) + \Theta(S_{22}), X_{21}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, \Theta(X_{21}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{21}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})
+ \dots + q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{21}, \mathcal{P}_{2}, \dots, \Theta(\mathcal{P}_{2})).$$

On the other hand,

$$\Theta(q_n(S_{11} + S_{12} + S_{21} + S_{22}, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(S_{11} + S_{12} + S_{21} + S_{22}), X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+q_n(S_{11} + S_{12} + S_{21} + S_{22}, \Theta(X_{21}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+q_n(S_{11} + S_{12} + S_{21} + S_{22}, X_{21}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+\dots + q_n(S_{11} + S_{12} + S_{21} + S_{22}, X_{21}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

Which will gives us $q_n(M, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, using Lemma 2.2, we obtain $-X_{21}^*M\mathcal{P}_2 + (-1)^{n-1}\mathcal{P}_2MX_{21} = 0$. By left multiplying with \mathcal{P}_2 , on both sides and using (∇) and (\triangle) , we get $M_{22} = 0$.

Again, $q_n(S_{22}, X_{12}, P_2, \dots, P_2) = q_n(S_{21}, X_{12}, P_2, \dots, P_2) = 0$. and using Lemma 2.2, Lemma 2.4, we have

$$\Theta(q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= \Theta(q_{n}(S_{11} + S_{12}, X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})) + \Theta(q_{n}(S_{21}, X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
+ \Theta(q_{n}(S_{22}, X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= q_{n}(\Theta(S_{11}) + \Theta(S_{12}) + \Theta(S_{21}) + \Theta(S_{21}) + \Theta(S_{22}), X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, \Theta(X_{12}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{12}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})
+ \dots + q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))$$

On the other hand,

$$\Theta(q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= q_{n}(\Theta(S_{11} + S_{12} + S_{21} + S_{22}), X_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, \Theta(X_{12}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{12}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})
+\dots + q_{n}(S_{11} + S_{12} + S_{21} + S_{22}, X_{12}, \mathcal{P}_{2}, \dots, \Theta(\mathcal{P}_{2})).$$

On comparing the above two equations we get, $q_n(M, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, using Lemma 2.2, we obtain $\mathcal{P}_1 M X_{12} + (-1)^{n-1} (-X_{12}^* M \mathcal{P}_1) = 0$. By left multiplying \mathcal{P}_1 on both sides, we get $\mathcal{P}_1 M X_{12} = 0$. Hence, it follows from (∇) and (\triangle) , we get $M_{11} = 0$.

Now, since $q_n(P_2, S_{12}, P_2, ..., P_2) = q_n(P_2, S_{11}, P_2, ..., P_2) = 0$ and using Lemma 2.2, Lemma 2.4, we have

$$\Theta(q_{n}(\mathcal{P}_{2}, S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= \Theta(q_{n}(\mathcal{P}_{2}, S_{11}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})) + \Theta(q_{n}(\mathcal{P}_{2}, S_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
+ \Theta(q_{n}(\mathcal{P}_{2}, S_{21} + S_{22}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))
= q_{n}(\Theta(\mathcal{P}_{2}), S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(\mathcal{P}_{2}, \Theta(S_{11}) + \Theta(S_{12}) + \Theta(S_{21}) + \Theta(S_{22}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2})
+ q_{n}(\mathcal{P}_{2}, S_{11} + S_{12} + S_{21} + S_{22}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})
+ \dots + q_{n}(\mathcal{P}_{2}, S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_{2}, \dots, \Theta(\mathcal{P}_{2})).$$

On the other hand,

$$\Theta(q_n(\mathcal{P}_2, S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(\mathcal{P}_2), S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(\mathcal{P}_2, \Theta(S_{11} + S_{12} + S_{21} + S_{22}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(\mathcal{P}_2, S_{11} + S_{12} + S_{21} + S_{22}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(\mathcal{P}_2, S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

Which will give us, $q_n(\mathcal{P}_2, M, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, using Lemma 2.2, we obtain $-\mathcal{P}_1 M^* \mathcal{P}_2 + (-1)^{n-1} (\mathcal{P}_2 M \mathcal{P}_1) = 0$. By left multiplying with \mathcal{P}_2 on both sides and using $(\nabla)_r(\Delta)_r$, we get $M_{21} = 0$.

Now for M_{12} , using the fact that $q_n(\mathcal{P}_1, S_{22}, \mathcal{P}_2, \dots, \mathcal{P}_2) = q_n(\mathcal{P}_1, S_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. and Lemma 2.2, Lemma 2.4, we have

$$\begin{split} \Theta(q_{n}(\mathcal{P}_{1},S_{11}+S_{12}+S_{21}+S_{22},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) \\ &= \Theta(q_{n}(\mathcal{P}_{1},S_{11}+S_{12},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) \\ &+ \Theta(q_{n}(\mathcal{P}_{1},S_{21},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) \\ &+ \Theta(q_{n}(\mathcal{P}_{1},S_{22},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) \\ &= q_{n}(\Theta(\mathcal{P}_{1}),S_{11}+S_{12}+S_{21}+S_{22},\mathcal{P}_{2},\ldots,\mathcal{P}_{2}) \\ &+ q_{n}(\mathcal{P}_{1},\Theta(S_{11})+\Theta(S_{12})+\Theta(S_{21})+\Theta(S_{22}),\mathcal{P}_{2},\ldots,\mathcal{P}_{2}) \\ &+ q_{n}(\mathcal{P}_{1},S_{11}+S_{12}+S_{21}+S_{22},\Theta(\mathcal{P}_{2}),\ldots,\mathcal{P}_{2}) \\ &+ \cdots + q_{n}(\mathcal{P}_{1},S_{11}+S_{12}+S_{21}+S_{22},\mathcal{P}_{2},\ldots,\Theta(\mathcal{P}_{2})) \end{split}$$

On the other hand,

$$\Theta(q_n(\mathcal{P}_1, S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(\mathcal{P}_1), S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(\mathcal{P}_1, \Theta(S_{11} + S_{12} + S_{21} + S_{22}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(\mathcal{P}_1, S_{11} + S_{12} + S_{21} + S_{22}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(\mathcal{P}_1, S_{11} + S_{12} + S_{21} + S_{22}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

On comparing the above two equations, we get $q_n(\mathcal{P}_1, M, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now using Lemma 2.2, we obtain $\mathcal{P}_1 M \mathcal{P}_2 + (-1)^{n-1} \mathcal{P}_2 M^* \mathcal{P}_1 = 0$. By left multiplying with \mathcal{P}_1 on both side and using (∇) , (\triangle) we get $M_{12} = 0$. Hence, M = 0. \square

Lemma 2.6. For any $S_{11}, T_{11} \in \mathcal{M}_{11}$ and $S_{22}, T_{22} \in \mathcal{M}_{22}$, we have

$$\Theta(S_{11} + T_{11}) = \Theta(S_{11}) + \Theta(T_{11}).$$

 $\Theta(S_{22} + T_{22}) = \Theta(S_{22}) + \Theta(T_{22}).$

Proof. Let $M = \Theta(S_{11} + T_{11}) - \Theta(S_{11}) - \Theta(T_{11})$. Now using the fact $q_n(P_2, S_{11}, P_2, ..., P_2) = 0$, we have

$$\begin{split} \Theta(q_{n}(\mathcal{P}_{2},S_{11}+T_{11},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) &=& \Theta(q_{n}(\mathcal{P}_{2},S_{11},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) + \Theta(q_{n}(\mathcal{P}_{2},T_{11},\mathcal{P}_{2},\ldots,\mathcal{P}_{2})) \\ &=& q_{n}(\Theta(\mathcal{P}_{2}),S_{11}+T_{11},\ldots,\mathcal{P}_{2}) \\ &+q_{n}(\mathcal{P}_{2},\Theta(S_{11})+\Theta(T_{11}),\mathcal{P}_{2},\ldots,\mathcal{P}_{2}) \\ &+q_{n}(\mathcal{P}_{2},S_{11}+T_{11},\Theta(\mathcal{P}_{2}),\ldots,\mathcal{P}_{2}) \\ &+\cdots+q_{n}(\mathcal{P}_{2},S_{11}+T_{11},\mathcal{P}_{2},\ldots,\Theta(\mathcal{P}_{2})). \end{split}$$

Calculating in another way, we get

$$\begin{split} \Theta(q_n(\mathcal{P}_2,S_{11}+T_{11},\mathcal{P}_2,\ldots,\mathcal{P}_2)) &= q_n(\Theta(\mathcal{P}_2),S_{11}+T_{11},\mathcal{P}_2,\ldots,\mathcal{P}_2) \\ &+ q_n(\mathcal{P}_2,\Theta(S_{11}+T_{11}),\mathcal{P}_2,\ldots,\mathcal{P}_2) \\ &+ q_n(\mathcal{P}_2,S_{11}+T_{11},\Theta(\mathcal{P}_2),\ldots,\mathcal{P}_2) \\ &+ \cdots + q_n(\mathcal{P}_2,S_{11}+T_{11},\mathcal{P}_2,\ldots,\Theta(\mathcal{P}_2)). \end{split}$$

On comparing the above two expressions, we get $q_n(P_2, M, P_2, ..., P_2) = 0$. Using Lemma 2.2, (∇) and (\triangle) , we get $M_{12} = 0$. Similarly we can obtain $M_{21} = 0$. Now, for M_{22} , using $q_n(S_{11}, X_{21}, P_2, ..., P_2) = 0$ and Lemma 2.4,

$$\Theta(q_n(S_{11} + T_{11}, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)) = q_n(\Theta(S_{11}) + \Theta(T_{11}), X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{11} + T_{11}, \Theta(X_{21}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{11} + T_{11}, X_{21}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(S_{11} + T_{11}, X_{21}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

On the other hand,

$$\Theta(q_n(S_{11} + T_{11}, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)) = q_n(\Theta(S_{11} + T_{11}), X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2)$$

$$+q_n(S_{11} + T_{11}, \Theta(X_{21}), \mathcal{P}_2, \dots, \mathcal{P}_2)$$

$$+q_n(S_{11} + T_{11}, X_{21}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)$$

$$+\dots + q_n(S_{11} + T_{11}, X_{21}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2))$$

Comparing the above equations, we obtain $q_n(M, X_{21}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Which after further solving and using Lemma 2.2, (∇) and (\triangle) gives us $M_{22} = 0$. Similarly, we can show that $M_{11} = 0$. Hence,

$$\Theta(S_{11} + T_{11}) = \Theta(S_{11}) + \Theta(T_{11}).$$

Lemma 2.7. For any S_{12} , $T_{12} \in \mathcal{M}_{12}$ and S_{21} , $T_{21} \in \mathcal{M}_{21}$, we have

$$\Theta(S_{12} + T_{12}) = \Theta(S_{12}) + \Theta(T_{12}).$$

 $\Theta(S_{21} + T_{21}) = \Theta(S_{21}) + \Theta(T_{21}).$

Proof. Let $M = \Theta(S_{12} + T_{12}) - \Theta(S_{12}) - \Theta(T_{12})$. Now, using $q_n(\mathcal{P}_2, S_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$ and Lemma 2.3, we have

$$\Theta(q_{n}(\mathcal{P}_{2}, S_{12} + T_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}) = \Theta(q_{n}(\mathcal{P}_{2}, S_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})) + \Theta(q_{n}(\mathcal{P}_{2}, T_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2}))$$

$$= q_{n}(\Theta(\mathcal{P}_{2}), S_{12} + T_{12}, \mathcal{P}_{2}, \dots, \mathcal{P}_{2})$$

$$+q_{n}(\mathcal{P}_{2}, \Theta(S_{12}) + \Theta(T_{12}), \mathcal{P}_{2}, \dots, \mathcal{P}_{2})$$

$$+q_{n}(\mathcal{P}_{2}, S_{12} + T_{12}, \Theta(\mathcal{P}_{2}), \dots, \mathcal{P}_{2})$$

$$+\dots + q_{n}(\mathcal{P}_{2}, S_{12} + T_{12}, \mathcal{P}_{2}, \dots, \Theta(\mathcal{P}_{2})).$$

Whereas,

$$\Theta(q_n(\mathcal{P}_2, S_{12} + T_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)) = q_n(\Theta(\mathcal{P}_2), S_{12} + T_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(\mathcal{P}_2, \Theta(S_{12} + T_{12}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(\mathcal{P}_2, S_{12} + T_{12}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(\mathcal{P}_2, S_{12} + T_{12}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

From above two expressions, we get $q_n(\mathcal{P}_2, M, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, by using Lemma 2.2, (∇) and (Δ) , we get $M_{12} = 0$. Similarly by using same approach, we can obtain $M_{21} = 0$ Now, for M_{11} . It is easily seen that $q_n(S_{12}, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$, and using Lemma 2.3, we have

$$\Theta(q_n(S_{12} + T_{12}, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)) = \Theta(q_n(S_{12}, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)) + \Theta(q_n(T_{12}, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2))
= q_n(\Theta(S_{12}) + \Theta(T_{12}), X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{12} + T_{12}, \Theta(X_{12}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{12} + T_{12}, X_{12}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(S_{12} + T_{12}, X_{12}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

Calculating in another way,

$$\Theta(q_n(S_{12} + T_{12}, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)) = q_n(\Theta(S_{12} + T_{12}), X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{12} + T_{12}, \Theta(X_{12}), \mathcal{P}_2, \dots, \mathcal{P}_2)
+ q_n(S_{12} + T_{12}, X_{12}, \Theta(\mathcal{P}_2), \dots, \mathcal{P}_2)
+ \dots + q_n(S_{12} + T_{12}, X_{12}, \mathcal{P}_2, \dots, \Theta(\mathcal{P}_2)).$$

From above two equations, we get $q_n(M, X_{12}, \mathcal{P}_2, \dots, \mathcal{P}_2) = 0$. Now, using Lemma 2.2, we get $\mathcal{P}_1 M X_{12} + (-1)^{n-1} X_{12}^* M \mathcal{P}_1 = 0$. By multiplying \mathcal{P}_2 on both sides, we get $\mathcal{P}_1 M X_{12} = 0$. Therefore, by using (∇) and (Δ) , we get, $M_{11} = 0$. Similarly, we can show that $M_{22} = 0$. Hence,

$$\Theta(S_{12} + T_{12}) = \Theta(S_{12}) + \Theta(T_{12}).$$

In the similar way, one can easily show that

$$\Theta(S_{21} + T_{21}) = \Theta(S_{21}) + \Theta(T_{21}).$$

Lemma 2.8. Θ *is additive.*

Proof. Let $S, T \in \mathcal{M}$ and write $S = \sum_{i,j=1}^{2} S_{ij}$, $T = \sum_{i,j=1}^{2} T_{ij}$. Then by using Lemma 2.4 - 2.7, we have

$$\Theta(S+T) = \Theta(\sum_{i,j=1}^{2} S_{ij} + \sum_{i,j=1}^{2} T_{ij})
= \Theta\left(\sum_{i,j=1}^{2} (S_{ij} + T_{ij})\right)
= \sum_{i,j=1}^{2} \Theta(S_{ij} + T_{ij})
= \sum_{i,j=1}^{2} \Theta(S_{ij}) + \Theta(T_{ij})
= \Theta(\sum_{i,j=1}^{2} S_{ij}) + \Theta(\sum_{i,j=1}^{2} T_{ij})
= \Theta(S) + \Theta(T).$$

Now in further lemmas, we will prove that Θ is an *- derivation.

Lemma 2.9. $\Theta(I)^* = \Theta(I)$.

Proof. Since $q_n(I, I, iI, ..., iI) = 0$. Therefore,

$$0 = \Theta(q_n(I, I, iI, \dots, iI))$$

= $q_n(\Theta(I), I, iI, \dots, iI) + q_n(I, \Theta(I), iI, \dots, iI)$
= $2^{n-1}i^{n-1}(\Theta(I) - \Theta(I)^*).$

Which gives $\Theta(I)^* = \Theta(I)$. \square

Lemma 2.10. *If* $\Theta(iI)^* = \Theta(iI)$, then $\Theta(iI) = \Theta(I) = 0$.

Proof. Using the fact that, $q_n(I, iI, ..., iI) = 2^n i^n I$ and Lemma 2.9, we obtain

$$\Theta(2^{n}i^{n}I) = q_{n}(\Theta(I), iI, ..., iI) + q_{n}(I, \Theta(iI), ..., iI)
+ ... + q_{n}(I, iI, ..., \Theta(iI))
2^{n}\Theta(i^{n}I) = 2^{n}i^{n}\Theta(I) + 2^{n-1}i^{n-1}(\Theta(iI) - \Theta(iI)^{*})(n-1).$$

Since,
$$\Theta(iI) = \Theta(iI)^*$$
, so

$$\Theta(iI) = i\Theta(I).$$

Taking adjoint on both sides of the above relation, we obtain

$$\Theta(iI)^* = -i\Theta(I).$$

Since Θ is self - adjoint. On combining the last two relations, we obtain $\Theta(iI) = 0$ and $\Theta(I) = 0$. \square

Lemma 2.11. $\Theta(iS) = i\Theta(S)$ for any $S \in \mathcal{M}$.

Proof. As,
$$q_n(S, iI, ..., iI) = 2^n i^n S$$

$$\Theta(2^n i^n S) = \Theta(q_n(S, iI, ..., iI))
= q_n(\Theta(S), iI ..., iI) + q_n(S, \Theta(iI) ..., iI)
+ ... + q_n(S, iI, ..., \Theta(iI))
= 2^n i^n \Theta(S).$$

Hence, $\Theta(iS) = i\Theta(S)$. \square

Lemma 2.12. Θ *preserves star.*

Proof. Observes that $q_n(iI, S, iI, ..., iI) = 2^{n-1}i^n(S - S^*)$, using $\Theta(iI) = \Theta(I) = 0$, we have

$$\Theta(2^{n-1}i^n(S-S^*)) = \Theta(q_n(iI, S, iI, \dots, iI))
= q_n(iI, \Theta(S), iI, \dots, iI)
= 2^{n-1}i^n(\Theta(S) - \Theta(S)^*).$$

Which implies, $\Theta(S^*) = \Theta(S)^*$. \square

Lemma 2.13. Θ is a derivation i.e., $\Theta(ST) = \Theta(S)T + S\Theta(T)$ for all $S, T \in \mathcal{M}$.

Proof. Observe that $q_n(S, T, iI, ..., iI) = 2^{n-1}i^{n-1}(ST - T^*S)$ for any $S, T \in \mathcal{M}$ and using Lemmas 2.9 - 2.11, we obtain

$$\begin{array}{lll} 2^{n-1}i^{n-1}\Theta(ST-T^{*}S) & = & \Theta(q_{n}(S,T,iI,\ldots,iI)) \\ & = & q_{n}(\Theta(S),T,iI,\ldots,iI) + q_{n}(S,\Theta(T),iI\ldots,iI) \\ & = & 2^{n-1}i^{n-1}(\Theta(S)T + S\Theta(T) - \Theta(T)^{*}S - T^{*}\Theta(S)). \end{array}$$

Therefore,

$$\Theta(ST - T^*S) = \Theta(S)T + S\Theta(T) - \Theta(T)^*S - T^*\Theta(S). \tag{3}$$

Equation (3) implies that,

$$\begin{split} \Theta(ST + T^*S) &= \Theta((-iS)(iT) - (iT)^*(-iS)) \\ &= \Theta(-iS)(iT) + (-iS)\Theta(iT) - \Theta(iT)^*(-iS) - (iT)^*\Theta(-iS). \end{split}$$

Hence,

$$\Theta(ST + T^*S) = \Theta(S)T + S\Theta(T) + \Theta(T)^*S + T^*\Theta(S)$$
(4)

On combining (3) and (4), we get

$$\Theta(ST) = \Theta(S)T + S\Theta(T).$$

3. Applications

As an applications, corollaries given below arise directly from Theorem 2.1:

Corollary 3.1. Consider N to be a standard operator algebra (SOA) on an infinite dimensional (ID) complex Hilbert space (CHS) $\mathcal H$ that contain identity operator $\mathfrak Z$. Further, assume N is closed with respect to adjoint operation. Map Θ from N to N is defined in such a way that

$$\Theta(q_n(S_1, S_2, ..., S_n)) = \sum_{i=1}^n q_n(S_1, ..., S_{i-1}, \Theta(S_i), S_{i+1}, ..., S_n)$$

for all $S_1, S_2, \ldots, S_n \in S$, then Θ is additive. Moreover, if $\Theta(iI)$ is self- adjoint, then Θ is an additive *-derivation.

Proof. A prime algebra, denoted as \mathcal{N} , which is a conventional operator algebra, directly results from the Hahn-Banach theorem. As this algebra, \mathcal{N} inherently meets criteria as seen in equations (∇) and (\triangle). Therefore, we infer that the previously discussed map Ω is an additive *-derivation, based on Theorem 2.1. \square

Corollary 3.2. Let N is a factor von Neumann algebra (VNA) having dim $N \ge 2$. Defining a mapping Θ from N to N so that

$$\Theta(q_n(S_1, S_2, ..., S_n)) = \sum_{i=1}^n q_n(S_1, ..., S_{i-1}, \Theta(S_i), S_{i+1}, ..., S_n)$$

for all $S_1, S_2, \ldots, S_n \in S$, then Θ is additive. Moreover, if $\Theta(iI)$ is self- adjoint, then Θ is an additive *-derivation.

Proof. Utilizing [24, Lemma 2.2], where it is demonstrated for any \mathcal{N} fulfilling criterion (∇) and (\triangle) is valid. Consequently, by invoking Theorem 2.1, it is deduced that the map Θ , previously mentioned, is additive *-derivation in a framework to factor VNA. \square

A ring \mathcal{R} is called prime if $\mathcal{JK} \neq 0$ for any nonzero ideals $\mathcal{J}, \mathcal{K} \subseteq \mathcal{R}$, and semiprime if it contains no nonzero ideal whose square is zero. In this situation, \mathcal{N} is called prime algebra.

Corollary 3.3. Suppose N is a prime *-algebra with unit say \Im that contains non trivial projection P. Now if Θ from N to N fulfills the condition

$$\Theta(q_n(S_1, S_2, ..., S_n)) = \sum_{i=1}^n q_n(S_1, ..., S_{i-1}, \Theta(S_i), S_{i+1}, ..., S_n)$$

for all $S_1, S_2, \ldots, S_n \in S$, then Θ is additive. Moreover, if $\Theta(iI)$ is self- adjoint, then Θ is an additive *-derivation.

Proof. It is straightforward that N satisfies (∇) and (\triangle) . Then from Theorem 2.1, Θ is an additive *-derivation. \square

4. Open Problems

A natural direction for future research is to explore whether the key conclusions of our study (Theorems 2.1 and related Lemmas) extend to broader classes of algebraic structures, particularly non-associative algebras such as alternative algebras and W^* -algebras.

In the context of alternative rings, Ferreira and Ferreira established the following characterization of prime rings [6, Theorem 1.1]

Theorem 4.1. Let R be a 3-torsion-free alternative ring. Then R is a prime ring if and only if

$$aR.b = 0$$
 or $a.Rb = 0$ \Rightarrow $a = 0$ or $b = 0$, $\forall a, b \in R$.

It is well known that the 3-torsion-free condition is unnecessary in the case of associative rings. This raises an interesting open question:

Can the main results of our work be extended to non-associative settings, particularly to alternative algebras and other structured algebras, without additional torsion-free assumptions?

Investigating this problem could lead to new insights into the structural properties of non-associative algebras and their prime ideals, potentially uncovering deeper connections between associative and non-associative algebraic systems.

5. Acknowledgment

The authors are greatly indebted to the referee for his/her several useful suggestions and valuable comments.

References

- [1] R. An and J. Hou, A characterization of *-automorphism on B(H), Acta. Math. Sinica (English Series), 26(2010), 287-294.
- [2] A. J. De Oliveira Andrade, E. Barreiro and B. L. M. Ferreira, *-Lie-Type maps on alternative *-algebras, J. Algebra Appl. 22(2023), 1-14,
- [3] A. J. De Oliveira Andrade, B. L. M. Ferreira and L. Sabinina, *-Jordan-type maps on alternative *-algebras, J. Math. Sci. 280(2024), 278–287,
- [4] Z. Bai and S. Du, Maps preserving products XY YX* on von Neumann algebras, J. Math. Anal. Appl. 386(2012), 103-109,
- [5] J. Cui and C. K. Li, Maps preserving product XY YX* on factor von Neumann algebras, Linear Algebra Appl. 431(2009), 833-842,
- [6] R. N.Ferreira and B. L. M. Ferreira, Jordan triple derivation on alternative rings, Proyecciones J. Math. 37(2018), 171-180,
- [7] B. L. M. Ferreira and B. T. Costa, *-Lie-Jordan-type maps on C*-algebras, Bull.Iran. Math. Soc. 48(2) (2021) 1–12,
- [8] B. L. M. Ferreira and H. Guzzo Jr, Characterization of Lie multiplicative derivation on alternative rings, Rocky Mt. J. Math. 49(2019), 761-772,
- [9] B. L. M. Ferreira and H. Guzzo Jr, Lie n-multiplicative mapping on triangular n-matrix rings, Rev. Unión Mat. 60(2019), 9-20,
- [10] B. L. M. Ferreira, H. Jr. Guzzo, R. N. Ferreira and F. Wei, Jordan derivations of alternative rings, Commun. Algebra 48(2020), 717–723,
- [11] B. L. M. Ferreira, H. Guzzo Jr. and I. Kaygorodov, *Lie maps on alternative rings preserving idempotents*, Colloq. Math. 166(2021), 227-238,
- [12] B. L. M. Ferreira, H. Guzzo Jr. and F. Wei, Multiplicative Lie-type derivations on alternative rings, Commun. Algebra 48(2020), 5396-5411,
- [13] B. L. M. Ferreira and I. Kaygorodov, Commuting maps on alternative rings, Ric. Mat. 71(2022), 67–78,
- [14] P. Halmos, A Hilbert Space Problem Book, 2nd ed, Springer-Verlag, New York-Heideberg-Berlin 1982.
- [15] A. Jabeen and B. L. M. Ferreira, Lie (Jordan) centralizers on alternative algebras, Proyecciones J. Math. 41(2022), 1035-1050,
- [16] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaestiones Mathematicae, 39(2016), 1037-1046,
- [17] L. Kong and C. Li, Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras, AIMS Mathematics, 7(8) (2022), 13963-13976,
- [18] W. Lin, Nonlinear *-Lie-type derivations on standard operator algebras, Acta Math. Hungar. 154(2018), 480-500,
- [19] C. Li., F. Lu., and X. Fang., Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438(5)(2013), 2339–2345.
- [20] C. Li, F. Zhao and Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (English Series), 32(2016), 821-830,
- [21] C. Li, Y. Zhao and F. Zhao, Nonlinear maps preserving the mixed product [A B, C]_∗ on von Neumann algebras, Filomat, 35(2021), 2775-2781.
- [22] Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512–525. https://doi.org/10.1016/j.laa.2014.06.029
- [23] Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl. 438(5)(2013), 2599–2616. https://doi.org/10.1016/j.laa.2012.10.052
- [24] F. Zhao and C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Math. Slovaca, 68 (2018), 163-170,