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Abstract. Let M be an +-algebra containing a non-trivial projection with unit I. In this paper, we study
the characterization of nonlinear *-Lie type derivations on *-algebras. For any S,T € M, a product [S, T], =
ST — T'S is called #-Lie product. In this article it is shown that, if a map © : M — M (not necessarily
linear) satisfies ©(4,(S1,S2,...,S,)) = 21‘2:1 Gn(S1, ..., Si-1,0(5), Sisa, ..., Su)(n = 3) for all S, 5,,...,S, € M,
then © is additive. Moreover, if ©(il) is self- adjoint, then © is an additive *-derivation. As an application,
we can also apply our result on von Neumann algebras, standard operator algebras and prime #-algebras.

1. Introduction

Let M ba an *-algebra over the field C. The expressions [S,T] = ST — TS and [S,T]. = ST — T*S for
any S,T € M, represent the Lie product and the Lie *-product. The study of these products has gained
significant attention in various research areas, as highlighted in the works of numerous authors, including
[1,4,5,614,18,21].

Let M be an additive mapping. Then © : M — M is said to be additive derivation if ®(ST) =
O(S)T+SO(T) for every pair of elements S, T € M. Furthermore, if ® also fulfills the condition ©(5*) = ©(S)”
for every S € M, we call © is an additive *-derivation. In other way, let ® : M — M be a non additive
mapping, then we call ®, nonlinear Lie derivation or *-Lie derivation if it satisfies the condition

O([5, T]) = [©(5), T] + [S,&(T)]
or
O([S, T).) = [O(S), T]. + [S,O(T)].

for all S,T € M. This concept of a nonlinear Lie derivation or Lie *-derivation can be extended naturally.

Specifically, © is called a nonlinear Lie triple derivation or nonlinear *-Lie triple derivation if it meets the
condition

o(lls, T1, u]) = [[e(5), T1, U] + [[S,(T)], U] + [[S, T1, ©(U)]
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or
o([[s, Tl., U].) = [[©(S), T]., U]. + [[S,©(T)]., U]. + [[S, T]., ()]

for all S, T, U € M. Based on the definition of *-Lie derivation, Jing [16] gave the complete characterization
of nonlinear *-Lie derivation on standard operator algebra and proved that every nonlinear *-Lie derivation
is linear and inner *-derivation. To continue the study of characterization of the Lie derivation to Lie-triple
derivation. Li et al. [20] studied nonlinear skew Lie triple derivation on factor von Neumann algebra and
proved that every nonlinear skew Lie triple derivation on factors is an addtive *-derivation. Similarly, Kong
et al. [17] concentrated on characterizing a kind of non-global nonlinear skew Lie triple derivations © on
factor von Neumann algebras satisfying

o(ls, T1., Ul.) = [[©(S), T]., U]. + [[S,©(T)]., U]. + [[S, T1., ©(U)].

forall S, T, U € Mwith S*T*U = 0.

In recent years, several researchers have explored Lie n-derivations across various types of algebras
(see [22], [23] and related references). In [19], the authors proved that a map © between two-factor von
Neumann algebras is a *ring isomorphism if and only if @([a, b].) = [@(a), O(b).], where [a, b]. = ab—ba*. In
[7], Ferreira and Costa extended these new products and defined two other types of applications, named
multiplicative *-Jordan n-map and multiplicative *-Lie n-map and used it to impose conditions such that a
map between C*-algebras is a *-ring isomorphism. Further, Andrade et al. [3] study the characterization
of multiplicative *-Lie-type maps and as application, they obtained the result on alternative W*-algebras.
In [2], the authors provide the characterization of multiplicative *-Jordan-type maps on alternative algebras.

Many authors have studied Lie- type derivations in structure like *-algebras, matrix rings, and even
more general structures like alternative algebras see[15]-[9]. Building on the concepts of Lie derivation and
Lie triple derivation, we were inspired to explore similar questions in the context of nonlinear *-Lie-type
derivations on *-algebras. For a fixed positive integer n, where n > 2, we define polynomials sequence as

71 (S1) = S1,
92 (51, 52) = [91 (S1), S2], = [S1, Sal.,
3 (S1,52,53) = [92(51,S2), Ss], = [[S1, S2l., S3l.,

ql’l (Sll SZ/ e /Sn) = [‘]n—l (Sll 52/ ceey Sl’l—l) /Sn]* .

The polynomial g, (51, Sa, ..., Sy) is known as (n — 1) commutator.
The definition of nonlinear *-Lie type derivations is first presented. A map © : § — S that is additive is
known as Lie n-derivation or n-type derivation, if the following is satisfied:

@ (Qn (Sll SZ/ crey Sn)) = Z Qn (Slr cey Si—l/ @ (Sl) 7 Si+1/ crey Sn)
i=1

for all 54, S,,...,5, € S. More generally, removing the additivity of ®, we get @ is a nonlinear *-Lie n-
derivation. It is evident that all derivations are Lie derivations, and every Lie derivation is, in turn, a Lie
triple derivation.

2. Main Result

Now take a projection P; € M and let P, = I — P;. We write M]-k = PiMPy for j,k = 1,2. Then by the
Peirce decomposition of M, we have M = M1 & Miz & My & My,. Note that any operator S € M can be
expressed as S = S11 + S12+ 521 + Sy and S;k € Mkj for any S]'k € Mjk-
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Theorem 2.1. Let M be a *-algebra having unit I that contains a nontrivial projection P such that:

XMP=0 = X=0 )

XMI-P)=0 = X=0. (&)
If © : M — M satisfies

@ (Qn (Slr SZ/ cey Sn)) = Z Qn (Slr cecy Si—ll@ (Sl) 7 Si+1/ cey SH)
i=1

forall 51,S;,...,5, € S, then © is additive. Moreover, if O(il) is self- adjoint, then © is an additive +-derivation.

The proof is organized in a series of lemmas. Since the sequence g, is defined as:

C]n(slz SZ/ S3/"-/ Sn) = [[[[Sll Sz]*/ 53]*/'-'/ Sn—l]*/ Sn]*~

Lemma 2.2. Forany, S € Mand for any integer n > 2, we have
qn(sr iPl/” -/ﬂ)l) = :PZS:Pl + (_1)"—13)153)2' (1)
Gn(S, P2, ..., P2) = PSPy + (-1)"1P,SPy. ()

Lemma 2.3. ©(0) =0.

Proof. It is trivial to prove that

00)  =0(@g.(0,0,...,0)
= 4,(©(0),0,...,0) + 44(0,0(0), ..., 0) + ... + 44(0,0, ..., ©(0))
=0.

O

Lemma 2.4. Forany S11 € Mi1, 512 € Mz, So1 € Mo, Sz € My, we have

O(S11 +S512) = O(S11) + O(S12)
O(Sa1 +52) = ©O(521) +O(S22).

PTOOf For any S € M11, S € Mlz, LetM = @(511 + 512) - (@(511) + @(512)) We have
O(qn(S11 + S12, P2, ..., P2))
= 4u(O(511 + S12), P2, ..., P2) + §u(S11 + S12,O(P2), ..., P2)
+- + 4,(S11 + S12, Po, ..., O(P2)).

Now, it is easy to see that ,(511, P2, ..., P2) = 0 and using Lemma 2.3, we have
®(Qn(511 + SIZ/ 9)2/ ey TZ))
= 9(471 (511/ ?2/ cecy tP2)) + 6(‘771(512/ ?2/ crcy j)2))
= gu(O(511) + O(S12), P2, ..., P2) + Gu(S11 + S12, O(P2), ..., Pa)
+ee+ q,,(Sll + S12,Po, ... ,@(Tz))

Above tworelations implies thatg,,(M, P, ..., P») = 0. Now, using Lemma 2.2, we have PIMPy+(=1)"1P,MP; =
0. By multiplying P; on both sides, we get P1MP, = 0. Hence, it follows from (V) and (A) , we obtain M1, = 0.
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Similarly, by multiplying P, on both sides and using (V) and (a), we get My; = 0.
Now, it is observe that 4,,(S11, X21, P2, ..., P2) = 0. Using Lemma 2.3, we have
OGn(S11 + 512, X201, P2, ..., P2)) = u(O(S11 + S12), X201, P2, ..., P2)
+31(S11 + S12, 0(X21), P2, ..., P2)
+31(S11 + S12, X01, O(P2), ..., P2)
+ 4+ gu(S11 + S12, X1, Po, - .., O(P2)).
Whereas,

O(gn(S11 + S12, X201, P2, ... P2))
= O@Gn(S11,X21,P2, ..., P2)) + OGu(S12, X21, P2, . .., P2))
= gu(©(511) + O(S12), X21, P2, ..., P2)
+4n(S11 + S12, ©(X21), P2, ..., P2)
+4,(S11 + S12, X21, O(P2), . .., P2)
+ -+ 4,(S11 + S12, X201, P2, ..., O(P2)).
It follows from above two expressions that q,(M, X1, P>, ..., P2) = 0. Now using Lemma 2.2, (V) and (a)
implies that My, = 0.
Again, we have g,(X12, 512, P2, . .., P2) = 0. Using Lemma 2.3, we have
O(qn(X12, 511 + S12, P2, ..., P2))
= gu(©(X12), S11 + S12, P2, ..., P2) + Gu(X12, O(S11 + S12), P2, ..., P2)
+3n(X12, 511 + S12,O(P2), ..., P2) + - + qu(X12, S11 + S12, P2, ..., O(P2)).
On the other hand, we get

O(g,(X12, 511 + S12, P2, ..., P2))
= O@n(X12,511,P2, ..., P2)) + O@Gu(X12, 512, P2, . .., P2))
= 4u2(O(X12), 511 + S12, P2, . .., P2) + 4u(X12, O(511) + O(S12), P2, ..., P2)
+34(X12, 511 + S12,O(P2), ..., P2) + - - + g, (X12, S11 + S12, P2, ..., O(P2)).

Which will give us ,(X12, M, P,...,P2) = 0. Now, using Lemma 2.3, (V) and (2), we obtain X;,MP, —
P1M* X1, = 0. Since My, = 0. Therefore, we get Mi; = 0. Hence, we have M =0, i.e.,

O(S11 + S12) = O(511) + O(S12).

The other case can be prove analogously. This concludes the proof. [

Lemma 2.5. For any S11 € M1, S12 € Mi, Sa1 € Ma1, Szo € Mya, We have
O(S11 + 512 + So1 + S22) = O(S11) + O(512) + O(S21) + O(522)

Proof. Let M = ©(S11 + S12 + S21 + S22) — ©(511) — O(512) — O(S21) — O(S22). Now, it is easily seen that
Gn(S11, X201, P2, ..., P2) = 4u(S12, Xo1, P2, ..., P2) = 0. Using Lemma 2.2 and Lemma 2.4, we obtain
O(Gn(S11 + S12 + 521 + 522, Xo1, Po, ..., P2))
= O(qu(S11, X1, P2, ..., P2)) + O(q4(S12, X21, P2, . .., P2))
+0O(qn(521 + S22, X21, P2, ..., P2))
= gu(O(511) + O(S12) + O(S21) + O(522), X01, P2, ..., P2)
+41(S11 + S12 + So1 + S22, O(X21), Po, ..., P2)
+34(S11 + S12 + So1 + S22, X201, O(P2), ..., P2)
+ o4+ 74(S11 4 S12 + So1 + S22, X201, P2, ..., O(P2)).
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On the other hand,

O(gn(S11 + S12 + So1 + S22, X1, P2, ..., P2))
= gu(O(511 + S12 + So1 + S22), X201, Pa, ..., P2)
+qn(S11 + S12 + So1 + 520, O(X21), Pa. ..., P2)
+3n(S11 + S12 + So1 + S22, X201, O(P2), . .., P2)
+- + 4,(S11 + S12 4+ So1 + S22, X1, Po, ..., O(P2)).
Which will gives us 4,,(M, X1, P, ..., P2) = 0. Now, using Lemma 2.2, we obtain —X;lMiPz+(—1)"‘1 PyMXp1 =
0. By left multiplying with P,, on both sides and using (V) and (2) , we get M, = 0.
Again, 4,(S2, X12, P2, ..., P2) = §u(S21, X12, P2, ..., P2) = 0. and using Lemma 2.2, Lemma 2.4, we have
O(gn(S11 + S12 + Sa1 + S22, X12, P2, ..., P2))
= O(Gn(S11 + S12, X12, P2, ..., P2)) + OGn(S21, X12, P2, . .., P2))
+O(Gn (522, X12, P2, ..., P2))
= gu(O(511) + O(S12) + O(S21) + O(521) + O(522), X12, P2, ..., P2)
+41(S11 + S12 + So1 + S22, O(X12), Po, ..., P2)
+34(S511 + S12 + So1 + S22, X12,O(P2), ..., P2)
+- + 3,(S11 + S12+ S+ S22, X12, P2 ..., O(P2))
On the other hand,

O(Gn(S11 + S12 + Sa1 + S22, X12, P2, ..., P2))
= gu(O(511 + S12 + So1 + S22), X12,Po, ..., P2)
+qn(S11 + S12 + So1 + 522, O(X12), Pa, ..., P2)
+qn(S11 + S12 + Sa1 + S22, X12, O(P2), ..., P2)
+ o+ 4,(S11 + S12 + 51 + S2, X12, P, ..., O(P2)).
On comparing the above two equations we get, §,(M, X1z, P2, ..., P2) = 0. Now, using Lemma 2.2, we obtain
P1MXqp + (—1)"‘1(—X;2M(Pl) = 0. By left multiplying P; on both sides, we get P1MXj> = 0. Hence, it follows
from (V)and (2), we get My, = 0.
Now, since g,(P2, S12, P2, ..., P2,) = gu(P2, 511, P2, ..., P2) = 0 and using Lemma 2.2, Lemma 2.4, we have
O(Gn(P2, S11 + S12 + So1 + S22, P2, ..., P2))
= OGu(P2, 511, P2, ..., P2)) + O(Gu(P2, S12, P2, . .., P2))
+0(u (P2, S21 + S22, P2, ..., P2))
= §u(©(P2), 511+ 512+ So1 + 522, P2, ..., Po)
+31(P2, O(S11) + O(S12) + O(S21) + O(S22), Pa, ..., P2)
+34(P2, S11 4+ S12 + So1 + S22, O(P2), ..., P2)
+ -4+ qu(P2, S11 4+ S12 + So1 + S22, Pa, ..., O(P2)).
On the other hand,

O(qu(P2, 511+ S12 + 521+ 520, P2, ..., P2))
= gu(©(P2), 511+ S12 + So1 + S22, Pa, ..., P2)
+qn(P2, O(S11 + S12 + 521 + 52), P2, ..., P2)
+qn(P2, 511 + S12 + S21 + 52,0(P2), ..., P2)
+ -+ 4,(P2, S11 + S12 + So1 + S22, P, ..., O(P2)).

Which will give us, 4,(P2, M, P2, ..., P2) = 0. Now, using Lemma 2.2, we obtain —P; M*P, + (=) Y(PyMPy) =
0. By left multiplying with P, on both sides and using (V),(A), we get My = 0.
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Now for My, using the fact that g, (P1, Sz, P2, . . ., P2) = 4,(P1, S21, P2, ..., P2) = 0.and Lemma 2.2, Lemma2 .4,
we have
O(Gn(P1, 511+ S12+ So1 + 52, P2,..., P2))
= OGn(P1,511 + S12,P2,...,P2))
+O(Gn(P1, 521, P2, ..., P2))
+O(qn(P1, 52, P2, ..., P2))
= §u(O(P1),511 + 512+ So1 + 522, Pa, ..., Po)
+4(P1,O(511) + ©O(S12) + O(S21) + O(S22), P2, ..., P2)
+4u(P1, 511 + S12 + So1 + S22, O(P2), ..., Pa)
+-+ 3,(P1, S11 + S12 + So1 + S22, Pa, ..., O(P2))

On the other hand,

O(Gn(P1, 511+ S12+ So1 + 52, P2, ..., P2))
= 4u(O(P1),S11 + S12 + 521+ S22, Pa, ..., P2)
+3n(P1, O(S11 + S12 + 521 + 52), P2, ..., P2)
+34(P1, 511 + S12 + So1 + S22, O(P2), ..., Pa)
+ -4+ 74(P1,S11 4+ S12 + So1 + S22, Pa, ..., O(P2)).
On comparing the above two equations, we get g,(P1, M, P,...,P;) = 0. Now using Lemma 2.2, we obtain

PIMP; + (1) 1P,M*P; = 0. By left multiplying with P; on both side and using (V),(a) we get M, = 0.
Hence, M =0. O

Lemma 2.6. For any Sq11, T11 € My and Sy, Too € Mys, we have

@(511 + T11) = @(511) + ®(T11)-
O(S22 + T2) = 0O(522) + O(Tx).

Proof. Let M = ©(S11 + T11) — ©(511) — O(T11). Now using the fact q,(P2, S11, P2, ..., P2) = 0, we have

O(q,(P2, S11 4+ T11, P2, ..., P2)) Oqu(P2, S11,P2, ..., P2)) + OG(P2, Ta1, Pa, . .., P2))
= 4,(0(P2), 511+ Ti1,...,P2)
+4n(P2,0(511) + O(T11), P2, ..., P2)
+44(P2, S11 + T11,0(P2), ..., P2)
+- 4+ q4(P2, S11+ T11, Pa, ..., O(P2)).

Calculating in another way, we get

G)(Qn(TZI Sll + Tll/ :PZI ey 9)2))

3n(©(P2), S11 + T11, P2, ..., P2)

+0(P2, O(S11 + T11), P2, ..., P2)

+44(P2, S11 + T11,0(P2), ..., P2)

+- 4+ 44(P2, S11+ T11, Pa, ..., O(P2)).

On comparing the above two expressions, we get g,(P2, M, P2, ..., Pr) = 0. Using Lemma 2.2, (V) and (»), we get

M, = 0. Similarily we can obtain M1 = 0. Now, for Ma, using G,(S11, X21, P2, ..., P2) = 0 and Lemma 2.4,
OGn(S11 + T11, X21, P2, ..., P2)) = 4,(O(511) + O(T11), X21, P2, ..., P2)

+3n(S11 + T11,0(X21), P2, ..., P2)

+3n(S11 + T11, X21, O(P2), ..., P2)

+ -+ 3,(S11 + Ta1, Xo1, Po, .., O(P2)).
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On the other hand,

O(Gn(S11 + T11, X021, P2, ..., P2)) =g, (O(S11 + T11), Xo1, P2, ..., P2)
+4n(S11 + T11,0(X21), P2, ..., P2)
+qn(S11 + T11, X201, O(P2), ..., P2)

+ + 4u(S11 + Ti1, X0, P2, ..., O(P2))

Comparing the above equations, we obtain q,(M, X1, P2, ..., P2) = 0. Which after further solving and using Lemma
2.2, (V) and (A) gives us My = 0. Similarly, we can show that M1 = 0. Hence,

@(511 + T11) = @(511) + @(Tu).
|

Lemma 2.7. For any S1z, T12 € Mig and Sy1, To1 € My, we have

O(S12 + T12) = 0O(512) + O(T12).
O(S21 + Ta1) = 0O(521) + O(T2).

Proof. Let M = ©(S12 + T12) —©(512) — O(T12). Now, using 4,(P2, S12, P2, ..., P2) = 0 and Lemma 2.3, we have

OGu(P2, S12+ T12, P2, ..., P2) = OGu(P2, S12,P2, ..., P2)) + OWGn(P2, T2, P2, ..., P2))
= g.(O(P2),S12 + T12, P2, ..., P2)
+4u(P2,0(512) + O(T12), P2, ..., P2)
+3u(P2, S12 4+ T12,0(P2), ..., P2)
+ -+ u(Po, S12 4+ T12, Pa, ..., O(P2)).

Whereas,

OGn(P2, 512+ T12, P2, ..., P2)) =g, (O(P2),S12 + T12,Pa, ..., P2)
+3u(P2,O(S12 + T12), P2, ..., P2)
+qn(P2, S12 + T12,0(P2), ..., P2)
-+ qu(Po, S12 4+ T12, P2, ..., O(P2)).

From above two expressions, we get 4,(P2, M, P,,...,P2) = 0. Now, by using Lemma 2.2, (V) and (a), we
get My, = 0. Similarily by using same approach, we can obtain M = 0 Now, for M. It is easily seen that
Gn(S12, X12, P2, ..., P2) = 0, and using Lemma 2.3, we have

OGn(S12 + T12, X12, P2, ..., P2)) O(Gn(S12, X12, P2, ..., P2)) + O(qu(T12, X12, P2, . .., P2))
= gu(O(512) + O(T12), X12, P2, ..., P2)

+3u(S12 + T12, O(X12), P2, ..., P2)

+4n(S12 + T12, X12, O(P2), ..., P2)

+ o+ 4u(S12 + Th2, X12, P2, ..., O(P2)).

Calculating in another way,

OGn(S12 + T12, X12, P2, ..., P2)) = qu(©(S12 + T12), X12, P2, . .., P2)
+3n(S12 + T12,0(X12), P2, ..., P2)
+3n(S12 + T12, X12, O(P2), ..., P2)

+ -+ 3,(S12 + Tr2, X12, P2, ..., O(P2)).
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From above two equations, we get g,(M, X12, P2, ..., P2) = 0. Now, using Lemma 2.2, we get P1MX;, +
(—1)”‘1X;2MfPl = 0. By multiplying P, on both sides, we get P1MXj, = 0. Therefore, by using (V) and (2),
we get, M1 = 0. Similarly, we can show that M = 0. Hence,

O(512 + Tr2) = O(S12) + O(T12).
In the similar way, one can easily show that
O(S21 + To1) = ©(S21) + O(T21).
O

Lemma 2.8. © is additive.

Proof. LetS,T € Mand write S = Ziz,]-:l Sij, T= y2 T;j. Then by using Lemma 2.4 - 2.7, we have

ij=1
2 2
@(Z Sij + Z T{j)

ij=1 i,j=1

2
Z(Sij + Tij)]

=1

2
Z O(Sij + Tyj)

ij=1

QS + 1)

(C]

2
= Z O(Sij) + ©(Tij)

=1

2 2
= 0 sp+e)) Ty

ij=1 ij=1
= 0O(S)+0O(T).
O
Now in further lemmas, we will prove that © is an *- derivation.
Lemma 2.9. ()" = O(I).
Proof. Since q,(I,1,1l,...,il) = 0. Therefore,

0 On(L LI, ..., i))
= g,O0),Li,...,i)+g,(,0(1),il,...,i)
2L @(I) — @)).
Which gives ©(I) = ©(I). O

Lemma 2.10. If ©@I)* = O(il), then O(@il) = O(I) = 0.
Proof. Using the fact that, ,(I,il,...,il) = 2"i"] and Lemma 2.9, we obtain
e2""'l) = g,©1),i,..., i)+ q,(,03l),...,i)
+ 4 gu(Lil, ..., O3D)
2"O3") = 2""O() + 2" " Y(@O3]) — O3l ) (n - 1).
Since, ©(il) = O(il)*, so
O(l) = i0(I).
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Taking adjoint on both sides of the above relation, we obtain
ol = —i0(I).
Since O is self - adjoint. On combining the last two relations, we obtain ®(il) = 0and ©(I) =0. O
Lemma 2.11. ©(iS) = i®(S) for any S € M.

Proof. As, q,(S,il, ... ,il) = 2""S

Q(2""S) O(gu(S,iL, ..., iI)
Gu(O(S), il ....,il) + q,(S,0(I) ... ., i)
+oee ot gu(S I, ..., OD)

21"@)(S).

Hence, ©(iS) = i®(S). O
Lemma 2.12. © preserves star.

Proof. Observes that g,(il, S, il,...,il) = 21n-1im(S — 5%, using ©(il) = ©(I) = 0, we have

OR"MS-5)) = ©OGu(LS,il,...,iI)
= g.(L,©(S),il, ..., i)
= 2"1MO(S) — ©(S)).

Which implies, ©(5*) = ©(S)". O
Lemma 2.13. © is a derivation i.e., ©(ST) = ©(S)T + SO(T) for all S, T € M.

Proof. Observe that g,(S, T, i1, ...,il) = 21-1in=1(ST — T*S) for any S, T € M and using Lemmas 2.9 - 2.11, we
obtain

2 l@ST - TS) = ©(qu(S, T, 11, .. ., il))
= 4.(©(S),T,il,..., i)+ q.(S,OT),il...,il)
271 L @(S)T + SO(T) — O(T)'S — T*O(S)).

Therefore,
O(ST - T*S) =0O(S)T + SO(T) — O(T)'S — T"O(S). 3)

Equation (3) implies that,

O(ST + T*S) = O((—iS)(iT) — (iT)*(-iS))
= O(—iS)(iT) + (-iS)O(T) — O@UT)*(—iS) — (iT)"O(-iS).
Hence,
O(ST +T°S) =0O(S)T + SO(T) + O(T)*S + T*O(S) 4)

On combining (3) and (4), we get
O(ST) =0O(S)T + SO(T).
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3. Applications

As an applications, corollaries given below arise directly from Theorem 2.1:

Corollary 3.1. Consider N to be a standard operator algebra (SOA) on an infinite dimensional (ID) complex Hilbert

space (CHS) H that contain identity operator 3. Further, assume N is closed with respect to adjoint operation. Map
© from N to N is defined in such a way that

@ (Qn (Slr SZ/ cecy SH)) = Z I]n (Slr cecy Si—ll@ (Sl) 7 Si+1/ cecy Sn)
i=1

forall 51,S;,...,5, € S, then © is additive. Moreover, if O(il) is self- adjoint, then © is an additive +-derivation.

Proof. A prime algebra, denoted as N, which is a conventional operator algebra, directly results from
the Hahn-Banach theorem. As this algebra, NV inherently meets criteria as seen in equations (V) and (2).

Therefore, we infer that the previously discussed map Q is an additive *-derivation, based on Theorem
21. O

Corollary 3.2. Let N is a factor von Neumann algebra (VNA) having dimN > 2. Defining a mapping © from N to
N so that

(C) (q‘rl (Slr SZ/ ey Sn)) = Z qn (Slr ey Si—l/® (Sl) s Si+1r R Sn)
i=1

forall 51,S;,...,5, € S, then © is additive. Moreover, if O(il) is self- adjoint, then © is an additive +-derivation.

Proof. Utilizing [24, Lemma 2.2], where it is demonstrated for any N fulfilling criterion (V) and (2) is valid.
Consequently, by invoking Theorem 2.1, it is deduced that the map ©, previously mentioned, is additive
+-derivation in a framework to factor VNA. [

A ring R is called prime if JK # 0 for any nonzero ideals J,K € R, and semiprime if it contains no
nonzero ideal whose square is zero. In this situation, N is called prime algebra.

Corollary 3.3. Suppose N is a prime *-algebra with unit say 3 that contains non trivial projection P. Now if © from
N to N fulfills the condition
n
O (S1,52 - 8)) = ) 4n(S1,--,Si1,0(8), 811, -, )
i=1

forall 51,S;,...,5, € S, then © is additive. Moreover, if O(il) is self- adjoint, then © is an additive +-derivation.
Proof. 1t is straightforward that N satisfies (V) and (A). Then from Theorem 2.1, © is an additive *-

derivation. O

4. Open Problems

A natural direction for future research is to explore whether the key conclusions of our study (Theorems
2.1 and related Lemmas) extend to broader classes of algebraic structures, particularly non-associative
algebras such as alternative algebras and W*-algebras.

In the context of alternative rings, Ferreira and Ferreira established the following characterization of
prime rings [6, Theorem 1.1]

Theorem 4.1. Let R be a 3-torsion-free alternative ring. Then R is a prime ring if and only if

aRb=0 or aRb=0 = a=00rb=0, VabeR
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It is well known that the 3-torsion-free condition is unnecessary in the case of associative rings. This
raises an interesting open question:

Can the main results of our work be extended to non-associative settings, particularly to alternative
algebras and other structured algebras, without additional torsion-free assumptions?

Investigating this problem could lead to new insights into the structural properties of non-associative
algebras and their prime ideals, potentially uncovering deeper connections between associative and non-
associative algebraic systems.
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