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bPhD student at Doctoral School of Mathematics, Ovidius University of Constanţa, România

Abstract. In this paper, by using matix representation for quaternions and octonions, we provide a
procedure to obtain some example of k−potent matrices of order 4 or 8, over the real field or over the field
Zp, with p a prime number.

1. Introduction

In this paper, in the study of k−potent elements we extend the results obtained in [1] to generalised
quaternion algebras and generalised octonion algebras. As an application, by using the matrix represen-
tations for quaternions and octonions, we give examples of classes of matrices which are k−potents and a
procedure to find such examples.

The paper is organised as follows: in the second paragraph we present matrix representations and their
properties which can be used to provide examples of k−potent matrices and in the part three we study
k−potents elements in quaternion algebras and octonion algebras over the real field. The paper end with
conclusions and an idea for a further research.

2. Matrix representation

In this paper, the field K is considered with characteristic different from two. In the following, we will
consider the quaternion algebra over an arbitrary field K.

For two elements a, b ∈ K, we define a generalized quaternion algebra, denoted byH(α, β) =
(

a,b
K

)
, with

basis {1, f1, f2, f3} and multiplication given in the following table:

· 1 f1 f2 f3
1 1 f1 f2 f3
f1 f1 a f3 a f2
f2 f2 − f3 b −b f1
f3 f3 −a f2 b f1 −ab
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If q ∈H(a, b), q = q0 + q1 f1 + q2 f2 + q3 f3, then

q = q0 − q1 f1 − q2 f2 − q3 f3

is called the conjugate of the element q. For q ∈H(a, b),we consider the following elements:

t
(
q
)
= q + q ∈ K

and

n
(
q
)
= qq = q2

0 − aq2
1 − bq2

2 + abq2
3 ∈ K,

called the trace, respectively, the norm of the element q ∈H(a, b). It follows that(
q + q

)
q = q2 + qq = q2 + n

(
q
)
· 1

and

q2
− t

(
q
)

q + n
(
q
)
= 0,∀q ∈H(a, b),

therefore the generalized quaternion algebra is a quadratic algebra.
If, for x ∈ H(a, b), the relation n (x) = 0 implies x = 0, then the algebra H(a, b) is a division algebra. A

quaternion non-division algebra is called a split algebra.
Using the above notations, we remark thatH (−1,−1) =

(
−1,−1
R

)
is a division algebra.

A generalized octonion algebra over an arbitrary field K, with charK , 2, is an algebra of dimension 8,
denoted O(a, b, c),with basis {1, f1, ..., f7} and multiplication given in the following table:

· 1 f1 f2 f3 f4 f5 f6 f7
1 1 f1 f2 f3 f4 f5 f6 f7
f1 f1 α f3 a f2 f5 a f4 − f7 −a f6
f2 f2 − f3 b −b f1 f6 f7 b f4 b f5
f3 f3 -a f2 b f1 −ab f7 a f6 −b f5 −ab f4
f4 f4 − f5 − f6 − f7 c − c f1 −c f2 − c f3
f5 f5 -a f4 − f7 - a f6 c f1 -ac c f3 ac f2
f6 f6 f7 −b f4 b f5 c f2 −c f3 -bc −bc f1
f7 f7 a f6 −b f5 ab f4 c f3 −ac f2 bc f1 abc

The algebra O(a, b, c) is a non-commutative and a non-associative algebra, but it is alternative, flexible
and power-associative.

If x ∈ O(a, b, c), x = x0 + x1 f1 + x2 f2 + x3 f3 + x4 f4 + x5 f5 + x6 f6 + x7 f7, then x = x0 − x1 f1 − x2 f2 − x3 f3 − x4 f4 −
x5 f5 − x6 f6 − x7 f7 is called the conjugate of the element x. For x ∈ O(a, b, c),we define the elements:

t (x) = x + x ∈ K

and

n (x) = xx = x2
0 − ax2

1 − bx2
2 + abx2

3 − cx2
4 + acx2

5 + bcx2
6 − abcx2

7 ∈ K.

These elements are called the trace, respectively, the norm of the element x ∈ O(a, b, c). It follows that

(x + x) x = x2 + xx = x2 + n (x) · 1
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and

x2
− t (x) x + n (x) = 0,∀x ∈ x ∈ O(a, b, c),

therefore the generalized octonion algebra is a quadratic algebra.
If, for x ∈ O(a, b, c), the relation n (x) = 0 implies x = 0, then the algebra O(a, b, c) is a division algebra (

see [3] and [4]).
If we take a = b = c = −1, K = R, then we obtain H (−1,−1), the quaternion division algebra, usually

denoted byH and octonion division algebra O (−1,−1,−1), usually denoted by O. For example, by taking
a = −1 and b = 1, K = R, we obtain a split quaternion algebra. In the following, we will denoteHK =

(
−1,−1

K

)
andOK =

(
−1,−1,−1

K

)
. For other details regarding properties of quaternions over an arbitrary field, the reader

is referred to [4], [6], [2], p. 431-449, etc.
We know that a finite-dimensional associative algebra A over an arbitrary field K is algebraically

isomorphic to a subalgebra of a matrix algebra over the same field K. Therefore, each element a ∈ A has a
matrix representation. That means, there is a map f : A → Mn (K) such that f (x) = Mx ∈ Mn (K), where
dimA = n. For an arbitrary quaternion algebraH (a, b), the map

φ :H (a, b)→M4 (K)

φ
(
q
)
=


q0 aq1 bq2 −abq3
q1 q0 bq3 −bq2
q2 −aq3 q0 aq1
q3 −q2 q1 q0

 , q ∈H (a, b) , (1)

is called the left representation and the map

ρ :H (a, b)→M4 (K)

ρ
(
q
)
=


q0 aq1 bq2 −abq3
q1 q0 −bq3 bq2
q2 aq3 q0 −aq1
q3 q2 −q1 q0

 , q ∈H (a, b) , (2)

where q = q0 + q1 f1 + q2 f2 + q3 f3, is called the right representation ( see [5]).
In the same paper [5], were defined, for real octonions, two representations maps, left and right rep-

resentations, by using the maps φ and ρ, defined on real quaternions. These maps can be defined for all
octonion algebras O (a, b, c) over an arbitrary field K, namely

Φ : O (a, b, c)→M8 (K) ,

Φ (x) =
(
φ (x′) −ρ (x′′) E4
φ (x′′) E4 ρ(x′)

)
,

the left representation, where the octonion x can be written under the form x = x′+x′′ f ,with x′, x′′ ∈H (a, b),
by using the Cayley-Dickson process. In the same way, we define the right representation

Ψ : O (a, b, c)→M8 (K) ,

Ψ (x) =
(
ρ (x′) −φ

(
x′′

)
φ (x′) ρ(x′)

)
,

where x′, x′′ are the conjugates of the quaternions x′ and x′′ and E4 = dia1 (1,−1,−1,−1).
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For x ∈ O (a, b, c), x = x0+x1 f1+x2 f2+x3 f3+x4 f4+x5 f5+x6 f6+x7 f7 with {1, f1, ...., f7} the base inO (a, b, c),
we have

Φ (x) =



x0 ax1 bx2 −abx3 cx4 −acx5 −bcx6 abcx7
x1 x0 bx3 −bx2 cx5 −cx4 bcx7 −bcx6
x2 −ax3 x0 ax1 cx6 −acx7 −cx4 acx5
x3 −x2 x1 x0 cx7 −cx6 cx5 −cx4
x4 −ax5 −bx6 abx7 x0 ax1 bx2 −abx3
x5 −x4 −bx7 bx6 x1 x0 −bx3 bx2
x6 ax7 −x4 −ax5 x2 ax3 x0 −ax1
x7 x6 −x5 −x4 x3 x2 −x1 x0


(3)

and

Ψ (x) =



x0 ax1 bx2 −abx3 cx4 −acx5 −bcx6 abcx7
x1 x0 −bx3 bx2 −cx5 cx4 −bcx7 bcx6
x2 ax3 x0 −ax1 −cx6 acx7 cx4 −acx5
x3 x2 −x1 x0 −cx7 cx6 −cx5 cx4
x4 ax5 bx6 −abx7 x0 −ax1 −bx2 abx3
x5 x4 bx7 −bx6 −x1 x0 bx3 −bx2
x6 −ax7 x4 ax5 −x2 −ax3 x0 ax1
x7 −x6 x5 x4 −x3 −x2 x1 x0


(4)

Proposition 1. ([5], Lemma 1.2) With the above notations, for ε ∈ {φ, ρ}, we have:
i) ε

(
x + y

)
= ε (x) + ε

(
y
)
,

ii) ε
(
xy

)
= ε (x) ε

(
y
)
,

iii) ε (λx) = λε (x) , λ ∈ K, ε (1) = I4
iv) ε (x) = εT (x)
v) ε

(
x−1

)
= ε−1 (x)

vi) ε (x) = ε
(
y
)

if and only if x = y, with x, y ∈H.

We remark that the above properties are proved in the real case for division algebra H, but these are
true in the general case, for an arbitrary field with characteristic different from 2. Properties i), iii), iv) and
v) are also satisfied for the maps Φ andΨ over reals. Moreover, the following properties were proved over
the real field.

Proposition 2. ([5],Theorem 2.5, Theorem 2.9, Theorem 2,10, Theorem 2.11)
With the above notations, for ε ∈ {Φ,Ψ}, we have
i) ε

(
x + y

)
= ε (x) + ε

(
y
)
,

ii) ε
(
x2

)
= ε (x)2

iii) ε
(
xyx

)
= ε (x) ε

(
y
)
ε (x) ,

iv) ε (λx) = λε (x) , λ ∈ K, ε (1) = I8
v) ε (x) = εT (x)
vi) ε (x) = ε

(
y
)

if and only if x = y, where x, y ∈ O.
Properties ii) and iii) from the above proposition were proved by using alternativity and the the Moufang

identities. But, since Moufang identities are true in any octonion algebra over a field of characteristic not
two (see [4]), these properties are also true for K = Zp, p a prime number, p , 2.

Proposition 3. With the notations from the above proposition, we have that

ε (xn) = εn (x) ,

for x ∈ O (a, b, c) over an arbitrary field K and n a positive integer.
Proof. We use induction. From condition ii) from the above proposition, taking x = y, we have

ε
(
x3

)
= ε3 (x). From condition iii), for y = x2, we have ε

(
x4

)
= ε4 (x) and so on.
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In the paper [1], we studied some properties of k−potent elements over algebras obtained by the Cayley-
Dickson process.

Definition 4.
i) The element x in the ring R is called nilpotent if there is a positive integer n such that xn = 0. If the

number n is the smallest with this property, then it is called the nilpotency index.
ii) The element x in the ring R is called a k-potent element, for k > 1, a positive integer, if k is the smallest

number such that xk = x. The number k is called the k-potency index. For k = 2, we have idempotent
elements, for k = 3, we have tripotent elements, and so on.

Remark 5. From the above definition and Proposition 3, if x ∈ H (a, b) or x ∈ O (a, b, c) is a k−potent
element, it results that the matrices ε (x) , for ε ∈ {φ, ρ} or ε ∈ {Φ,Ψ} are k−potent matrices over the field K.

Example 6. i) By using some results obtained in [1], we consider quaternions over the field K = Z5 and
the element x = 2+ 3i+ j+ 3k which is a 5−potent element overHZ5 . Indeed, x = 2+ 3γ, γ = i+ 2 j+ k, with
γ2 = −1 and nx = 1. Therefore, x2 = 2γ and x4 = 1. The matrices

φ (x) =


2 −3 −1 −3
3 2 −3 1
1 3 2 −3
3 −1 3 2

 and ρ (x) =


2 −3 −1 −3
3 2 3 −1
1 −3 2 3
3 1 −3 2


are 5−potent matrices, that means φ4 (z) = ρ4 (z) = I4.

ii) With the same arguments as above, if we consider octonions over the field K = Z13 and the element
x ∈ OZ13 , x = 3 + 2 f1 + f2 + f3 + f4 + f5 + f6 + f7, we obtain that x is a 13−potent element. The matrices

Φ (x) =



3 −2 −1 −1 −1 −1 −1 −1
2 3 −1 1 −1 1 1 −1
1 1 3 −2 −1 −1 1 1
1 −1 2 3 −1 1 −1 1
1 1 1 1 3 −2 −1 −1
1 −1 1 −1 2 3 1 −1
1 −1 −1 1 1 −1 3 2
1 1 −1 −1 1 1 −2 3


and

Ψ (x) =



3 −2 −1 −1 −1 −1 −1 −1
2 3 1 −1 1 −1 −1 1
1 −1 3 2 1 1 −1 −1
1 1 −2 3 1 −1 1 −1
1 −1 −1 −1 3 2 1 1
1 1 −1 1 −2 3 −1 1
1 1 1 −1 −1 1 3 −2
1 −1 1 1 −1 −1 2 3


are also 13-potent matrices.

3. k-potents elements in quaternion algebras and octonion algebras over the real field

In the following, we will consider H and O the real division quaternion algebra and the real division
octonion algebra. Let A ∈ {H, O}. If x ∈ A. x , 0, is a k−potent element, therefore xk = x. Since A is a
division algebra, we have that x is an invertible element, therefore nx , 0 and xk−1 = 1. It is clear from here
that a k−potent element is a solution of the equation

xk−1 = 1. (5)
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In the following, we will provide solutions of this equation. From relation (5), we obtain that nk−1
x = 1.

Since nx is a positive real number, we obtain that nx = 1. Let x ∈ H, x = x0 + x1 f1 + x2 f2 + x3 f3, with
nx = x2

0 + x2
1 + x2

2 + x2
3 = 1, and x0, x1, x2, x3 ∈ (−1, 1). We denote by

cosα = x0, sinα =
√

x2
1 + x2

2 + x2
3,

θ =
x1 f1 + x2 f2 + x3 f3√

x2
1 + x2

2 + x2
3

∈H, with θ2 = −1.

and the element x can be write under the form

x = cosα + θ sinα.

It is clear that x2 = (cosα + θ sinα)2 = cos2 α−sin2 θ+(2 cosα sinα)θ = cos 2α+θ sin 2α. By using induction,
we obtain that

xn = cos nα + θ sin nα.

Therefore, from the above relation, the element x ∈H satisfing condition xk−1 = 1 has the form

x = cos
2π

k − 1
+ θ sin

2π
k − 1

.

Example 7. i) We consider x = 1
2 +

1
2 f1 + 1

2 f2 + 1
2 f3 = cos π3 + θ sin π3 , where θ = f1+ f2+ f3

√
3

. We obtain that

x6 = 1, then x7 = x and x is a 7−potent element. Therefore, the matrices

φ (x) =


1
2 −

1
2 −

1
2 −

1
2

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2 −

1
2

1
2 −

1
2

1
2

1
2

 and ρ (x) =


1
2 −

1
2 −

1
2 −

1
2

1
2

1
2

1
2 −

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2 −

1
2

1
2


are 7−potent matrices.

ii) For x = − 1
2 +

1
2 f1 − 1

2 f2 + 1
2 f3 = cos 2π

3 + θ sin 2π
3 , where θ = f1− f2+ f3

√
3

. We obtain that x3 = 1, then x4 = x
and x is 4−potent element. The matrices

φ
(
q
)
=


−

1
2 −

1
2

1
2 −

1
2

1
2 −

1
2 −

1
2 −

1
2

−
1
2

1
2 −

1
2 −

1
2

1
2

1
2

1
2 −

1
2

 and ρ
(
q
)
=


−

1
2 −

1
2

1
2 −

1
2

1
2 −

1
2

1
2

1
2

−
1
2 −

1
2 −

1
2

1
2

1
2 −

1
2 −

1
2 −

1
2


are 4−potent matrices.

iii) For x = 1
2 f1 − 1

2 f2 +
√

2
2 f3 = cos π2 + θ sin π2 , where θ = f1− f2+

√
2 f3

2 . We obtain that x4 = 1, then x5 = x
and x is 5−potent element. The matrices

φ
(
q
)
=


0 −

1
2

1
2 −

√
2

2
1
2 0 −

√
2

2 −
1
2

−
1
2

√
2

2 0 −
1
2√

2
2

1
2

1
2 0

 and ρ
(
q
)
=


0 −

1
2

1
2 −

√
2

2
1
2 0

√
2

2
1
2

−
1
2 −

√
2

2 0 1
2√

2
2 −

1
2 −

1
2 0


are 5−potent matrices.
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Remark 8. In the following, we consider the quaternion split algebraH (a, b) or the octonion split algebra
O (a, b, c) over K = R. The result from [1], Proposition 1 is also true for these algebras and can be proved
by a straightforward calculation. Indeed, if an element x ∈ H (a, b) or x ∈ O (a, b, c) is k−potent with nx = 0
and tx , 0, it results that: x2 = txx ⇒ x3 = txx2 = t2

xx, therefore x = xk = tk−1
x x and tk−1

x = 1, then tk
x = tx is

k-potent overR. We get tx = 1 or tx = −1 and x0 =
tx
2 . We have that t2

x = tx or t3
x = tx, therefore there are only

idempotent and tripotent elements in split algebrasH (a, b) or O (a, b, c) over R.
Example 9.
i) We consider the split quaternion algebra H (1, 1) and the quaternion q = 1

2
(
1 + f1 + f2 + f3

)
, with

n
(
q
)
= 0. We have that the matrices

φ
(
q
)
=


1
2

1
2

1
2 −

1
2

1
2

1
2

1
2 −

1
2

1
2 −

1
2

1
2

1
2

1
2 −

1
2

1
2

1
2

 and ρ
(
q
)
=


1
2

1
2

1
2 −

1
2

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2 −

1
2

1
2

1
2 −

1
2

1
2

 ,
are idempotent matrices. For w = 1

2
(
−1 + f1 + f2 + f3

)
, the matrices

φ (w) =


−

1
2

1
2

1
2 −

1
2

1
2 −

1
2

1
2 −

1
2

1
2 −

1
2 −

1
2

1
2

1
2 −

1
2

1
2 −

1
2

 and ρ (w) =


−

1
2

1
2

1
2 −

1
2

1
2 −

1
2 −

1
2

1
2

1
2

1
2 −

1
2 −

1
2

1
2

1
2 −

1
2 −

1
2


are tripotent matrices.

For z = 1
2

(
f1 + f2 +

√
2 f3

)
, the matrices

φ (z) =


0 1

2
1
2 −

√
2

2
1
2 0

√
2

2 −
1
2

1
2 −

√
2

2 0 1
2√

2
2 −

1
2

1
2 0

 and ρ (z) =


0 1

2
1
2 −

√
2

2
1
2 0 −

√
2

2
1
2

1
2

√
2

2 0 −
1
2√

2
2

1
2 −

1
2 0


are nilpotent matrices with 2 as a nilpotency index.

ii) If we consider the split quaternion algebraH (2, 3) and the quaternion q1 =
1
2

(
1 + f1 + f2 +

√
6

3 f3
)
, with

n
(
q1

)
= 0,we have that the matrices

φ
(
q1

)
=


1
2 1 3

2 −
√

6
1
2

1
2

√
6

2 −
3
2

1
2 −

√
6

3
1
2 1

√
6

6 −
1
2

1
2

1
2

 and ρ
(
q1

)
=


1
2 1 3

2 −
√

6
1
2

1
2 −

√
6

2
3
2

1
2

√
6

3
1
2 −1

√
6

6
1
2 −

1
2

1
2


are idempotent.

If we take q2 =
1
2

(
−1 + f1 + f2 +

√
6

3 f3
)
, with n

(
q2

)
= 0,we have that the matrices

φ
(
q1

)
=


−

1
2 1 3

2 −
√

6
1
2 −

1
2

√
6

2 −
3
2

1
2 −

√
6

3 −
1
2 1

√
6

6 −
1
2

1
2 −

1
2

 and ρ
(
q1

)
=


−

1
2 1 3

2 −
√

6
1
2 −

1
2 −

√
6

2
3
2

1
2

√
6

3 −
1
2 −1

√
6

6
1
2 −

1
2 −

1
2


are tripotent.
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If we take q3 =
1
2

(
1 +
√

2 f1 + f2 + f3
)
, the matrices

φ
(
q3

)
=


1
2

√
2 3

2 −3
√

2
2

1
2

3
2 −

3
2

1
2 −1 1

2

√
2

1
2 −

1
2

√
2

2
1
2

 and ρ
(
q3

)
=


1
2

√
2 3

2 −3
√

2
2

1
2 −

3
2

3
2

1
2 1 1

2 −
√

2
1
2

1
2 −

√
2

2
1
2


are idempotent. For q4 =

1
2

(
−1 +

√
2 f1 + f2 + f3

)
, we obtain the following tripotent matrices

φ
(
q4

)
=


−

1
2

√
2 3

2 −3
√

2
2 −

1
2

3
2 −

3
2

1
2 −1 −

1
2

√
2

1
2 −

1
2

√
2

2 −
1
2

 and ρ
(
q4

)
=


−

1
2

√
2 3

2 −3
√

2
2 −

1
2 −

3
2

3
2

1
2 1 −

1
2 −

√
2

1
2

1
2 −

√
2

2 −
1
2

 .

Conclusions. The k−potent matrices have many applications in manny fields of research as for example
combinatorics and graph theoty, control theory, etc. For this reason, we considered that a procedure to
obtain some example of k−potent matrices of order 4 or 8, over the real field or over the field Zp, with p a
prime number, is very usefull. The connections with quaternions and octonins give us such examples. For
a further research, we will study the possibility to obtain new procedures which allow us to obtain new
classes and examples of k−potent matrices.
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