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Remarks regarding some special matrices
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Abstract. In this paper, by using matix representation for quaternions and octonions, we provide a
procedure to obtain some example of k—potent matrices of order 4 or 8, over the real field or over the field
Z,, with p a prime number.

1. Introduction

In this paper, in the study of k—potent elements we extend the results obtained in [1] to generalised
quaternion algebras and generalised octonion algebras. As an application, by using the matrix represen-
tations for quaternions and octonions, we give examples of classes of matrices which are k—potents and a
procedure to find such examples.

The paper is organised as follows: in the second paragraph we present matrix representations and their
properties which can be used to provide examples of k—potent matrices and in the part three we study

k—potents elements in quaternion algebras and octonion algebras over the real field. The paper end with
conclusions and an idea for a further research.

2. Matrix representation

In this paper, the field K is considered with characteristic different from two. In the following, we will
consider the quaternion algebra over an arbitrary field K.

For two elements a,b € K, we define a generalized quaternion algebra, denoted by H(x, §) = (”Yb), with
basis {1, f1, f», f3} and multiplication given in the following table:

|1 A L f
111 £ L f3
flh a fsaf
Ll —fs b -bh

f3 f3 —(Il}z bfl —ab
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If g€ H(a,b), g = q0 + q1.f1 + 922 + 33, then
g=q0—q1h —q2f2—q3f3

is called the conjugate of the element g. For g4 € H(a, b), we consider the following elements:

t(@)=g+q€kK

and

n(q) = q7 = 9 — aq; — by + abg; € K,

called the trace, respectively, the norm of the element g € H(a, b). It follows that
@+Dq =" +79=¢"+n(q)-1

and
g —t(@)q+n(q) = 0,Yq € H(a,b),

therefore the generalized quaternion algebra is a quadratic algebra.
If, for x € H(a, b), the relation n (x) = 0 implies x = 0, then the algebra H(g, b) is a division algebra. A

quaternion non-division algebra is called a split algebra.
Using the above notations, we remark that H (-1, -1) = (%) is a division algebra.
A generalized octonion algebra over an arbitrary field K, with charK # 2, is an algebra of dimension 8,

denoted O(a, b, ¢), with basis {1, fi, ..., fz} and multiplication given in the following table:

Il 1] Al A B[ Al K] | F |
1 1 h f f3 fa fs fo fr
a f3 afp fs | af - f7 —afe
LAl A -5 b -bf | fe fr bfs bfs
f3 f3 —Ilfg bfl —ab f7 a f5 —bf5 —ab f4
ol fa | -6 ~fo | - F c —ch | —ch —cfs
fs || fs | afa| —f7 | -afs | ch -ac cfs acfr
f6 f6 f7 - bf4 bf5 Cf2 t Cf3 -bc - bCf1
f7 f7 af6 —bf5 llbf4 Cf3 —LZsz bCf] abc

The algebra O(g, b, ¢) is a non-commutative and a non-associative algebra, but it is alternative, flexible
and power-associative.

IfxeO@b,c),x=xo+x1fi+x2fo+x3f3+xafa+X5f5+Xefc+x7f7, thenx =xg—x1f1 —Xofo —X3f3 —Xafs —
X5 f5 — X6 fo — X7 f7 is called the conjugate of the element x. For x € O(g, b, ¢), we define the elements:
t(x) =x+x€ekK
and
n(x) =xx = xg - ax% - bx% + abx§ - cx?1 + acxé + bcxé - abcx% e K.
These elements are called the trace, respectively, the norm of the element x € O(a, b, c). It follows that

(x+X)x =x*+xx=x>+nx)-1
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and
¥ —t(x)x+n(x)=0,YxexeO@,b,c),

therefore the generalized octonion algebra is a quadratic algebra.

If, for x € O(a, b, c), the relation n (x) = 0 implies x = 0, then the algebra O(a, b, ) is a division algebra (
see [3] and [4]).

If we takea = b = ¢ = -1, K = R, then we obtain H (-1, -1), the quaternion division algebra, usually
denoted by H and octonion division algebra O (-1, -1, —1), usually denoted by O. For example, by taking

a=-1land b =1,K = R, we obtain a split quaternion algebra. In the following, we will denote Hx = (%)

and Ok = (%) For other details regarding properties of quaternions over an arbitrary field, the reader
is referred to [4], [6], [2], p. 431-449, etc.

We know that a finite-dimensional associative algebra A over an arbitrary field K is algebraically
isomorphic to a subalgebra of a matrix algebra over the same field K. Therefore, each element a € A has a
matrix representation. That means, there is a map f : A — M, (K) such that f (x) = M, € M, (K), where
dimA = n. For an arbitrary quaternion algebra H (g, b), the map

@ :H(,b) > My (K)

qo aqr  bgy —abgs

| g bz by
P@=| 0 _ags q ag [|1€H@D), (1)

B —42 0 4o

is called the left representation and the map

p:H(a,b) - My (K)

qo aqn  bgy  —abgs

g1 q0 —bgs by
= ,qg€H(a,b), 2
P@D=\ 0 ass g0 —agq |/TEH@D) (2)

3 92 -0 o

where q = go + g1 1 + q2f2 + g3 f3, is called the right representation ( see [5]).

In the same paper [5], were defined, for real octonions, two representations maps, left and right rep-
resentations, by using the maps ¢ and p, defined on real quaternions. These maps can be defined for all
octonion algebras O (g, b, ¢) over an arbitrary field K, namely

®:0(a,b,c) > Mg(K),
| &) -p@’)Es
®@) = ( @ (x")Ey p(x’) )

the left representation, where the octonion x can be written under the form x = x’+x” f , with x’, x” € H(a, ),
by using the Cayley-Dickson process. In the same way, we define the right representation

W:0(a,b,c) > Mg(K),
‘I’(x):( p ) *”(_9‘7) )
p)  p)

where X/, X"’ are the conjugates of the quaternions x” and x”” and E4 = diag (1,-1,-1, -1).
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Forx e O (ﬂ, b, C), X = Xp +X1f1 +fo2 +X3f3 +X4f4 +X5f5 +x6f6 +X7f7 with {1, f1, ceeey f7} the base in O (ﬂ, b, C),
we have
Xo ax;  bxo, —abxs c¢xy —acxs —bcxg abcxy
X1 Xo bxs —-bx, cxs —cxg bexy —bexg
Xy —aX3 X0 axy CXg —ACX7 —CX4 acxs
X3 —X2 X1 X0 CXy —CXg CXs5 —CX4
D(x) = _ —b b b —ab 3)
X4 axs X6 aovxy X0 axy X2 avxs
X5 —X4 —bX7 bx6 X1 X0 —bX3 bXQ
X6 axy —X4 —aXs X2 axs X0 —axq
X7 X6 —X5 —X4 X3 X2 —X1 X0
and
xo ax1  bxo, —abxs cx4 —acxs —bcxg abcxy
X1  xg —=bxs bx, —cx5 cxg —bcxy  bexg
X2 axs X0 —axXq —CXg acxy CX4 —acXs
X3 X2 —X1 X0 —CXy CXe —CX5 CXy
Y@= bxs  —ab —ax,  —bx, ab @)
4 axs X6 aoxy X0 axi X2 aovxs
X5 X4 bX7 —bx6 —X1 X0 bX3 —bJCQ
Xe —0X7 X4 axs —X2 —axs3 X0 axq
X7 —Xe X5 X4 —X3 —X2 X1 X0

Proposition 1. ([5], Lemma 1.2) With the above notations, for € € {¢, p}, we have:

De(x+y)=e@+e(y),
i) e(xy) = e () e(y),
iii) e (Ax) = de (x), A €K e(1) = L4

iv)e(®) =T (x)

v) e (x‘l) =1 (x)
vi) e (x) = ¢ (y) if and only if x = y, with x, y € H.

We remark that the above properties are proved in the real case for division algebra IH, but these are
true in the general case, for an arbitrary field with characteristic different from 2. Properties i), iii), iv) and
v) are also satisfied for the maps @ and WV over reals. Moreover, the following properties were proved over

the real field.

Proposition 2. ([5],Theorem 2.5, Theorem 2.9, Theorem 2,10, Theorem 2.11)
With the above notations, for € € {®, WV}, we have

De(x+y)=ec@)+e(y),

i) e (xz) = ¢ (x)?

i) € (xyx) = € () € (1) € (),

iv)e(Ax) =Ade(x),A e K e(1) =13

v)e(x@) = el (x)

vi) € (x) = e (y) if and only if x = y, where x, y € O.

Properties ii) and iii) from the above proposition were proved by using alternativity and the the Moufang
identities. But, since Moufang identities are true in any octonion algebra over a field of characteristic not
two (see [4]), these properties are also true for K = Z,,, p a prime number, p # 2.

Proposition 3. With the notations from the above proposition, we have that
e(x) =¢€"(x),

for x € O(a, b, ¢) over an arbitrary field K and n a positive integer.
Proof. We use induction. From condition ii) from the above proposition, taking x = y, we have
€ (x3) = &2 (x). From condition iii), for y = x?, we have ¢ (x4) = ¢*(x) and so on.
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In the paper [1], we studied some properties of k—potent elements over algebras obtained by the Cayley-
Dickson process.

Definition 4.

i) The element x in the ring R is called nilpotent if there is a positive integer n such that x” = 0. If the
number 7 is the smallest with this property, then it is called the nilpotency index.

ii) The element x in the ring R is called a k-potent element, for k > 1, a positive integer, if k is the smallest
number such that x* = x. The number k is called the k-potency index. For k = 2, we have idempotent
elements, for k = 3, we have tripotent elements, and so on.

Remark 5. From the above definition and Proposition 3, if x € H(a,b) or x € O(a,b,¢c) is a k—potent
element, it results that the matrices ¢ (x), for € € {, p} or € € {®, W} are k—potent matrices over the field K.

Example 6. i) By using some results obtained in [1], we consider quaternions over the field K = Zs5 and
the element x = 2 + 3i + j + 3k which is a 5—potent element over Hz,. Indeed, x =2 +3y,y =i+ 2j +k, with

y? = -1 and n, = 1. Therefore, x?> = 2y and x* = 1. The matrices
2 -3 -1 -3 2 -3 -1 -3

3 2 =3 1 3 2 3 -1

PO=11 3 o 3|wdp@={1 3 5 3

3 -1 3 2 31 -3 2

are 5—potent matrices, that means ¢* (z) = p* (z) = L.
ii) With the same arguments as above, if we consider octonions over the field K = Z;3 and the element
x€0gz,, x=3+2fi+ fo+ f3+ fa+ f5+ fo + f7, we obtain that x is a 13—potent element. The matrices

3 -2 -1 -1 -1 -1 -1 -1

2 3 -1 1 -1 1 1 -1
1 1 3 -2 -1 -1 1 1
1 -1 2 3 -1 1 -1 1
P@=17 17 1 1 3 -2 -1 -1
1 -1 1 -1 2 3 1 -1
1 -1 -1 1 1 -1 3 2
17 1 -1 -1 1 1 -2 3
and
3 2 -1 -1 -1 -1 -1 -1
2 3 1 -1 1 -1 -1 1
1 -1 3 2 1 1 -1 -1
1 1 -2 3 1 -1 1 -1
YW={1 41 49 9 3 2 1 1
1 1 -1 1 -2 3 -1 1
11 1 -1 -1 1 3 =2
1 -1 1 1 -1 -1 2 3

are also 13-potent matrices.

3. k-potents elements in quaternion algebras and octonion algebras over the real field

In the following, we will consider H and O the real division quaternion algebra and the real division
octonion algebra. Let A € {H, O}. If x € A. x # 0, is a k—potent element, therefore xk = x. Since A is a
division algebra, we have that x is an invertible element, therefore n, # 0 and k=1 = 1. Tt is clear from here
that a k—potent element is a solution of the equation

=1, (5)
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In the following, we will provide solutions of this equation. From relation (5), we obtain that n%™! = 1.
Since #ny is a positive real number, we obtain that n, = 1. Let x € H, x = xo + x1f1 + X2/ + x3f3, with
ne = x5+ x5 + x5+ x5 = 1,and x, x1, X2, x3 € (=1, 1). We denote by

cosa = xg,sina =[x + X3 + 13,

_ X1fi +X2f» +x3f3

’2 2 2
x1+x2+x3

and the element x can be write under the form

6 € H, with 6% = —1.

x =cosa + Osina.

Itis clear that x2 = (cosa + Osina)® = cos? a—sin® O+ (2 cos asina)0 = cos 2a+ 0 sin 2a. By using induction,
we obtain that

x" = cosna + Osinna.

Therefore, from the above relation, the element x € H satisfing condition x*~1 = 1 has the form

+ Osin

X = COS Tt Tt
B k-1 k—1"

Example 7. i) We consider x = % + % fi+ % fo+ % f3 = cos 3 + Osin 5, where 0 = JL\/%% We obtain that

x0=1,thenx’ =xand xisa 7—potent element. Therefore, the matrices

11 1 1 11 1 1
2 2 2 2 2 2 2 2

i 7° 1o O G R |

_ 2 2 2 2 — 2 2 2 2
p=1 & A |andp)=1 * § 7
2 2 2 2 2 2 2 2

1 4 1 1 1 °f A i

2 2 2 2 2 2 2 2

are 7—potent matrices.

ii)Forx=-1+1fi-1f+1fs=cos +0sinZ, where = hohth We obtain that x° = 1, then ¥* = x

V3
and x is 4—potent element. The matrices
-1 _1 1 _1 - _1 1 _1
2 T2 2 2 2 T2 2 2
L1 _1 _1 L _1 1 1
- 2 2 T2 T2 = 2 2 2 2
p@= A2 7 _i _i|andp@=| A 1 A 1
2 2 2 2 2 2
TR O G | PR S |
2 2 2 2 2 2 T2 T2

are 4—potent matrices.

iii) Forx =1/ — 31 + %ifg, = cos § + Osin %, where 0 = w We obtain that x* = 1, then x° = x
and x is 5—potent element. The matrices

0 -1 1 N2 o -1 1 _\
2 2 2 2 2 2
1 o0 -2 _1 1 g M2 1
p@D=| % 02 1o |andp@=| % 5 é 1
b1 1 Sl 1,
- 2z 3 0 - 2 2 0

are 5—potent matrices.
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Remark 8. In the following, we consider the quaternion split algebra H (a, b) or the octonion split algebra
O(a,b,c) over K = R. The result from [1], Proposition 1 is also true for these algebras and can be proved
by a straightforward calculation. Indeed, if an element x € H(a,b) or x € O (g, b, c) is k—potent with n, = 0
and t, # 0, it results that: x> = t,x = x® = t,x? = t2x, therefore x = x* = tf"Ix and t*! = 1, then t = t, is
k-potent over R. We getf, =1ort, = -1land xo = %‘ We have that {2 = t, or £2 = t,, therefore there are only
idempotent and tripotent elements in split algebras H (4, b) or O (a, b, c) over R.

Example 9.

i) We consider the split quaternion algebra IH(1,1) and the quaternion g = %(1 + fi + fo + f3), with
n(g) = 0. We have that the matrices

111 1 111 1
2 2 2 2 2 2 2 2
T 1 1 _1 [ T
— 2 2 2 2 — 2 2 2 2
e@=l1 A 1 ¢ |andp@=1 1 + * |
2 2 2 2 2 2 2 2
111 1 [ S
2 2 2 2 2 2 2 2

are idempotent matrices. For w = 1 (-1 + fi + f + f3), the matrices

_1 1 1 _1 _1 1 1 _1

2 2 2 2 2 2 2 2

1 _1 1 _1 1 1 _1 1

_ 2 2 2 2 — 2 2 2 2

pw)=| 1 1 *» ¢ |andp@)=| T £ 1 A

2 2 2 2 2 2 2 2

1 _1 1 _1 1 I _1 _1

2 2 2 2 2 2 2 2

are tripotent matrices.
Forz = %(fl +h+ \/Efg), the matrices
1 1 _\2 1 1 _\2
O 2 2 2 0 2 2 2
1 9 ¥ _1 1 9 ¥ 1
— 2 2 2 — 2 2 2
v@=1 1 v o 1 |™e@= T u J 2
2 2 2 2 2 2
B O 2 1 1
2 2 2 2 2 2

are nilpotent matrices with 2 as a nilpotency index.
ii) If we consider the split quaternion algebra H (2, 3) and the quaternion g; = 1 (1 +fit+ o+ % f3), with

n (41) = 0,we have that the matrices

1 3 1 3
> 1 5 -6 5 1 5 -6

1 1 N6 _3 1 1 _N6e 3

_ 2 2 2 2 _ 2 2 2 2

2 (ql) = 1 _ﬁ 1 1 and P(ql) = 1 ﬁ 1 1
2 3 2 2 3 2

N 1 1 1 N6 1 1 1

6 2 2 2 6 2 2 2

are idempotent.

If we take o = % (—1 + A+ H+ %6 f3), with n(g2) = 0,we have that the matrices

1 3 1 3
-1 1 3 -6 -1 1 3 -6

1 _1 N6 _3 1 _1 _N6 3

_ 2 2 2 2 _ 2 2 2 2

(P(ql) = 1 _i@ 1 1 andp(ql) - 1 ﬁ 1 1
2 3 2 2 3 2

N 1 1 _1 Mo 1 1 _1

6 2 2 2 6 2 2 2

are tripotent.
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If we take g3 = 3 (1 + V2fi+ fo + f3), the matrices
3 V2 3 -3 1 V2 3 -3
M1 3 _3 M1 3 3
pa)=| 3 3 7 A |mde@=| T 2 P 2
3 -1 3 V2 11 1 -\
1 _1 N2 1 11 _M2 1
2 2 2 2 2 2 2 2

are idempotent. For g4 = 1 (—1 + V2fi + fo+ f3), we obtain the following tripotent matrices
1

-1 V2 3 -3 -1 V2 & -3
o133 B -
| 2 2 2 2 d -| 2 2 2 2

¢ (q4) % -1 _% \2 and p (44) % 1 _% -2
SR R B 11 N2 g
2 2 72 2 2 2 2 2

Conclusions. The k—potent matrices have many applications in manny fields of research as for example
combinatorics and graph theoty, control theory, etc. For this reason, we considered that a procedure to
obtain some example of k—potent matrices of order 4 or 8, over the real field or over the field Z,, with p a
prime number, is very usefull. The connections with quaternions and octonins give us such examples. For
a further research, we will study the possibility to obtain new procedures which allow us to obtain new
classes and examples of k—potent matrices.
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this paper.
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