Filomat 39:13 (2025), 4423–4430 https://doi.org/10.2298/FIL2513423F

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Remarks regarding some special matrices

Cristina Flaut^{a,*}, Andreea Baias^b

^aFaculty of Mathematics and Computer Science, Ovidius University, Bd. Mamaia 124, 900527, Constanța, România ^bPhD student at Doctoral School of Mathematics, Ovidius University of Constanța, România

Abstract. In this paper, by using matix representation for quaternions and octonions, we provide a procedure to obtain some example of *k*-potent matrices of order 4 or 8, over the real field or over the field \mathbb{Z}_p , with *p* a prime number.

1. Introduction

In this paper, in the study of k-potent elements we extend the results obtained in [1] to generalised quaternion algebras and generalised octonion algebras. As an application, by using the matrix representations for quaternions and octonions, we give examples of classes of matrices which are k-potents and a procedure to find such examples.

The paper is organised as follows: in the second paragraph we present matrix representations and their properties which can be used to provide examples of k-potent matrices and in the part three we study k-potents elements in quaternion algebras and octonion algebras over the real field. The paper end with conclusions and an idea for a further research.

2. Matrix representation

In this paper, the field *K* is considered with characteristic different from two. In the following, we will consider the quaternion algebra over an arbitrary field *K*.

For two elements $a, b \in K$, we define a generalized quaternion algebra, denoted by $\mathbb{H}(\alpha, \beta) = \left(\frac{a,b}{K}\right)$, with basis $\{1, f_1, f_2, f_3\}$ and multiplication given in the following table:

•	1	f_1	f_2	f_3
1	1	f_1	f_2	f_3
f_1	f_1	а	f_3	af ₂
f_2	f_2	$-f_3$	b	$-bf_1$
f_3	f_3	$-af_2$	bf_1	-ab

2020 Mathematics Subject Classification. Primary 17A35; Secondary 17A35.

Keywords. special matrices, Cayley-Dickson process, algebraic structures.

Received: 06 November 2024; Revised: 26 February 2025; Accepted: 28 February 2025

- Communicated by Dijana Mosić
- * Corresponding author: Cristina Flaut

Email addresses: cflaut@univ-ovidius.ro, cristina_flaut@yahoo.com (Cristina Flaut), andreeatugui@yahoo.com (Andreea Baias)

ORCID iDs: https://orcid.org/0000-0003-2714-0583 (Cristina Flaut), https://orcid.org/0009-0004-8162-6212 (Andreea Baias)

If $q \in \mathbb{H}(a, b)$, $q = q_0 + q_1 f_1 + q_2 f_2 + q_3 f_3$, then

$$\overline{q} = q_0 - q_1 f_1 - q_2 f_2 - q_3 f_3$$

is called the *conjugate* of the element *q*. For $q \in \mathbb{H}(a, b)$, we consider the following elements:

$$\mathbf{t}\left(q\right)=q+\overline{q}\in K$$

and

$$\mathbf{n}(q) = q\overline{q} = q_0^2 - aq_1^2 - bq_2^2 + abq_3^2 \in K,$$

called the *trace*, respectively, the *norm* of the element $q \in \mathbb{H}(a, b)$. It follows that

$$(q + \overline{q})q = q^2 + \overline{q}q = q^2 + \mathbf{n}(q) \cdot 1$$

and

$$q^{2} - \mathbf{t}(q)q + \mathbf{n}(q) = 0, \forall q \in \mathbb{H}(a, b),$$

therefore the generalized quaternion algebra is a *quadratic algebra*.

If, for $x \in \mathbb{H}(a, b)$, the relation $\mathbf{n}(x) = 0$ implies x = 0, then the algebra $\mathbb{H}(a, b)$ is a *division* algebra. A quaternion non-division algebra is called a *split* algebra.

Using the above notations, we remark that $\mathbb{H}(-1, -1) = \left(\frac{-1, -1}{\mathbb{R}}\right)$ is a division algebra.

A generalized octonion algebra over an arbitrary field K, with *charK* \neq 2, is an algebra of dimension 8, denoted O(a, b, c), with basis {1, $f_1, ..., f_7$ } and multiplication given in the following table:

·	1	f_1	f2	f3	f_4	f5	f ₆	f7
1	1	f_1	f_2	f_3	f_4	f_5	f ₆	f7
f_1	f_1	α	f3	af ₂	f_5	af ₄	— <i>f</i> 7	-af ₆
f_2	f_2	$-f_3$	b	$-bf_1$	f_6	f7	bf_4	bf_5
f_3	f_3	-af ₂	bf_1	–ab	f_7	af ₆	$-bf_5$	$-abf_4$
f_4	f_4	$-f_5$	$-f_{6}$	- f ₇	С	$-cf_1$	$-cf_2$	$-cf_3$
f_5	f_5	-af ₄	$-f_{7}$	- a f ₆	cf_1	-ac	cf ₃	ac f ₂
f_6	f_6	f7	$-bf_4$	bf_5	cf ₂	$-cf_3$	-bc	$-bcf_1$
f7	f7	af ₆	$-bf_5$	abf4	cf ₃	-acf ₂	bcf_1	abc

The algebra O(a, b, c) is a non-commutative and a non-associative algebra, but it is *alternative*, *flexible* and *power-associative*.

If $x \in \mathbb{O}(a, b, c)$, $x = x_0 + x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4 + x_5f_5 + x_6f_6 + x_7f_7$, then $\overline{x} = x_0 - x_1f_1 - x_2f_2 - x_3f_3 - x_4f_4 - x_5f_5 - x_6f_6 - x_7f_7$ is called the *conjugate* of the element *x*. For $x \in \mathbb{O}(a, b, c)$, we define the elements:

$$\mathbf{t}(x) = x + \overline{x} \in K$$

and

$$\mathbf{n}(x) = x\overline{x} = x_0^2 - ax_1^2 - bx_2^2 + abx_3^2 - cx_4^2 + acx_5^2 + bcx_6^2 - abcx_7^2 \in K.$$

These elements are called the *trace*, respectively, the *norm* of the element $x \in O(a, b, c)$. It follows that

$$(x + \overline{x}) x = x^{2} + \overline{x}x = x^{2} + \mathbf{n}(x) \cdot 1$$

$$x^{2} - \mathbf{t}(x) x + \mathbf{n}(x) = 0, \forall x \in x \in \mathbb{O}(a, b, c),$$

therefore the generalized octonion algebra is a *quadratic* algebra.

If, for $x \in \mathbb{O}(a, b, c)$, the relation $\mathbf{n}(x) = 0$ implies x = 0, then the algebra $\mathbb{O}(a, b, c)$ is a *division* algebra (see [3] and [4]).

If we take a = b = c = -1, $K = \mathbb{R}$, then we obtain $\mathbb{H}(-1, -1)$, the quaternion division algebra, usually denoted by \mathbb{H} and octonion division algebra $\mathbb{O}(-1, -1, -1)$, usually denoted by \mathbb{O} . For example, by taking a = -1 and b = 1, $K = \mathbb{R}$, we obtain a split quaternion algebra. In the following, we will denote $\mathbb{H}_K = \left(\frac{-1, -1}{K}\right)$ and $\mathbb{O}_K = \left(\frac{-1, -1, -1}{K}\right)$. For other details regarding properties of quaternions over an arbitrary field, the reader is referred to [4], [6], [2], p. 431-449, etc.

We know that a finite-dimensional associative algebra A over an arbitrary field K is algebraically isomorphic to a subalgebra of a matrix algebra over the same field K. Therefore, each element $a \in A$ has a matrix representation. That means, there is a map $f : A \to M_n(K)$ such that $f(x) = M_x \in M_n(K)$, where dimA = n. For an arbitrary quaternion algebra $\mathbb{H}(a, b)$, the map

$$\varphi:\mathbb{H}(a,b)\to\mathcal{M}_4(K)$$

$$\varphi(q) = \begin{pmatrix} q_0 & aq_1 & bq_2 & -abq_3\\ q_1 & q_0 & bq_3 & -bq_2\\ q_2 & -aq_3 & q_0 & aq_1\\ q_3 & -q_2 & q_1 & q_0 \end{pmatrix}, q \in \mathbb{H}(a, b),$$

$$(1)$$

is called the left representation and the map

$$\rho: \mathbb{H}(a, b) \to \mathcal{M}_{4}(K)$$

$$\rho(q) = \begin{pmatrix} q_{0} & aq_{1} & bq_{2} & -abq_{3} \\ q_{1} & q_{0} & -bq_{3} & bq_{2} \\ q_{2} & aq_{3} & q_{0} & -aq_{1} \\ q_{3} & q_{2} & -q_{1} & q_{0} \end{pmatrix}, q \in \mathbb{H}(a, b), \qquad (2)$$

where $q = q_0 + q_1f_1 + q_2f_2 + q_3f_3$, is called *the right representation* (see [5]).

In the same paper [5], were defined, for real octonions, two representations maps, left and right representations, by using the maps φ and ρ , defined on real quaternions. These maps can be defined for all octonion algebras O(a, b, c) over an arbitrary field *K*, namely

$$\Phi:\mathbb{O}(a,b,c)\to\mathcal{M}_8(K)\,,$$

$$\Phi(x) = \begin{pmatrix} \varphi(x') & -\rho(x'') E_4 \\ \varphi(x'') E_4 & \rho(x') \end{pmatrix},$$

the left representation, where the octonion *x* can be written under the form x = x' + x'' f, with $x', x'' \in \mathbb{H}(a, b)$, by using the Cayley-Dickson process. In the same way, we define the right representation

$$\Psi: \mathbb{O}(a, b, c) \to \mathcal{M}_8(K),$$

$$\Psi\left(x\right) = \left(\begin{array}{cc} \rho\left(x'\right) & -\varphi\left(\overline{x''}\right) \\ \varphi\left(x'\right) & \rho(\overline{x'}) \end{array}\right),$$

where $\overline{x'}$, $\overline{x''}$ are the conjugates of the quaternions x' and x'' and $E_4 = diag(1, -1, -1, -1)$.

For $x \in \mathbb{O}(a, b, c)$, $x = x_0 + x_1f_1 + x_2f_2 + x_3f_3 + x_4f_4 + x_5f_5 + x_6f_6 + x_7f_7$ with $\{1, f_1, \dots, f_7\}$ the base in $\mathbb{O}(a, b, c)$, we have

$$\Phi(x) = \begin{pmatrix} x_0 & ax_1 & bx_2 & -abx_3 & cx_4 & -acx_5 & -bcx_6 & abcx_7 \\ x_1 & x_0 & bx_3 & -bx_2 & cx_5 & -cx_4 & bcx_7 & -bcx_6 \\ x_2 & -ax_3 & x_0 & ax_1 & cx_6 & -acx_7 & -cx_4 & acx_5 \\ x_3 & -x_2 & x_1 & x_0 & cx_7 & -cx_6 & cx_5 & -cx_4 \\ x_4 & -ax_5 & -bx_6 & abx_7 & x_0 & ax_1 & bx_2 & -abx_3 \\ x_5 & -x_4 & -bx_7 & bx_6 & x_1 & x_0 & -bx_3 & bx_2 \\ x_6 & ax_7 & -x_4 & -ax_5 & x_2 & ax_3 & x_0 & -ax_1 \\ x_7 & x_6 & -x_5 & -x_4 & x_3 & x_2 & -x_1 & x_0 \end{pmatrix}$$
(3)

and

$$\Psi(x) = \begin{pmatrix} x_0 & ax_1 & bx_2 & -abx_3 & cx_4 & -acx_5 & -bcx_6 & abcx_7\\ x_1 & x_0 & -bx_3 & bx_2 & -cx_5 & cx_4 & -bcx_7 & bcx_6\\ x_2 & ax_3 & x_0 & -ax_1 & -cx_6 & acx_7 & cx_4 & -acx_5\\ x_3 & x_2 & -x_1 & x_0 & -cx_7 & cx_6 & -cx_5 & cx_4\\ x_4 & ax_5 & bx_6 & -abx_7 & x_0 & -ax_1 & -bx_2 & abx_3\\ x_5 & x_4 & bx_7 & -bx_6 & -x_1 & x_0 & bx_3 & -bx_2\\ x_6 & -ax_7 & x_4 & ax_5 & -x_2 & -ax_3 & x_0 & ax_1\\ x_7 & -x_6 & x_5 & x_4 & -x_3 & -x_2 & x_1 & x_0 \end{pmatrix}$$
(4)

Proposition 1. ([5], Lemma 1.2) With the above notations, for $\varepsilon \in {\varphi, \rho}$, we have: i) $\varepsilon (x + y) = \varepsilon (x) + \varepsilon (y)$,

i) $\varepsilon (x + y) = \varepsilon (x) + \varepsilon (y)$, ii) $\varepsilon (xy) = \varepsilon (x) \varepsilon (y)$, iii) $\varepsilon (\lambda x) = \lambda \varepsilon (x)$, $\lambda \in K$, $\varepsilon (1) = I_4$ iv) $\varepsilon (\overline{x}) = \varepsilon^T (x)$ v) $\varepsilon (x^{-1}) = \varepsilon^{-1} (x)$ vi) $\varepsilon (x) = \varepsilon (y)$ if and only if x = y, with $x, y \in \mathbb{H}$.

We remark that the above properties are proved in the real case for division algebra \mathbb{H} , but these are true in the general case, for an arbitrary field with characteristic different from 2. Properties i), iii), iv) and v) are also satisfied for the maps Φ and Ψ over reals. Moreover, the following properties were proved over the real field.

Proposition 2. ([5], Theorem 2.5, Theorem 2.9, Theorem 2,10, Theorem 2.11) With the above notations, for $\varepsilon \in \{\Phi, \Psi\}$, we have i) $\varepsilon (x + y) = \varepsilon (x) + \varepsilon (y)$, ii) $\varepsilon (x^2) = \varepsilon (x)^2$ iii) $\varepsilon (xyx) = \varepsilon (x) \varepsilon (y) \varepsilon (x)$, iv) $\varepsilon (\lambda x) = \lambda \varepsilon (x)$, $\lambda \in K$, $\varepsilon (1) = I_8$ v) $\varepsilon (\overline{x}) = \varepsilon^T (x)$ vi) $\varepsilon (x) = \varepsilon (y)$ if and only if x = y, where $x, y \in \mathbb{O}$.

Properties ii) and iii) from the above proposition were proved by using alternativity and the the Moufang identities. But, since Moufang identities are true in any octonion algebra over a field of characteristic not two (see [4]), these properties are also true for $K = \mathbb{Z}_p$, p a prime number, $p \neq 2$.

Proposition 3. With the notations from the above proposition, we have that

 $\varepsilon\left(x^{n}\right)=\varepsilon^{n}\left(x\right),$

for $x \in \mathbb{O}(a, b, c)$ over an arbitrary field K and n a positive integer.

Proof. We use induction. From condition ii) from the above proposition, taking x = y, we have $\varepsilon(x^3) = \varepsilon^3(x)$. From condition iii), for $y = x^2$, we have $\varepsilon(x^4) = \varepsilon^4(x)$ and so on.

4426

In the paper [1], we studied some properties of *k*-potent elements over algebras obtained by the Cayley-Dickson process.

Definition 4.

i) The element *x* in the ring *R* is called *nilpotent* if there is a positive integer *n* such that $x^n = 0$. If the number *n* is the smallest with this property, then it is called the *nilpotency index*.

ii) The element *x* in the ring *R* is called a *k*-potent element, for k > 1, a positive integer, if *k* is the smallest number such that $x^k = x$. The number *k* is called the *k*-potency index. For k = 2, we have idempotent elements, for k = 3, we have tripotent elements, and so on.

Remark 5. From the above definition and Proposition 3, if $x \in \mathbb{H}(a, b)$ or $x \in \mathbb{O}(a, b, c)$ is a *k*-potent element, it results that the matrices $\varepsilon(x)$, for $\varepsilon \in \{\varphi, \rho\}$ or $\varepsilon \in \{\Phi, \Psi\}$ are *k*-potent matrices over the field *K*.

Example 6. i) By using some results obtained in [1], we consider quaternions over the field $K = \mathbb{Z}_5$ and the element x = 2 + 3i + j + 3k which is a 5–potent element over $\mathbb{H}_{\mathbb{Z}_5}$. Indeed, $x = 2 + 3\gamma$, $\gamma = i + 2j + k$, with $\gamma^2 = -1$ and $\mathbf{n}_x = 1$. Therefore, $x^2 = 2\gamma$ and $x^4 = 1$. The matrices

$$\varphi(x) = \begin{pmatrix} 2 & -3 & -1 & -3 \\ 3 & 2 & -3 & 1 \\ 1 & 3 & 2 & -3 \\ 3 & -1 & 3 & 2 \end{pmatrix} \text{ and } \varphi(x) = \begin{pmatrix} 2 & -3 & -1 & -3 \\ 3 & 2 & 3 & -1 \\ 1 & -3 & 2 & 3 \\ 3 & 1 & -3 & 2 \end{pmatrix}$$

are 5-potent matrices, that means $\varphi^4(z) = \rho^4(z) = I_4$.

ii) With the same arguments as above, if we consider octonions over the field $K = \mathbb{Z}_{13}$ and the element $x \in \mathbb{O}_{\mathbb{Z}_{13}}$, $x = 3 + 2f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$, we obtain that x is a 13–potent element. The matrices

$$\Phi(x) = \begin{pmatrix} 3 & -2 & -1 & -1 & -1 & -1 & -1 & -1 \\ 2 & 3 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & 1 & 3 & -2 & -1 & -1 & 1 & 1 \\ 1 & -1 & 2 & 3 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 3 & -2 & -1 & -1 \\ 1 & -1 & 1 & -1 & 2 & 3 & 1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & 3 & 2 \\ 1 & 1 & -1 & -1 & 1 & 1 & -2 & 3 \end{pmatrix}$$

and

are also 13-potent matrices.

3. k-potents elements in quaternion algebras and octonion algebras over the real field

In the following, we will consider \mathbb{H} and \mathbb{O} the real division quaternion algebra and the real division octonion algebra. Let $\mathbb{A} \in \{\mathbb{H}, \mathbb{O}\}$. If $x \in \mathbb{A}$. $x \neq 0$, is a *k*-potent element, therefore $x^k = x$. Since \mathbb{A} is a division algebra, we have that *x* is an invertible element, therefore $n_x \neq 0$ and $x^{k-1} = 1$. It is clear from here that a *k*-potent element is a solution of the equation

$$x^{k-1} = 1.$$
 (5)

In the following, we will provide solutions of this equation. From relation (5), we obtain that $n_x^{k-1} = 1$. Since n_x is a positive real number, we obtain that $n_x = 1$. Let $x \in \mathbb{H}$, $x = x_0 + x_1f_1 + x_2f_2 + x_3f_3$, with $n_x = x_0^2 + x_1^2 + x_2^2 + x_3^2 = 1$, and $x_0, x_1, x_2, x_3 \in (-1, 1)$. We denote by

$$\cos \alpha = x_0, \sin \alpha = \sqrt{x_1^2 + x_2^2 + x_3^2},$$

$$\theta = \frac{x_1 f_1 + x_2 f_2 + x_3 f_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}} \in \mathbb{H}, \text{ with } \theta^2 = -1.$$

and the element *x* can be write under the form

$$x = \cos \alpha + \theta \sin \alpha.$$

It is clear that $x^2 = (\cos \alpha + \theta \sin \alpha)^2 = \cos^2 \alpha - \sin^2 \theta + (2 \cos \alpha \sin \alpha)\theta = \cos 2\alpha + \theta \sin 2\alpha$. By using induction, we obtain that

 $x^n = \cos n\alpha + \theta \sin n\alpha.$

Therefore, from the above relation, the element $x \in \mathbb{H}$ satisfing condition $x^{k-1} = 1$ has the form

$$x = \cos\frac{2\pi}{k-1} + \theta \sin\frac{2\pi}{k-1}.$$

Example 7. i) We consider $x = \frac{1}{2} + \frac{1}{2}f_1 + \frac{1}{2}f_2 + \frac{1}{2}f_3 = \cos\frac{\pi}{3} + \theta\sin\frac{\pi}{3}$, where $\theta = \frac{f_1 + f_2 + f_3}{\sqrt{3}}$. We obtain that $x^6 = 1$, then $x^7 = x$ and x is a 7-potent element. Therefore, the matrices

$$\varphi(x) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } \rho(x) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

are 7-potent matrices.

ii) For $x = -\frac{1}{2} + \frac{1}{2}f_1 - \frac{1}{2}f_2 + \frac{1}{2}f_3 = \cos\frac{2\pi}{3} + \theta \sin\frac{2\pi}{3}$, where $\theta = \frac{f_1 - f_2 + f_3}{\sqrt{3}}$. We obtain that $x^3 = 1$, then $x^4 = x$ and x is 4-potent element. The matrices

$$\varphi(q) = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } \rho(q) = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

are 4-potent matrices.

iii) For $x = \frac{1}{2}f_1 - \frac{1}{2}f_2 + \frac{\sqrt{2}}{2}f_3 = \cos\frac{\pi}{2} + \theta \sin\frac{\pi}{2}$, where $\theta = \frac{f_1 - f_2 + \sqrt{2}f_3}{2}$. We obtain that $x^4 = 1$, then $x^5 = x$ and x is 5-potent element. The matrices

$$\varphi(q) = \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} \\ \frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & -\frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \text{ and } \varphi(q) = \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} \\ \frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

are 5-potent matrices.

Remark 8. In the following, we consider the quaternion split algebra $\mathbb{H}(a, b)$ or the octonion split algebra $\mathbb{O}(a, b, c)$ over $K = \mathbb{R}$. The result from [1], Proposition 1 is also true for these algebras and can be proved by a straightforward calculation. Indeed, if an element $x \in \mathbb{H}(a, b)$ or $x \in \mathbb{O}(a, b, c)$ is k-potent with $n_x = 0$ and $t_x \neq 0$, it results that: $x^2 = t_x x \Rightarrow x^3 = t_x x^2 = t_x^2 x$, therefore $x = x^k = t_x^{k-1} x$ and $t_x^{k-1} = 1$, then $t_x^k = t_x$ is k-potent over \mathbb{R} . We get $t_x = 1$ or $t_x = -1$ and $x_0 = \frac{t_x}{2}$. We have that $t_x^2 = t_x$ or $t_x^3 = t_x$, therefore there are only idempotent and tripotent elements in split algebras $\mathbb{H}(a, b)$ or $\mathbb{O}(a, b, c)$ over \mathbb{R} .

Example 9.

i) We consider the split quaternion algebra $\mathbb{H}(1,1)$ and the quaternion $q = \frac{1}{2}(1 + f_1 + f_2 + f_3)$, with $\mathbf{n}(q) = 0$. We have that the matrices

$$\varphi(q) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \text{ and } \varphi(q) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

are idempotent matrices. For $w = \frac{1}{2}(-1 + f_1 + f_2 + f_3)$, the matrices

$$\varphi(w) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } \rho(w) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

are tripotent matrices.

For $z = \frac{1}{2} (f_1 + f_2 + \sqrt{2}f_3)$, the matrices

$$\varphi(z) = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} \\ \frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \text{ and } \rho(z) = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} \\ \frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & -\frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

are nilpotent matrices with 2 as a nilpotency index.

ii) If we consider the split quaternion algebra $\mathbb{H}(2,3)$ and the quaternion $q_1 = \frac{1}{2}\left(1 + f_1 + f_2 + \frac{\sqrt{6}}{3}f_3\right)$, with $\mathbf{n}(q_1) = 0$, we have that the matrices

$$\varphi(q_1) = \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} & -\sqrt{6} \\ \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{6}}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{\sqrt{6}}{3} & \frac{1}{2} & 1 \\ \frac{\sqrt{6}}{6} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \text{ and } \rho(q_1) = \begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} & -\sqrt{6} \\ \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{6}}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{\sqrt{6}}{3} & \frac{1}{2} & -1 \\ \frac{\sqrt{6}}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

are idempotent.

If we take $q_2 = \frac{1}{2} \left(-1 + f_1 + f_2 + \frac{\sqrt{6}}{3} f_3 \right)$, with **n** (q_2) = 0, we have that the matrices

$$\varphi(q_1) = \begin{pmatrix} -\frac{1}{2} & 1 & \frac{3}{2} & -\sqrt{6} \\ \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{6}}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{\sqrt{6}}{3} & -\frac{1}{2} & 1 \\ \frac{\sqrt{6}}{6} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } \rho(q_1) = \begin{pmatrix} -\frac{1}{2} & 1 & \frac{3}{2} & -\sqrt{6} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{\sqrt{6}}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{\sqrt{6}}{3} & -\frac{1}{2} & -1 \\ \frac{\sqrt{6}}{6} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

are tripotent.

If we take $q_3 = \frac{1}{2} (1 + \sqrt{2}f_1 + f_2 + f_3)$, the matrices

$$\varphi(q_3) = \begin{pmatrix} \frac{1}{2} & \sqrt{2} & \frac{3}{2} & -3\\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2}\\ \frac{1}{2} & -1 & \frac{1}{2} & \sqrt{2}\\ \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix} \text{ and } \rho(q_3) = \begin{pmatrix} \frac{1}{2} & \sqrt{2} & \frac{3}{2} & -3\\ \frac{\sqrt{2}}{2} & \frac{1}{2} & -\frac{3}{2} & \frac{3}{2}\\ \frac{1}{2} & 1 & \frac{1}{2} & -\sqrt{2}\\ \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}$$

are idempotent. For $q_4 = \frac{1}{2} \left(-1 + \sqrt{2} f_1 + f_2 + f_3 \right)$, we obtain the following tripotent matrices

$$\varphi\left(q_{4}\right) = \begin{pmatrix} -\frac{1}{2} & \sqrt{2} & \frac{3}{2} & -3\\ \frac{\sqrt{2}}{2} & -\frac{1}{2} & \frac{3}{2} & -\frac{3}{2}\\ \frac{1}{2} & -1 & -\frac{1}{2} & \sqrt{2}\\ \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix} \text{and } \rho\left(q_{4}\right) = \begin{pmatrix} -\frac{1}{2} & \sqrt{2} & \frac{3}{2} & -3\\ \frac{\sqrt{2}}{2} & -\frac{1}{2} & -\frac{3}{2} & \frac{3}{2}\\ \frac{1}{2} & 1 & -\frac{1}{2} & -\sqrt{2}\\ \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix}.$$

Conclusions. The *k*-potent matrices have many applications in manny fields of research as for example combinatorics and graph theoty, control theory, etc. For this reason, we considered that a procedure to obtain some example of *k*-potent matrices of order 4 or 8, over the real field or over the field \mathbb{Z}_p , with *p* a prime number, is very usefull. The connections with quaternions and octonins give us such examples. For a further research, we will study the possibility to obtain new procedures which allow us to obtain new classes and examples of *k*-potent matrices.

Acknowledgements. The authors thank the referee for the his/her comments which helped us to improve this paper.

References

- C. Flaut, A. Baias, Some Remarks Regarding Special Elements in Algebras Obtained by the Cayley–Dickson Process over Z_p, Axioms 13 (2024), no. 6, 351.
- [2] C. Flaut, Š. Hošková-Mayerová, D. Flaut, Models and Theories in Social Systems, Springer Nature, 2019.
- [3] R. D. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math. 76 (1954), 435–446.
- [4] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966.
- [5] Y. Tian, Matrix Representations of Octonions and their Applications, 2000.
- [6] J. Voight, Quaternion Algebras, Springer Nature Switzerland AG, 2021. ISBN: 978-3-030-56692-0.