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Abstract. The concept of the bi-dagger matrix was introduced by Hartwig and Spindelböck [8]. In this
paper, we provide some new characterizations of bi-dagger matrices. We prove that the index of a bi-dagger
matrix is less than or equal to 2 and that a matrix is bi-dagger if and only if it is i-EP, and its index is less
than or equal to 2. Specifically, a matrix is bi-dagger if and only if it commutes with its B-T inverse. Finally,
we consider Problem 5 in [8] and establish conditions under which a bi-dagger matrix implies bi-normality.

1. Introduction

In this paper, we use the following notations. Let Cm×n denote the set of all m × n complex matrices; In
denote the identity matrix of order n; A∗, R(A) and rk(A) represent the conjugate transpose, range space (or
column space) and rank of A ∈ Cm×n, respectively. For any A ∈ Cm×n, the Moore-Penrose inverse A† of A is
the unique solution to the following Penrose equations [22]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Given a square matrix A ∈ Cn×n, the index of A (denoted by Ind(A)) is the smallest positive integer k such
that rk

(
Ak+1

)
= rk

(
Ak

)
. The Drazin inverse AD of A is the unique solution to the following equations [22]:

(1k) XAk+1 = Ak, (2) XAX = X, (5) XA = AX. (1)

For the special case of Ind(A) = 1, the unique solution of (1) is called the group inverse of A and denoted as
A#.
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Let A ∈ Cn×n with Ind(A) = 1, it can be proved (see [1]) that there is a unique matrix X ∈ Cn×n such that

AX = AA+, R(X) ⊆ R(A). (2)

The matrix X is called the core inverse of A. A matrix A is said to be core invertible if there exists a matrix
X that is the core inverse of A, and we denote X = A #O.

Subsequently, the notion is extended to any square matrix. Let A ∈ Cn×n with Ind(A) = k, Baksalary and
Trenkler [2] introduced the B-T inverse of A:

A♢ =
(
A2A†

)†
. (3)

Obviously, when k = 1, the B-T inverse coincides with the core inverse [2].

Generalized inverses are one of the main tools for studying special matrices. A matrix A ∈ Cn×n is EP if
AA† = A†A, see [17]. It is easy to check that if A is EP then Ind(A) = 1. Various established characterizations
for EP matrices and operators can be seen in [4, 11, 15, 16, 23, 24]. As extensions of EP matrices, i-EP and
k-EP are introduced in [12–14, 21].

Let A ∈ Cn×n with Ind(A) = k, it is i-EP if Ak is EP, and is k-EP if AkA† = A†Ak. In particular, a matrix

A ∈ Cn×n is bi-dagger if
(
A2

)†
=

(
A†

)2
, is star-dagger if A∗A† = A†A∗ and is bi-normal if AA∗A∗A = A∗AAA∗,

see [8].
In [8], Hartwig and Spindelböck considered the relationships among bi-dagger matrix, bi-normal matrix,

bi-EP matrix and star-dagger, etc. In [12], Malik et al. discussed the relationship between bi-dagger matrix
and k-EP matrix. Baksalary and Trenkler [3, Theorem 3.4] obtained that A is bi-dagger if and only if it
is EP, when the Moore-Penrose inverse A† of A is idempotent. Tian [18, Theorem 4.2] provided some
characterizations of bi-dagger matrices, and proved that for a matrix A with Ind(A) = 1, A is bi-dagger if
and only if it is EP. Ferreyra et al. [6, Theorem 6.6] proved that for a matrix A with Ind(A) = 2, A is bi-dagger
if and only if it is i-EP. More discussions about bi-dagger matrices can be found in [5, 9, 14].

Although the literature discussed the characterization of bi-dagger matrices for matrix indices equal to
one and two, a fundamental problem remains unsolved: What is the range of indices for which a matrix
can be bi-dagger? In Section 3, we determine the range of indices for the bi-dagger matrix and provide two
characterizations of the bi-dagger matrix using the B-T inverse and the i-EP matrix, respectively.

The conclusions in [8] are concise in form, rich in connotation, and have a profound impact. For example,
Meenakshi and Rajian [14] applied bi-dagger and star-dagger to provide a necessary and sufficient condition
for the product of two positive semidefinite matrices to be normal. It is important to emphasize that Hartwig
and Spindelböck listed seven open problems in [8]. This series of profound and interesting questions has
garnered widespread attention.

In this paper, we focus on the fifth problem in [8]:

Problem 1.1. When does bi-dagger imply bi-normal?

Baksalary and Trenkler [3, Theorem 3.4] considered the problem and concluded that A is bi-dagger if
and only if it is bi-normal when the Moore-Penrose inverse A† of A is idempotent. Groß[7, Section 2, Lemma
1] proved that A is bi-dagger if and only if it is bi-normal when the index of A is one. However, as far as
we understand, this problem remains not completely resolved.

We will structure the paper as follows: In Section 2, we will present some preliminary results. Section
3 will cover properties of bi-dagger matrices. In Section 4, we will address Problem 1.1. Finally, we will
conclude in Section 5.

2. Preliminaries

In this paper, we let A ∈ Cn×n, and the singular value decomposition (for short SVD) of A be

A = U
[
ΣA 0
0 0

]
V∗, (4)
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where U,V ∈ Cn×n are unitary matrices, ΣA ∈ Cr×r is a diagonal positive definite matrix, and the rank of A
is r. Denote

U =
[
UA1 UA2

]
, V∗ =

[
V∗A1

V∗A2

]
, ΣA =

[
ΣA1 0

0 ΣA2

]
, (5)

then, by using (4) and (5), the matrix A can be represented in the form of a partitioned matrix as follows

A =
[
UA1 UA2

] [ΣA 0
0 0

] [
V∗A1

V∗A2

]
(6)

=
[
UA1 UA2

] ΣA1 0 0
0 ΣA2 0
0 0 0


[
V∗A1

V∗A2

]
, (7)

where UA1 ∈ C
n×r, UA2 ∈ C

n×(n−r), V∗A1
∈ Cr×n, V∗A2

∈ C(n−r)×n, ΣA1 ∈ C
r1×r1 , ΣA2 ∈ C

r2×r2 , r1 = rk
(
A2

)
and

r1 + r2 = r. Using (6), the reduced SVD can be represented in the form

A = UA1ΣAV∗A1
.

Lemma 2.1 ([10]). Let A,B ∈ Cn×n. The following conditions are equivalent:

(1) (AB)† = B†A†,

(2) there exist essential reduced SVD decompositions A = UA1ΣAV∗A1
and B = UB1ΣBV∗B1

such that

V∗A1
UB1 =

[
Q 0
0 0

]
, (8)

where Q is a unitary matrix or V∗A1
UB1 = 0.

By using (4), the Hartwig-Spindelböck decomposition [2] of a square matrix with the rank r can be
represented in the form

A = U
[
ΣK ΣL
0 0

]
U∗, (9)

where U ∈ Cn×n is unitary, Σ = diag
(
σ1Ir1 , . . . , σtIrt

)
is the diagonal matrix of singular values of A, σ1 > σ2 >

· · · > σt > 0, r1 + r2 + · · · + rt = r, K ∈ Cr×r, L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir (10)

and K = UA1 V∗A1
. Then, the B-T inverse of A is of the form [2]

A♢ = U
[
(ΣK)† 0

0 0

]
U∗. (11)

For A ∈ Cn×n with Ind(A) = k, the core-EP decomposition of A is of the form, see [20]

A = U
[
T S
0 N

]
U∗, (12)

where U ∈ Cn×n is unitary , T is nonsingular and N is nilpotent of index k. When Ind(A) = 1, it is obvious
that N = 0, and the core inverse of A is of the form

A #O = U
[
T−1 0

0 0

]
U∗, (13)
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and the group inverse of A is of the form, see [1]

A# = U
[
T−1 T−2S

0 0

]
U∗. (14)

Applying the core-EP decomposition (12), Wang and Liu [21] gave a characterization of the i-EP matrix.

Lemma 2.2 ([21]). Let A ∈ Cn×n with Ind(A) = k. Then A is i-EP if and only if there exists a unitary matrix U,
such that

A = U
[
T 0
0 N

]
U∗, (15)

where T is non-singular, and N is nilpotent with Ind(N) = k.

Lemma 2.3 ([14]). Let A and B be two positive semidefinite matrices (for short psd). Then the following are
equivalent:

(1) AB is normal;

(2) AB is psd;

(3) AB is bi-dagger and star-dagger.

3. Properties and characterizations of bi-dagger matrices

In this section, we get the range of index for a bi-dagger matrix, and give characterizations of bi-dagger
matrices applying generalized inverses and special matrices.

Theorem 3.1. Let A ∈ Cn×n and
(
A2

)†
=

(
A†

)2
. Then Ind(A) ≤ 2.

Proof. Let A ∈ Cn×n,
(
A2

)†
=

(
A†

)2
, the SVD of A be as in (4), and U and V be partitioned as in (5). Then

applying (6) and Lemma 2.1, we have

A =
[
UA1 UA2

] [ΣA 0
0 0

] [
V∗A1

UA1 V∗A1
UA2

V∗A2
UA1 V∗A2

UA2

] [
U∗A1

U∗A2

]
, (16)

where V∗A1
UA1 is of the form (8) or V∗A1

UA1 = 0.
When V∗A1

UA1 = 0, from (16), we obtain

A =
[
UA1 UA2

] [ΣA 0
0 0

] [
0 V∗A1

UA2

V∗A2
UA1 V∗A2

UA2

] [
U∗A1

U∗A2

]
=

[
UA1 UA2

] [0 ΣAV∗A1
UA2

0 0

] [
U∗A1

U∗A2

]
. (17)

By using (17), it is easy to verify that Ind(A) ≤ 2.
When V∗A1

UA1 , 0, it has the form (8). Then we have

V∗U =
[
V∗A1

V∗A2

] [
UA1 UA2

]
=

 Q 0 Q1
0 0 Q2

Q3 Q4 Q5

 , (18)

where Q is unitary.
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Since V∗U is unitary, we have  Q 0 Q1
0 0 Q2

Q3 Q4 Q5


Q∗ 0 Q∗3

0 0 Q∗4
Q∗1 Q∗2 Q∗5

 = In.

It follows that QQ∗ + Q1Q∗1 = Ir1 and Q2Q∗2 = Ir2 . Since Q is unitary, then Q1 = 0 and Q2 is full row rank.
Similarly, we have Q3 = 0 and Q4 is full column rank. By using (7) and (18), it follow that

A =
[
UA1 UA2

] ΣA1 0 0
0 ΣA2 0
0 0 0


Q 0 0

0 0 Q2
0 Q4 Q5


[
U∗A1

U∗A2

]

=
[
UA1 UA2

] ΣA1 Q 0 0
0 0 ΣA2 Q2
0 0 0


[
U∗A1

U∗A2

]
. (19)

By using (19), it is easy to verify that Ind(A) ≤ 2.

In [6, 18], when Ind(A) ≤ 2, we see that
(
A2

)†
=

(
A†

)2
if and only if A is i-EP. According to Lemma 2.2

and Theorem 3.1, we can obtain the following Theorem 3.2.

Theorem 3.2. Let A ∈ Cn×n, then
(
A2

)†
=

(
A†

)2
if and only if A is i-EP and Ind(A) ≤ 2, i.e. there exists a unitary

U such that

A = U
[
T 0
0 N

]
U∗, (20)

where T is non-singular, and N is nilpotent with Ind(N) ≤ 2.

A problem can be extended from Theorem 3.2: when k > 2, is it true that
(
Ak

)†
=

(
A†

)k
if and only if A

is i-EP and Ind(A) ≤ k? From the following examples, we see that it is not true.

Example 3.3. Let

A =

−
1
2

1
2 0

−
1
2

1
2

2
3

0 0 0

 .
It is easy to get that Ind(A) = 3, A3 = 0 and

(
A3

)†
= 0. Therefore, A is i-EP. Furthermore, we have

A† =

−1 0 0
1 0 0
−

3
2

3
2 0

 , (A†)3
=

−1 0 0
1 0 0
−3 0 0

 .
Thus,

(
A3

)†
,

(
A†

)3
.

Example 3.4. Let

B =


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 .



H. Guan et al. / Filomat 39:13 (2025), 4431–4439 4436

It follows that Ind(B) = 4, B4 = 0 and
(
B4

)†
= 0. Therefore, B is i-EP. Furthermore, we have

B† =


0 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 0

 ,
(
B†

)4
=


0 0 0 0
−1 1 0 0
3 −4 1 0
−2 3 −1 0

 .
Thus,

(
B4

)†
,

(
B†

)4
.

As known, a matrix A ∈ Cn×n is EP if it commutes with its Moore-Penrose inverse and is normal if
it commutes with its conjugate transpose. Therefore, we explore whether we can similarly utilize the
commutative relationship of matrices to characterize the bi-dagger matrix.

In the following theorem, we will provide a characterization of bi-dagger matrices using the commutative
relationship between A and A♢.

Theorem 3.5. Let A ∈ Cn×n. Then AA♢ = A♢A if and only if
(
A†

)2
=

(
A2

)†
.

Proof. Let the Hartwig-Spindelböck decomposition [2] of A ∈ Cn×n be as in (9), and the B-T inverse of A be
of the form (11). Then

AA♢ = U
[
ΣK ΣL
0 0

] [
(ΣK)† 0

0 0

]
U∗ = U

[
(ΣK)(ΣK)† 0

0 0

]
U∗,

A♢A = U
[
(ΣK)† 0

0 0

] [
ΣK ΣL
0 0

]
U∗ = U

[
(ΣK)†ΣK (ΣK)†ΣL

0 0

]
U∗.

From AA♢ = A♢A, it follows that

(ΣK)(ΣK)† − (ΣK)†ΣK = 0, (ΣK)†ΣL = 0. (21)

When Ind(A) = 1, it is obvious that ΣK is nonsingular. Since (ΣK)†ΣL = 0, we have L = 0. It follows

from (9) and Lemma 2.2 that A is EP. Therefore,
(
A†

)2
=

(
A2

)†
.

When Ind(A) = 2, from (21) we get that ΣK is an EP matrix. According to Lemma 2.2, there exists a
unitary matrix U1, such that

ΣK = U1

[
T1 0
0 0

]
U∗1, (22)

where T1 is invertible.

Write ΣL = U1

[
L1
L2

]
, where L1 ∈ Crk(T1)×(n−rk(A)). Since (ΣK)†ΣL = U1

[
T−1

1 0
0 0

]
U∗1U1

[
L1
L2

]
= U1

[
T−1

1 L1
0

]
= 0,

we get L1 = 0. Then, by using (22) and ΣL = U1

[
0
L2

]
, the matrix A can be represented in the form of a

partitioned matrix as follows

A = U
[
ΣK ΣL
0 0

]
U∗ = U

[
U1 0
0 I

] T1 0 0
0 0 L2
0 0 0


(
U

[
U1 0
0 I

])∗
. (23)

Denote Ũ = U
[
U1 0
0 I

]
. By using (23), we get

A2 = Ũ

T
2
1 0 0

0 0 0
0 0 0

 Ũ∗, A† = Ũ

T
−1
1 0 0
0 0 0
0 L†2 0

 Ũ∗.
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It follows that

(
A2

)†
=

(
A†

)2
= Ũ

T
−2
1 0 0
0 0 0
0 0 0

 Ũ∗.

On the contrary, suppose that
(
A†

)2
=

(
A2

)†
.

When V∗A1
UA1 = 0, by applying Lemma 2.1, (3) and (17), we have AA♢ = A♢A = 0.

When V∗A1
UA1 , 0, by using (11) and (19), we have

A♢ =
[
UA1 UA2

] 
(
ΣA1 Q

)−1 0 0
0 0 0
0 0 0


[
U∗A1

U∗A2

]
.

Therefore, AA♢ = A♢A.

By using properties of generalized inverses, we present another characterization of bi-dagger matrices
in the following theorem.

Theorem 3.6. Let A ∈ Cn×n. Then
(
A2

)†
=

(
A†

)2
if and only if Ind(A2) = 1 and

(
A2

)#
= (A2) #O.

Proof. Suppose that
(
A2

)†
=

(
A†

)2
, then A is of the form (20). We can obtain Ind(A2) = 1, and easily check

that (
A2

)#
= (A2) #O = U

[
T−2 0

0 0

]
U∗. (24)

Conversely, let Ind
(
A2

)
= 1 and

(
A2

)#
=

(
A2

) #O
, then rk

(
A2

)
= rk

(
A4

)
. Since rk

(
A2

)
≥ rk

(
A3

)
≥ rk

(
A4

)
,

we have rk
(
A2

)
= rk

(
A3

)
i.e. Ind(A) ≤ 2. It follows from (12) that

A = U
[
T S
0 N

]
U∗,

where T is non-singular, and N is nilpotent with Ind(N) ≤ 2. Applying (13) and (14) gives(
A2

)#
= U

[
T−2 T−4(TS + SN)

0 0

]
U∗, (A2) #O = U

[
T−2 0

0 0

]
U∗.

Since
(
A2

)#
= (A2) #O, then TS+ SN = 0. It follows from N2 = 0 that S = 0. By applying Theorem 3.2, we have(

A2
)†
=

(
A†

)2
.

4. Conditions under which bi-dagger implies bi-normal

In Section 3, we get some characterizations of the bi-dagger matrix. Based on those results, we obtain
several conditions under which bi-dagger implies bi-normal in this section.

Theorem 4.1. Let A ∈ Cn×n is a bi-dagger matrix. Then the following are equivalent:

(1) AA∗A∗A is normal;

(2) AA∗A∗A is psd;
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(3) AA∗A∗A is star-dagger;

(4) AA∗A∗A is Hermitian;

(5) A is bi-normal;

(6) A∗AAA∗ is star-dagger.

Proof. Since A is bi-dagger, by applying Theorem 3.2, we obtain that

AA∗A∗A = U
[
TT∗T∗T 0

0 0

]
U∗. (25)

According to Theorem 3.2, we know that AA∗A∗A is also a bi-dagger matrix. Thus, by applying Lemma
2.3, we have that the conditions (1), (2) and (3) are equivalent.

Furthermore, let AA∗A∗A be Hermitian, then AA∗A∗A is normal. If AA∗A∗A is psd, then AA∗A∗A is
Hermitian. Since the conditions (1) and (2) are equivalent, it follows that the conditions (1), (2) and (4) are
equivalent.

Since A is bi-normal if and only if AA∗ commutes with A∗A, then the conditions (4) and (5) are equivalent.
Since AA∗A∗A is Hermitian, we can obtain that A∗AAA∗ is also Hermitian. Therefore A∗AAA∗ is star-

dagger if and only if AA∗A∗A is Hermitian, that is, the conditions (4) and (6) are equivalent.

According to Theorem 3.2, we know that if A is bi-dagger then its Drazin inverse is EP. In the following
theorem, we apply the properties of Drazin inverse and the core-nilpotent decomposition to give some
equivalent conditions that A is bi-normal, when A is bi-dagger.

Let A ∈ Cn×n with Ind(A) = k, then the core-nilpotent decomposition of A can be represented in the
form, see [22]

A = CA +NA,

where CA = ADA2 is called the core part of A and NA is nilpotent with Ind(NA) = k.

Theorem 4.2. Let A ∈ Cn×n is bi-dagger. Then the following are equivalent:

(1) A is bi-normal;

(2) AD is bi-normal;

(3) CA is bi-normal.

Proof. Since A is bi-dagger, by applying Theorem 3.1, we have Ind(A) ≤ 2. And let A be of the form (20).
Suppose that A is bi-normal. By using Theorem 3.2, we have

AA∗A∗A = U
[
TT∗T∗T 0

0 0

]
U∗ = A∗AAA∗ = U

[
T∗TTT∗ 0

0 0

]
U∗. (26)

Then TT∗T∗T = T∗TTT∗ and
T−1

(
T−1

)∗(
T−1

)∗
T−1 =

(
T−1

)∗
T−1T−1

(
T−1

)∗
.

It follows that

AD
(
AD

)∗ (
AD

)∗
AD = U

[
T−1

(
T−1

)∗ (
T−1

)∗
T−1 0

0 0

]
U∗

= U
[(

T−1
)∗

T−1T−1
(
T−1

)∗
0

0 0

]
U∗

=
(
AD

)∗
ADAD

(
AD

)∗
.
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Applying Theorem 4.1 gives that AD is bi-normal. Similarly, we can prove that if AD is bi-normal then A is
bi-normal. Therefore, conditions (1) and (2) are equivalent.

Let A be bi-normal. By using (26), we have TT∗T∗T = T∗TTT∗. According to Theorem 3.2, we can obtain

CAC∗AC∗ACA = U
[
TT∗T∗T 0

0 0

]
U∗ = U

[
T∗TTT∗ 0

0 0

]
U∗ = C∗ACACAC∗A.

Then CA is bi-normal. Similarly, we can prove that if CA is bi-normal then A is bi-normal. Therefore,
conditions (1) and (3) are equivalent.

5. Conclusions

In this paper, we have determined the range of indices for bi-dagger matrices and established the
relationship between bi-dagger matrices and i-EP matrices. Additionally, we have provided various char-
acterizations of bi-dagger matrices by leveraging the properties and characteristics of the B-T inverse, core
inverse, and group inverse. Finally, based on these findings, we address Problem 1.1 raised by Hartwig
and Spindelböck [8], proposing conditions under which bi-dagger matrices imply bi-normality.
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