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Abstract. In this article, we consider pointwise slant and pointwise bi-slant submanifolds whose ambient
spaces are para-Kaehler manifolds. We prove that there exist pointwise bi-slant K =k2 K

θ1 ×k1 K
θ2 non-

trivial doubly warped product type 1-2 submanifolds whose ambient spaces are para-Kaehler manifolds
by constructing examples. We get a characterization and some theorems. Then, we obtain an inequality
and we get some results by using the inequality.

1. Introduction

Slant submanifolds in para-Hermitian manifold were studied by P.Alegre and A.Carriazo[1]. B.-Y.
Chen and O.J. Garay introduced pointwise slant submanifolds in [10]. Also, pointwise slant submanifolds
were studied by F. Etayo under the name quasi-slant submanifolds [13]. Pointwise slant submanifolds of
different construction on Riemannian and semi-Riemannian manifold are studied by many geometers in
[3, 4, 6, 7, 21, 22].

B.A. Rozenfeld defined para-Kaehler manifolds [25]. Rozenfeld compared Kaehler definition in the
complex case with Rashevskij’s description and founded the analogy between para-Kaehler and Kaehler
ones. Then, P.K.Rashevski studied properties of para-Kaehler manifolds in 1948 [23].

The concept of warped products emerged in the physical and mathematical subjects before 1969. For
example, Kruchkovich used semi-reducible structure which is utilized for warped product in 1957[18]. It
has been successfully used in general theory of relativity, string theory and black holes. On the other hand,
warped product manifolds were indicated and worked by R.L. Bishop and B.O’Neill[9]. Warped product
CR-submanifolds whose ambient spaces are Kaehler manifolds was studied by B.Y. Chen at the beginning
of this century[11].

Later the concept of warped products has been an important topic of study in geometry [2, 5, 8, 16, 19,
24, 29, 30]. Using Chen’s [10] and Sahin’s [26, 27] articles, we studied in detail the doubly warped pruduct
cases of pointwise bi-slant submanifolds whose ambient spaces are para-Kaehler manifolds.
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Gündüzalp)
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B. Sahin introduced pointwise semi-slant submanifolds whose ambient spaces are Kaehler manifolds
[27]. In contrast to Kaehler manifolds not having warped products of semi-slant submanifolds [26], he
showed that there do exist warped product pointwise semi-slant submanifolds and studied them in detail
[27].
S. Sular and C. Özgür [28] and A. Olteanu [20] studied doubly warped product submanifolds and they
obtained geometric inequality in Riemannian structures. Doubly warped products are generalization of
singly warped products[31]. Non-trivial doubly warped product submanifolds are doubly warped product
submanifolds’s special case. Because, warping functions k2 and k1 are non-constant functions in the form
K =k2 K

θ1×k1K
θ2 . In this study, we studied pointwise bi-slant submanifolds whose ambient spaces are para-

Kaehler manifolds. Utilizing this concept, we research the geometry of non-trivial doubly warped product
pointwise bi-slant submanifolds, known as doubly warped product submanifolds’s special situation whose
ambient spaces are para-Kaehler manifolds by constructing examples and we determine an inequality.

This article is organized as follows. In section 2, we give preliminaries and definitions utilized for this
article. In section 3, we define pointwise bi-slant submanifolds of a para-Kaehler manifold and we also
check their properties. In section 4, we introduce pointwise bi-slant non-trivial doubly warped product
submanifolds whose ambient spaces are para-Kaehler manifolds supported with examples. In section 5, we
determine an inequality for mixed totally geodesic pointwise bi-slant non-trivial doubly warped product
submanifolds whose ambient spaces are para-Kaehler manifolds.

2. Preliminaries

Let K̄ be a 2n̄ -dimensional semi-Riemannian structure. If it is provided with (P, 1̆), that P is a (1, 1)
tensor, 1̆ is to expression semi-Riemannian metric.

P
2
Xa = Xa, 1̆(PXa,PYb) = −1̆(Xa,Yb) (1)

for any vector fields Xa,Yb on K̄ , it is named a para-Hermitian structure. Besides that, it is called to be
para-Kaehler manifold, if it satisfies ∇̄P = 0 identically[17].

Let currentlyK be a submanifold of (K̄ ,P, 1̆). The Gauss and Weingarten formulas are given by

∇̄XaYb = ∇XaYb + h1(Xa,Yb), (2)

∇̄XaVc = −AVcXa + ∇
⊥

Xa
Vc. (3)

ForXa,Yb ∈ Γ(TK ) andVc ∈ Γ(TK⊥), that h1 is the second fundamental form ofK , AVc is the Weingarten
tensor with respect toVc and ∇⊥ is the normal connection. AVc and h1 are related by

1̆1(AVcXa,Yb) = 1̆1(h1(Xa,Yb),Vc), (4)

here 1̆1 also denotes the induced semi-Riemannian metric onK .
For all tangent vector field Xa, we denote

PXa = RXa + SXa, (5)

that RXa is the tangential part of PXa and SXa is the normal part of PXa.
For all normal vector fieldVc,

PVc = rVc + sVc, (6)

that rVc and sVc are the tangential and normal vectors of PVc, respectively. The mean curvature vector
field is defined by

H̄ =
1
n̄

traceh1. (7)
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Definition 2.1. We call that a submanifold K of a para-Kaehler manifold (K̄ ,P, 1̆) is pointwise slant, if for
all timelike or spacelike tangent vector field Xa, the ratio 1̆1(RXa,RXa)/1̆1(PXa,PXa) is non-constant.

We see that a pointwise slant submanifold whose ambient spaces are para-Kaehler manifold is named
slant, [10] if its Wirtinger function α is globally constant. We notice that all slant submanifolds are pointwise
slant submanifolds.

IfK is a para-complex (para-holomorphic) submanifold, in that case, PXa = RXa and the above ratio is
equal to 1. Moreover ifK is totaly real (anti-invariant), then R = 0, soPXa = SXa and the above ratio equals
0. Hence, both totally real and para-complex submanifolds are the particular situations of pointwise slant
submanifolds. Neither totally real nor para-complex pointwise slant submanifold can be named a proper
pointwise slant.

Definition 2.2. Let K be a proper pointwise slant submanifold whose ambient space is para Hermitian
manifold (K̄ ,P, 1̆). We call that it is of
type-1 if for any spacelike or timelike vector field Xa, RXa is timelike or spacelike and |RXa |

|PXa |
> 1.

type-2 if for any spacelike or timelike vector field Xa, RXa is timelike or spacelike and |RXa |

|PXa |
< 1.

Similar to the method of P. Alegre and A. Carriazo used [1], the following theorem and results were obtained.

Theorem 2.3. Let K be a pointwise slant submanifold whose ambient space is para-Hermitian manifold (K̄ ,P, 1̆).
So,
(a)K is pointwise slant submanifold of type-1 if and only if for any spacelike (timelike) vector fieldXa, RXa is timelike
(spacelike), also arise a function µ ∈ (1,+∞). Therefore,

R2 = µId. (8)

If θ indicates the slant function ofK , µ = cosh2 θ.
(b)K is pointwise slant submanifold of type-2 if and only if for any spacelike (timelike) vector fieldXa, RXa is timelike
(spacelike), also arise a function µ ∈ (0, 1). Therefore,

R2 = µId. (9)

If θ indicates the slant function ofK , µ = cos2 θ.

Proof. Firstly, if K is the pointwise slant submanifold of type-1 for any spacelike tangent vector field Xa,
RXa is timelike and by the equation of (1),PXa is too. Furthermore, they supply |RXa|/|PXa| > 1. Therefore,
arise the slant function θ. Because of

coshθ =
|RXa|

|PXa|
=

√
−1̆(RXa,RXa))√
−1̆(PXa,PXa)

. (10)

Using (1), we have

1̆(R2
Xa,Xa) = cosh2 θ1̆(Xa,Xa).

Thus, we get R2
Xa = XaI. So, from (10), we get µ = cosh2 θ.

The same method for any timelike tangent vector fieldZ, if RZ and PZ are spacelike, in place of (10), we
get

coshθ =
|RZ|
|PZ|

=

√
1̆(RZ,RZ))√
1̆(PZ,PZ)

.

Because of R2
Xa = µXa, for any spacelike and timelike Xa it further provides for lightlike vector fields and

therefore we get R2 = µId. The converse of (a) is straightforward.
Similarly, we have (b).
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Lastly, for both pointwise slant submanifolds of type-1 and type-2, if Xa is spacelike, in that case, PXa is
timelike. Thus, all pointwise slant submanifold of type-1 and type-2 should be a neutral semi-Riemann
structure.
Using (1),(5),(8) and (9), we obtain

Corollary 2.4. LetK be a pointwise slant submanifold of a para-Hermitian structure (K̄ ,P, 1̆) with the slant function
θ. For any non-null vector fields Xa,Yb ∈ Γ(TK ), we obtain:
K is of type-1, if and only if

1̆(RXa,RYb) = − cosh2 θ1̆(Xa,Yb), 1̆(SXa,SYb) = sinh2 θ1̆(Xa,Yb). (11)

K is of type-2, if and only if

1̆(RXa,RYb) = − cos2 θ1̆(Xa,Yb), 1̆(SXa,SYb) = − sin2 θ1̆(Xa,Yb). (12)

Using (1),(5),(6), (8) and (9), we obtain

Corollary 2.5. Let K be a pointwise slant submanifold whose ambient space is para-Hermitian manifold (K̄ ,P, 1̆).
Then, Let K be a pointwise slant submanifold of a para-Hermitian structure K̄ . Therefore K is a pointwise slant
submanifold of
(for type-1), if and only if

rSXa = − sinh2 θXa and sSXa = −RSXa, (13)

(for type-2), if and only if

rSXa = sin2 θXa and sSXa = −RSXa. (14)

For all timelike (spacelike) vector field Xa.

3. Pointwise bi-slant submanifolds whose ambient spaces are para-Kaehler manifolds

In this part, we introduce and study pointwise bi-slant submanifolds whose ambient spaces are para-
Kaehler manifolds.

Definition 3.1. A semi-Riemannian structure K of a para-Hermitian manifold (K̄ ,P, 1̆) is named to point-
wise bi-slant submanifold, if two orthogonal distributions Dθ1 , Dθ2 with K at the point q ∈ K arise.
Therefore,
1) TK = Dθ1 ⊕D

θ2 ;
2) PDθ1⊥D

θ2 and PDθ2⊥D
θ1 ;

3)Dθ1 ,Dθ2 are pointwise slant distributions with slant functions θa
1 and θb

2. Then, we say the corner {θa
1, θ

b
2}

of the slant functions is named the bi-slant submanifold. A pointwise bi-slant submanifold K is named
proper if its bi-slant function satisfies θa

1, θ
b
2 , 0,

π
2 , also θa

1, θ
b
2 is non-constant onK .

Let K be a pointwise bi-slant submanifold of a para-Hermitian structure K̄ . From the above definition
and (6), we get

T(Dī) ⊂ Dī, ī = 1, 2. (15)

For any Xa ∈ Γ(TK ) we have

Xa = RkXa + RlXa. (16)
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Where Rk and Rl are the projections from TK on theDθ1 ,Dθ2 . For any non-null vector field Xa ∈ Γ(TK ).
Applying R to (16) and using (5), (6) we have

RXa = RRkXa + RRlXa + S(RkXa + RlXa). (17)

Thus, we get

RRk = R1, RRl = R2. (18)

Using (18) and (16) in (17), we get

RXa = R1Xa + R2Xa + SXa. (19)

For Xa ∈ (ΓK ) and from (15),(16) we get
For type-1,

R
2
iXa = (− cosh2 θi)Xa i ∈ 1, 2 (20)

and for type-2

R
2
iXa = (− cos2 θi)Xa i ∈ 1, 2. (21)

Lemma 3.2. Let K be a pointwise bi-slant type 1-2 submanifold whose ambient space is para-Kaehler manifold
(K̄ ,P, 1̆) with pointwise slant distributionsDθ1 ,Dθ2 with distinct slant function θa

1 , θb
2 Suppose that K is one of

the known two types:1,2.
1) for type-1,

(sinh2 θ1 + sinh2 θ2)1̆(∇XaYb,Zd) = 1̆(ASR1YbZd − ASYb R2Zd,Xa)
+ 1̆(ASR2ZdYb − ASZd R1Yb,Xa). (22)

2) for type-2,

(sinh2 θ2 + sinh2 θ1)1̆(∇ZdWc,Xa) = 1̆(ASR1XaWc − ASXa R2Wc,Zd)
+ 1̆(ASR2WcXa − ASWc R1Xa,Zd). (23)

Xa,Yb ∈ Γ(Dθ1 ),Zd,Wc ∈ Γ(Dθ2 ).

Proof. For any Xa,Yb ∈ Γ(Dθ1 ) andZd ∈ Γ(Dθ2 ), we get

1̆(∇XaYb,Zd) = −1̆(∇̄XaPYb,PZd).

Utilizing (5) and (6), we get

1̆(∇XaYb,Zd) = −1̆(∇̄XaR1Yb,PZd) − 1̆(∇̄XaSYb,PZd)
= −1̆(∇̄XaR1Yb,PZd) − 1̆(∇̄XaSYb,R2Zd)
− 1̆(∇̄XaSYb,SZd)
= 1̆(∇̄XaPR1Yb,Zd) − 1̆(∇̄XaSYb,R2Zd)
− 1̆(∇̄XaSYb,SZd).

Using (1),(3),(5),(6) and (20), we obtain

1̆(∇XaYb,Zd) = 1̆(∇̄XaR
2
1Yb,Zd) + 1̆(∇̄XaSR1Yb,Zd) + 1̆(ASYbXa,R2Zd)

+ 1̆(∇̄XaSZd,SYb) + cosh2 θ11̆(∇̄XaYb,Zd)
+ 2 sinh 2θ1Xa1̆(Xa,Yb) − 1̆(ASR1YbXa,Zd)
+ 1̆(ASYbXa,R2Zd) + 1̆(∇̄XaSZd,PYb) − 1̆(∇̄XaSZd,R1Yb).
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Using (1),(3) with symmetry of the shape operator and orthogonality of the distributions, we get

(sinh2 θ1)1̆(∇XaYb,Zd) = 1̆(ASR1YbZd − ASYbR2Zd,Xa) + 1̆(∇̄XarSZd,Yb)
+ 1̆(∇̄XasSZd,Yb) − 1̆(ASZdXa,R1Yb).

Using (3),(13) and (14)

(sinh2 θ1 + sinh2 θ2)1̆1(∇XaYb,Zd) = 1̆(ASR1YbZd − ASYbR2Zd,Xa)
+ 1̆(ASR2ZdYb,Xa) − 1̆(ASZdR1Yb,Xa)

which proves Case (1). By the similary way, the proof of Case (2) is obtained.

Corollary 3.3. Let K be a pointwise bi-slant type-1,2 submanifold in para-Kaehler manifold K̄ having pointwise
slant distributions Dθ1 and Dθ2 with distinct slant function θa

1 and θb
2 . Then distribution Dθ1 defines o totally

geodesic foliation if and only if

1̆(ASR1YbZd − ASYb R2Zd + ASR2ZdYb − ASZd R1Yb,Xa) = 0

for any Xa,Yb ∈ Γ(Dθ1 ) andZd ∈ Γ(Dθ2 ).

Proof. From equation (22), we get the proof.

Corollary 3.4. Let K be a pointwise bi-slant type-1,2 submanifold in para-Kaehler manifold K̄ having pointwise
slant distributions Dθ1 and Dθ2 with distinct slant function θa

1 and θb
2 . Then distribution Dθ2 defines o totally

geodesic foliation if and only if

1̆(ASR1XaWc − ASXa R2Wc + ASR2WcXa − ASWc R2Xa,Zd) = 0

for any Xa ∈ Γ(Dθ1 ) andZd,Wc ∈ Γ(Dθ2 ).

Proof. From equation (23), we have the proof.

4. Pointwise bi-slant non-trivial doubly warped product submanifolds whose ambient spaces are para-
Kaehler manifolds

Let (L, 1̄1) and (E, 1̄2) be two semi-Riemannian submanifold, k1 : L → (0,∞), k2 : E → (0,∞) and
q : L × E → L, a : L × E → E the projection maps given by q(z, p) = z and a(z, p) = p for all (z, p) ∈ L × E.
The warped productK =k2 L×k1 E is the manifoldL×E equipped with the semi-Riemannian constructure
such that
1̆(Xa,Yb) = (k2 ◦ a)21̄1(t∗Xa, t∗Yb) + (k1 ◦ q)21̄2(t∗Xa, t∗Yb)

for every Xa and Yb of K where * describes the tangent map [9]. The functions k1, k2 are named the
warping functions of the warped product manifold. Especially, warped product manifoldK is called to be
non-trivial doubly warped product manifold, if the warping functions are non-constant.

It follows thatL×{p2} and {p1}×E are totally umbilical submanifolds with closed mean curvature vector
fields in (k2L ×k1 E, 1̆) [14], where p1 ∈ L and p2 ∈ E. For more details on doubly warped products, we use
articles [12, 14, 31].

Remark 4.1. If we suppose
(i) both k1 ≡ 1 and k2 ≡ 1, then we get a product manifold.
(ii) either k1 ≡ 1 or k2 ≡ 1, but not both, then we get a warped product.
(iii) k1 and k2 are non-constant warping functions, then we obtain a non-trivial doubly warped product.
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Definition 4.2. The doubly warped product of K =k2 K
θ1 ×k1 K

θ2 is named pointwise bi-slant non-trivial
doubly warped product type 1-2 submanifolds of slant submanifoldsKθ1 andKθ2 with distinct slant func-
tions θa

1 and θb
2, respectively, in para-Kaehler manifold K̆ , where θa

1 and θb
2 are non-constant functions

(angles), k1 and k2 are non-constant warping functions.

In this article, we focused on the third feature of Remark 4.1., which is doubly warped product sub-
manifold’s a important situation. Since k1 and k2 are non-constant warping functions and θa

1 and θb
2 angles

are non-constant functions, we found pointwise bi-slant non-trivial doubly warped product type 1-2 sub-
manifolds whose ambient spaces are para-Kaehler manifolds. We get very interesting and original results,
theorems and examples.

The covariant derivative formulas for a non-trivial doubly warped product manifolds are expressed by:

∇XaYb = ∇
θ1
Xa
Yb − 1̆(Xa,Yb)∇(ln k2) (24)

∇XaVc = ∇VcXa = Xa(ln k1)Vc +Vc(ln k2)Xa (25)

∇VcZd = ∇
θ2
Vc
Zd − 1̆(Vc,Zd)∇(ln k1) (26)

where ∇ is the Levi-Civita connection on K and indicate by ∇θ1 and ∇θ2 the Levi-Civita connection of 1̄1
and 1̄2 respectively, for every Xa,Yb vector fields on L andVc,Zd vector field on E [12].

Now we write an example with related to the pointwise bi-slant non-trivial doubly warped product
submanifolds whose ambient spaces are para-Kaehler manifolds.

Let K be a semi-Riemannian submanifold of R̄24
12 described by the immersion ψ : K → R̄24

12 with the
cartesian coordinates (x1, ..., x24) and the almost para-complex structure
P( ∂

∂xĭ
) = ∂

∂xĭ+2
ĭ = (1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22) andP( ∂

∂x j
) = ∂

∂x j−2
j = (3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24)

Let R̄24
12 be a semi-Riemannian structure of signature

(+,+,−,−,+,+,−,−,+,+,−,−,+,−,−,+,+,−,+,−,+,−,−,+) with the canonical basis ( ∂
∂x1
, ..., ∂

∂x24
).

Example 4.3. LetK be described by the immersion ψ̄ as follows

ψ̄(m, n, c, t) = (m sin c,m cos c,n sin c,n cos c,m sin t,m cos t,n sin t,n cos t,

x, 2m, y, 2n,
√

2t,
√

2c, c, t,
√

3c,
√

3t, x, y,mc,nc,nt,mt)

ψ̄m = sin c
∂
∂x1
+ cos c

∂
∂x2
+ sin t

∂
∂x5
+ cos t

∂
∂x6
+ 2

∂
∂x10

+ c
∂
∂x21

+ t
∂
∂x24

ψ̄n = sin c
∂
∂x3
+ cos c

∂
∂x4
+ sin t

∂
∂x7
+ cos t

∂
∂x8
+ 2

∂
∂x12

+ c
∂
∂x22

+ t
∂
∂x23

ψ̄c = m cos c
∂
∂x1
−m sin c

∂
∂x2
+ n cos c

∂
∂x3
− n sin c

∂
∂x4
+
√
2
∂
∂x14

+
∂
∂x15

+
√
3
∂
∂x17

+ m
∂
∂x21

+ n
∂
∂x22

ψ̄t = m cos t
∂
∂x5
−m sin t

∂
∂x6
+ n cos t

∂
∂x7
− n sin t

∂
∂x8
+
√

2
∂
∂x13

+
∂
∂x16

+
√
3
∂
∂x18

+ n
∂
∂x23

+ m
∂
∂x24

describes a pointwise bi-slant submanifold K with type-1,2 in (R̄24
12,P, 1̆) para-complex manifold with

µ1 = R
2
1 = ( 6+2tc

6+t2+c2 )2 and µ2 = R
2
2 =

2
(m2−n2)(n2−m2+3) for (m , n). Actually Dθ1 = span{ψ̄m, ψ̄n} is pointwise

bi-slant distribution with θ1 slant function andDθ2 = span{ψ̄c, ψ̄t} is pointwise bi-slant distribution with θ2
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slant function.
It is easy to notice that Dθ1 and Dθ2 distributions are integrable. The induced metric tensor 1̆K on
K =k2 K

θ1 ×k1 K
θ2 is given by

1̆K = (6 + t2 + c2)(dm2
− dn2) + (2m2

− 2n2)(dc2 + dt2). Thus,
*) for µ1, if 2tc > t2 + c2 and for µ2, if 0 < (m2

− n2) < 1 or 3 > (m2
− n2) > 2, K is a pointwise bi-slant

non-trivial doubly warped product type-1 submanifold whose ambient space is R̄24
12 para-Kaehler manifold

with warping functions k2 =
√

(6 + t2 + c2) and k1 =
√

(2m2 − 2n2)
*) for µ1, if −6 < 2tc < t2 + c2 and for µ2, if 1 < (m2

− n2) < 2, K is a pointwise bi-slant non-trivial dou-
bly warped product type-2 submanifold whose ambient space is R̄24

12 para-Kaehler manifold with warping
functions k2 =

√
(6 + t2 + c2) and k1 =

√
(2m2 − 2n2).

Lemma 4.4. LetK =k2 K
θ1 ×k1 K

θ2 be a pointwise bi-slant non-trivial doubly warped product type 1-2 submanifold
whose ambient space is para-Kaehler manifold K̆ with distinct slant functions θa

1 and θb
2. Then (for type-1)

1̆(h1(Xa,Vc),SR2Zd) − 1̆(h1(Xa,R2Zd),SVc) = − sinh 2θb
2Xa(θb

2)1̆(Zd,Vc) (27)

1̆(h1(Xa,Zd),SVc) − 1̆(h1(Xa,Vc),SZd) = −2 tanhθb
2Xa(θb

2)1̆(R2Zd,Vc) (28)

Xa ∈ Γ(TK1) andVc,Zd ∈ Γ(TK2)

Proof. For type-1, using (1) (2), (3), (4), (5), (6) and (25), we derive

1̆(∇̄XaZd,Vc) = 1̄(∇XaZd,Vc) = (Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc). (29)

Also, we get

1̆(∇̄XaZd,Vc) = 1̆(P∇̄XaZd,PVc)
= 1̆(∇̄XaPZd,PVc)
= 1̆(∇̄XaR2Zd,R2Vc) + 1̆(∇̄XaR2Zd,SVc) + 1̆(∇̄XaSZd,PVc)
= 1̆(∇̄XaR2Zd,R2Vc) + 1̆(∇̄XaR2Zd,SVc) − 1̆(∇̄XarSZd,Vc)
− 1̆(∇̄XasSZd,Vc) + 1̆(∇̄XaSR2Zd,Vc).

Using (1) (2), (3), (4), (5), (6), (13),(14), (20) and (25), we derive

1̆(∇̄XaZd,Vc) = 1̆(∇̄XaR2Zd,R2Vc) + 1̄(h1(Xa,R2Zd),SVc)

− sinh2 θb
21̆(∇̄XaZd,Vc) − sinh 2θb

2Xa(θb
2)1̆(Zd,Vc)

− 1̆(h1(Xa,Vc),SR2Zd).

Using (20) and (25)

(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc) = cosh2 θb
2(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc)

+ 1̆(h1(Xa,R2Zd),SVc)

− sinh2 θb
2(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc)

− sinh 2θb
2Xa(θb

2)1̆(Zd,Vc)
− 1̆(h1(Xa,Vc),SR2Zd). (30)

We get (27) and interchangingZd and R2Zd in equation (27), we get (28)
The proof is completed. Also for type-2, we use a similar method.

Lemma 4.5. LetK =k2 K
θ1 ×k1 K

θ2 be a pointwise bi-slant non-trivial doubly warped product type 1-2 submanifold
whose ambient space is para-Kaehler manifold K̆ with distinct slant functions θa

1 and θb
2. Then (for type-1)

1̆(h1(Xa,R2Zd),SVc) − 1̆(h1(Xa,Vc),SR2Zd) = 2 cosh2 θb
21̆(Zd,Vc)

(Xa(ln k1) + (ln k2)Xa) (31)
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for Xa ∈ Γ(TKθ1 ) andVc,Zd ∈ Γ(TKθ2 ).

Proof. Using (1) (2), (3), (4), (5) and (6), we get

1̆(h1(Xa,Zd),SVc) = 1̆(∇̄ZdXa,SVc)
= 1̆(∇̄ZdXa,PVc) − 1̆(∇̄ZdXa,R2Vc)
= −1̆(∇̄ZdPXa,Vc) − 1̆(∇̄ZdXa,R2Vc)
= −1̆(∇̄ZdR1Xa,Vc) − 1̆(∇̄ZdSXa,Vc) − 1̆(∇̄XaZd,R2Vc)
= −1̆(∇̄R1XaZd,Vc) − 1̆(∇̄ZdSXa,Vc) − 1̆(∇̄XaZd,R2Vc).

Using (25)

1̆(h1(Xa,Zd),SVc) = −(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc)
+ 1̆(h1(Zd,Vc),SXa)
− (Xa(ln k1) + (ln k2)Xa)1̆(Zd,R2Vc). (32)

By polarization, we get

1̆(h1(Xa,Vc),SZd) = −(R1Xa(lnk1) + (lnk2)R1Xa)1̆(Zd,Vc)
+ 1̆(h1(Zd,Vc),SXa)
+ (Xa(ln k1) + (ln k2)Xa)1̆(Zd,R2Vc). (33)

Substracting (33) from (32)

1̆(h1(Xa,Zd),SVc) − 1̆(h1(Xa,Vc),SZd) = −21̆(Zd,R2Vc)
(Xa(ln k1) + (ln k2)Xa). (34)

InterchangingZd by R2Zd in (34), We have (31)
Also for type-2, we use a similar method.

Theorem 4.6. There exists a proper pointwise bi-slant non-trivial doubly warped product type 1-2 submanifold
K =k2 K

θ1 ×k1 K
θ2 of a para-Kaehler manifold K̆ with distinct slant functions θa

1, θb
2, if and only if

tanhθb
2Xa(θb

2) , 0

for Xa ∈ Γ(TKθ1 ) andVc,Zd ∈ Γ(TKθ2 ).

Proof. Using (27) and (31), we obtain

−2 cosh2 θb
21̆(Zd,Vc)(Xa(ln k1) + (ln k2)Xa) = − sinh 2θb

2Xa(θb
2)1̆(Zd,Vc). (35)

SinceK is proper θb
2 ,

π
2 and hence from (35), we get

[(Xa(ln k1) + (ln k2)Xa) − tanhθb
2Xa(θb

2)]1̆(Zd,Vc) = 0, which implies that
(Xa(ln k1) + (ln k2)Xa) = tanh(θb

2)Xa(θb
2).

The proof is completed.
A pointwise bi-slant non-trivial doubly warped product type1-2 submanifoldK =k2 K

θ1 ×k1 K
θ2 whose

ambient space is para-Kaehler manifold K̆ is mixed totaly geodesic if h1(Xa,Zd) = 0. For anyXa ∈ Γ(TKθ1 )
andZd ∈ Γ(TKθ2 ).

Theorem 4.7. LetK =k2 K
θ1×k1K

θ2 be a pointwise bi-slant non-trivial doubly warped product type 1-2 submanifold
whose ambient space is para-Kaehler manifold K̆ with distinct slant functions θa

1 and θb
2. K is a mixed totally geodesic

doubly warped product submanifold, then one of the following two situations appears:
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(i) either θb
2 =

π
2 , i.e., K is a doubly warped product pointwise submanifold of k2K

θ1 ×k1 K
⊥, where K⊥ is a anti-

invariant submanifold K̆ .
(ii) or (Xa(ln k1) + (ln k2)Xa) = 0 and k1, k2 are constant.

Corollary 4.8. For a proper pointwise mixed geodesic bi-slant non-trivial doubly warped product type 1-2 submani-
foldK =k2 K

θ1 ×k1 K
θ2 whose ambient space is para-Kaehler manifold K̆ . ThenXa ∈ Γ(TKθ1 ),Vc,Zd ∈ Γ(TKθ2 )

and (Xa(ln k1) + (ln k2)Xa) = 0. So, k1 and k2 are constant.

Proof. IfK be mixed totally geodesic, from (35) we have
2 cosh2 θb

21̆(Zd,Vc)(Xa(ln k1) + (ln k2)Xa) = 0. From which we get either cosh2 θb
2 = 0 i.e., θb

2 =
π
2 or

(Xa(ln k1) + (ln k2)Xa) = 0. İn this way, proof is completed.

Lemma 4.9. LetK =k2 K
θ1 ×k1 K

θ2 be a pointwise bi-slant non-trivial doubly warped product type 1-2 submanifold
whose ambient space is para-Kaehler manifold K̆ with distinct slant functions θa

1 and θb
2. Then we obtain

1̆(h1(Xa,Yb),SZd) = −1̆(h1(Xa,Zd),SYb) (36)

1̆(h1(Zd,Vc),SXa) − 1̆(h1(Xa,Zd),SVc)
= −(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc)
+(Xa(ln k1) + (ln k2)Xa)1̆(Zd,R2Vc) (37)

1̆(h1(Zd,Vc),SR1Xa) − 1̆(h1(R1Xa,Zd),SVc) =

−(cosh2 θa
1Xa(ln k1) + (ln k2) cosh2 θa

1Xa)1̆(Zd,Vc)
+(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,R2Vc) (38)

1̆(h1(Zd,R2Vc),SXa) − 1̆(h1(Xa,Zd),SR2Vc)
= −(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,R2Vc)

+ cosh2 θb
2(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc) (39)

1̆(h1(Zd,Vc),SR1Xa) − 1̆(h1(R1Xa,Zd),SVc)
−1̆(h1(Xa,Zd),SR2Vc) + 1̆(h1(Zd,R2Vc),SXa)

= (+ cosh2 θb
2 − cosh2 θa

1)(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc). (40)

For any Xa,Yb ∈ Γ(TKθ1 ) andVc,Zd ∈ Γ(TKθ2 ).

Proof. (for type-1) for any Xa,Yb ∈ Γ(TKθ1 ) andZd ∈ Γ(TKθ2 ), using (1),(2),(3) and (5) we obtain

1̆(h1(Xa,Yb),SZd) = 1̄(∇̄XaYb,SZd)
= 1̆(∇̄XaYb,PZd) − 1̆(∇̄XaYb,R2Zd)
= −1̆(∇̄XaPYb,Zd) − 1̆(∇̄XaR2Zd,Yb).

Using (19)

1̆(h1(Xa,Yb),SZd) = −1̆(∇̄XaR1Yb,Zd) − 1̆(∇̄XaSYb,Zd) + 1̆(∇̄XaR2Zd,Yb)
= −1̆(∇̄XaR1Yb,Zd) − 1̆(h1(Xa,Zd),SYb) + 1̆(∇̄XaR2Zd,Yb).

Using (25)

1̆(h1(Xa,Yb),SZd) = −(Xa(ln k1) + (ln k2)Xa)1̆(R1Yb,Zd)
−1̆(h1(Xa,Zd),SYb) +
(Xa(ln k1) + (ln k2)Xa)1̆(R2Zd,Yb). (41)
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We get (36). Also for any Xa ∈ Γ(TKθ1 ) andVc,Zd ∈ Γ(TKθ2 )

1̆(h1(Zd,Vc),SXa) = −1̆(∇̄ZdVc,PXa) + 1̆(∇̄ZdVc,R1Xa)
= 1̆(∇̄ZdPVc,Xa) − 1̆(∇̄ZdR1Xa,Vc).

Utilizing (19) and (1)

1̆(h1(Zd,Vc),SXa) = 1̆(∇̄ZdR2Vc,Xa) + 1̆(∇̄ZdSVc,Xa) − 1̆(∇̄ZdR1Xa,Vc). (42)

Using (3) and (25) in (42), we get (37). The relations (38) and (39) can be derived from (37) by replacing Xa
by R1Xa andVc by R2Vc, respectively. Adding (39) with (38), we get (40).
Now, interchangingVc by R2Vc in (38), we get

1̆(h1(Zd,R2Vc),SR1Xa) − 1̆(h1(R1Xa,Zd),SR2Vc) =

− cosh2 θa
1(Xa(ln k1) + (ln k2)Xa)1̆(Zd,R2Vc)

+ cosh2 θb
2(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc). (43)

If we interchangeZd by R2Zd in (39) and (40) then, we obtain

1̆(h1(R2Zd,Vc),SXa) − 1̆(h1(Xa,R2Zd),SVc) =
−(R1Xa(ln k1) + (ln k2)R1Xa)1̆(R2Zd,Vc)

+ cosh2 θb
2(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc) (44)

and

1̆(h1(R2Zd,Vc),SR1Xa) − 1̆(h1(R1Xa,R2Zd),SVc) =

− cosh2 θa
1(Xa(ln k1) + (ln k2)Xa)1̆(R2Zd,Vc)

+ cosh2 θb
2(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc). (45)

InterchangingVc by R2Vc in (44) and (45), we get

1̆(h1(R2Zd,R2Vc),SXa) − 1̆(h1(Xa,R2Zd),SR2Vc) =

− cosh2 θb
2(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc)

+ cosh2 θb
2(Xa(ln k1) + (ln k2)Xa)1̆(Zd,R2Vc) (46)

and

1̆(h1(R2Zd,R2Vc),SR1Xa) − 1̆(h1(R1Xa,R2Zd),SR2Vc) =

− cosh2 θa
1 cosh2 θb

2(Xa(ln k1) + (ln k2)Xa)1̆(Zd,Vc)

+ cosh2 θb
2(R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,R2Vc). (47)

The proof is completed. Using similar way, we get result for type-2

Hiepko’s Theorem. [15] Let Da and Db be two orthogonal distribution on a Riemannian structure K . Accept
that Da and Db are involutive. So that Da is a totally geodesic foliation and Db is a spherical foliation. Moreover
K is locally isometric to a doubly warped product k2K

a
×k1K

b, whereK a andK b are integral manifolds ofDa andDb.

Now, we give a characterization with related to the pointwise bi-slant non-trivial doubly warped prod-
uct type 1-2 submanifolds whose ambient spaces are para-Kaehler manifolds.

Theorem 4.10. Let K be a proper pointwise bi-slant type 1-2 submanifold whose ambient space is para-Kaehler
manifold K̆ with pointwise slant distributions Dθ1 and Dθ2 . Later K is a non-trivial doubly warped product type
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1-2 submanifold of the formK =k2 K
θ1 ×k1 K

θ2 , whereKθ1 andKθ2 are pointwise slant submanifolds with distinct
slant functions θa

1, θb
2. If and only if the shape operator ofK satisfies (Type-1)

ASR1XaZd +ASZdR1Xa −ASR2ZdXa −ASXaR2Zd = (cosh2 θb
2 − cosh2 θa

1)(Xaγ̄)Zd (48)

where γ̆ is a function onK , so thatVc(γ̆) = 0, for anyVc ∈ Γ(Dθ2 ), for any Xa ∈ Γ(Dθ1 ) andZd ∈ Γ(Dθ2 ).

Proof. LetK =k2 K
θ1×k1K

θ2 be a pointwise bi-slant non-trivial doubly warped product type-1,2 submanifold
whose ambient space is para-Kaehler manifold K̄ .
ForZd ∈ Γ(TKθ2 ) and Xa,Yb ∈ Γ(TKθ1 ). using (4) and (36), we derive

1̆(h1(Xa,Zd),SYb) + 1̆(h1(Xa,Yb),SZd) = 0

1̆(ASYbZd +ASZdYb,Xa) = 0. (49)

InterchangingYb by R1Yb in (49), we get

1̆(ASR1YbZd +ASZdR1Yb,Xa) = 0. (50)

Again interchangingZd by R2Zd, (49) yieldes

1̆(ASYbR2Zd −ASR2ZdYb,Xa) = 0. (51)

Substracting (51) from (50), we have

1̆(ASR1YbZd +ASZdR1Yb −ASR2ZdYb −ASYbR2Zd,Xa) = 0. (52)

From (40) and (52), we get (48)
Conversely, Let K be a proper pointwise bi-slant type-1 submanifold of K̄ . Later for any Xa,Yb ∈ Γ(Dθ1 ),
Zd ∈ Γ(Dθ2 ) and from (22), (48), we get

(sinh2 θa
1 − sinh2 θb

2)1̆(∇XaYb,Zd) − (cosh2 θb
2 − cosh2 θa

1)(Xaγ)1̆(Xa,Zd) = 0. (53)

Because of θa
1 , θ

b
2, the leaves of the distributionDθ1 are totally geodesic in K . Also, for any Xa ∈ Γ(Dθ1 ),

Vc,Zd ∈ Γ(Dθ2 ) and from (23) and (48), we get

(sinh2 θb
2 − sinh2 θa

1)1̆(∇ZdVc,Xa) = (cosh2 θb
2 − cosh2 θa

1)(Xaγ)1̆(Zd,Vc). (54)

Utilizing trigonometric informations on (54), we have

1̆(∇ZdVc,Xa) = −(Xaγ)1̆(Zd,Vc). (55)

By polarization, we find

1̆(∇VcZd,Xa) = −(Xaγ)1̆(Zd,Vc). (56)

From (54) and (55), we obtain 1̆([Zd,Vc],Xa) = 0. the distributionDθ2 is integrable. We think a leaf Kθ2 of
D
θ2 and h2 be the second fundamental form ofKθ2 inK . Later from (55), we get

1̆(h2(Zd,Vc),Xa) = 1̆(∇ZdVc,Xa) = −(Xaγ)1̆(Zd,Vc). (57)

Therefore, we get h2(Zd,Vc) = −∇γ̄1̆(Zd,Vc), where ∇γ̄ is the gradient of γ̄, the leafKθ2 is totally umbilicial
inK with mean curvature vector H2 = −∇γ̄. Because ofVc(γ̄) = 0 for anyVc ∈ Γ(Dθ2 ), we can easily get H2

is parallel corresponding to the normal connectionDθ2 of Kθ2 in K . Thus Kθ2 is an extrinsic sphere in K .
From Hiepko’s theorem, we deduce thatK is a locally, doubly warped product submanifold. So, the proof
is completed.
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5. An optimal inequality

In this part, we establish an inequality for the squared norm of the second fundamental form of a mixed
totally geodesic non-trivial doubly warped product pointwise bi-slant submanifold.

Let K =k2 K
θ1 ×k1 K

θ2 be a (s = 2p + 2q)-dimensional pointwise bi-slant non-trivial doubly warped
product submanifold whose ambient space is (2m)-dimensional para-Kaehler manifold K̄ . Let be a dimen-
sion d1 = 2p of Kθ1 and a dimension d2 = 2q of Kθ2 . We take tangent spaces of Kθ1 and Kθ2 by Dθ1 and
D
θ2 . We create orthonormal frames according to type-1 and type-2. Firstly for type-1, we create the local

orthonormal frames ofDθ1 andDθ2 , respectively. Assume that
{E1, .., Ep, Ep+1 = sec hθa

1R1E1, ..., E2p = sec hθa
1R1Ep} that θa

1 is nonconstant,
{E2p+1 = E

∗

1, ..., E2p+q = E
∗
q, E2p+q+1 = E

∗

q+1 = sec hθb
2R2E

∗

1, ..., E2p+2q = E
∗

2q = sec hθb
2R2E

∗
q} that θb

2 is non-constant.
At the moment, we will give orthonormal frames of the local orthonormal frames of SDθ1 , SDθ2 . This
frames respectively are
{Es+1 = Ê1 = csc hθa

1SE1, ..., En+p = Êp = csc hθa
1SEp, En+p+1 = Êp+1 = csc hθa

1
sechθa

1SR1E1, ..., En+2p = Ên+2p = csc hθa
1 sec hθa

1SR1Ep},
{Es+2p+1 = Ē1 = csc hθb

2SE
∗

1, ..., Es+2p+q = Ēq = csc hθb
2SE

∗
q, Es+2p+q+1 = Ēq+1 = csc hθb

2SR2E
∗

1, ..., E2s = Ē2q =

csc hθb
2 sec hθb

2SR2E
∗

1}.
Lets assume that
* onDθ1 : orthonormal basis {Ev}v=1,...,p, where p = dim(Dθ1 ); also, supposed that 1̆(Ev, Ev) = 1,
* onDθ2 : orthonormal basis {E∗w}w=1,...,q, where q = dim(Dθ2 ) also 1̆(Êw, Êw) = ∓1,
* on SDθ1 : orthonormal basis {SEv}v=1,...,p, where p = dim(SDθ1 ) also 1̆(SEv,SEv) = −1,
* on SDθ2 : orthonormal basis {E∗w}w=1,...,q, where q = dim(SDθ2 ) also 1̆(Ēw, Ēw) = ∓1.

Theorem 5.1. Let K =k2 K
θ1 ×k1 K

θ2 be an s-dimensional mixed totally geodesic pointwise bi-slant non-trivial
doubly warped product submanifold whose ambient space is (2m)- dimensional para-Kaehler manifold K̄ .
where Kθ1 , Kθ2 are proper pointwise slant submanifolds with θa

1
and θb

2
are slant angles in K . Also, Kθ1 , Kθ2 are

spacelike. Then (for type-1), we get
1) The squared norm of the second fundamental form h1 ofK supplies

||h1||
2
≤ 2q csc h2θa

1(cosh2 θa
1 + cosh2 θb

2){||∇(ln k1 + ln k2)||2

−

p∑
r=1

((er ln k1)2 + (er ln k2)2)} (58)

where ∇(ln k1 + ln k2) defines the gradient of (ln k1 + ln k2) alongKθ2 ,Kθ1 and θa
1 , θb

2 are pointwise slant angles of
K
θ1 andKθ2 , respectively.

2) If the equality sign of (58) holds the same way, thenKθ1 is totally geodesic andKθ2 is totally umbilical in K̄ .

Proof. From ||h1||
2 = ||h1(Dθ1 ,Dθ1 )||2 + 2||h1(Dθ1 ,Dθ2 )||2 + ||h1(Dθ2 ,Dθ2 )||2 . Because of K is mixed totally

geodesic, the middle term of the right-hand side should be zero. In that case, we get

||h1||
2 =

s∑
v,w=1

1̆(h1(Ev, Ew), (h1(Ev, Ew)) =
2m∑

r=s+1

2p+2q∑
v,w=1

1̆(h1(Ev, Ew), Er)2.

Now, we use the frames ofDθ1 andDθ2 in above equation, as follows

||h1||
2 =

2m∑
r=s+1

2p∑
v,w=1

1̆(h1(Ev, Ew), Er)2 +

2m∑
r=s+1

2p∑
v=1

2q∑
w=1

1̆(h1(Ev, Ew), Er)2

+

2m∑
r=s+1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Er)2. (59)
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Because ofK is mixed totally geodesic, the second term in the right hand side of (59) becomes zero and this
equation can be seperated for the frames ofDθ1 ,Dθ2 components, as follows

||h1||
2 =

n+2q∑
r=s+1

2p∑
v,w=1

1̆(h1(Ev, Ew), Er)2 +

2m∑
r=s+2q+1

2p∑
v,w=1

1̆(h1(Ev, Ew), Er)2

+

s+2p∑
r=s+1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Er)2 +

2m∑
r=s+2p+1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Er)2. (60)

Next by removing the frames SDθ1 , SDθ2 components in (60), we get

||h1||
2
≥

2q∑
r=1

2p∑
v,w=1

1̆(h1(Ev, Ew), Ēr)2 +
2p∑
r=1

2p∑
v,w=1

1̆(h1(Ev, Ew), Êr)2

+

2p∑
r=1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Ēr)2 +

2q∑
r=1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Êr)2. (61)

Because of we could not find any relation for 1̆(h1(Ev, Ew), Êr) for any v,w = 1, 2, ..., 2p and r = 1, 2, ..., 2p,
1̆(h1(E∗v,E∗w), Ēr) for any v,w, r = 1, 2, ..., 2q, we leave the second and fourth terms. So, we have

||h1||
2
≥

2q∑
r=1

2p∑
v,w=1

1̆(h1(Ev, Ew), Ēr)2 +

2p∑
r=1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Êr)2. (62)

Because of (36), (62)

||h1||
2
≥

2q∑
r=1

2p∑
v,w=1

1̆(h1(Ev, E
∗

w), Ēr)2 +

2p∑
r=1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Êr)2. (63)

Because ofK is mixed totally geodesic, we get

1̆(h1(Ev, E
∗

w), Er) = 0. (64)

For every v,w = 1, ..., 2p, r = s + 1, ..., 2q. By virtue of (64), we get from (63) that

||h1||
2
≥

2p∑
r=1

2q∑
v,w=1

1̆(h1(E∗v, E
∗

w), Êr)2. (65)



S. Ayaz, Y. Gündüzalp / Filomat 39:13 (2025), 4459–4476 4473

Thus by utilizing the orthonormal frame fields of SDθ1 , SDθ2 , we have

||h1||
2
≥ csc h2θa

1

p∑
r=1

q∑
v,w=1

1̆(h1(E∗v,E
∗

w),SEr)2

+ csc h2θa
1 sec h2θb

2

p∑
r=1

q∑
v,w=1

1̆(h1(R2E
∗

v, E
∗

w),SEr)2

+ csc h2θa
1 sec h2θb

2

p∑
r=1

q∑
v,w=1

1̆(h1(E∗v,R2E
∗

w),SEr)2

+ csc h2θa
1 sec h4θb

2

p∑
r=1

q∑
v,w=1

1̆(h1(R2E
∗

v,R2E
∗

w),SEr)2

+ csc h2θa
1 sec h2θa

1

p∑
r=1

q∑
v,w=1

1̆(h1(E∗v, E
∗

w),SR1Er)2

+ csc h2θa
1 sec h2θa

1 sec h2θb
2

p∑
r=1

q∑
v,w=1

1̆(h1(R2E
∗

v, E
∗

w),SR1Er)2

+ csc h2θa
1 sec h2θa

1 sec h2θb
2

p∑
r=1

q∑
v,w=1

1̆(h1(E∗v,R2E
∗

w),SR1Er)2

+ csc h2θa
1 sec h2θa

1 sec h4θb
2

p∑
r=1

q∑
v,w=1

1̆(h1(R2E
∗

v,R2E
∗

w),SR1Er)2.

Using (37)-(39),(43)-(47) and (64) in the above equation, we have

||h1||
2
≥ csc h2θa

1

p∑
r=1

q∑
v,w=1

(R1Er(ln k1) + (ln k2)R1Er)21̆(E∗v, E
∗

w)2

+ csc h2θa
1

p∑
r=1

q∑
v,w=1

(R1Er(ln k1) + (ln k2)R1Er)21̆(E∗v, E
∗

w)2

+ csc h2θa
1 sec h2θa

1 cosh2 θb
2

p∑
r=1

q∑
v,w=1

(R1Er(ln k1) + (ln k2)R1Er)21̆(E∗v, E
∗

w)
2

+ csc h2θa
1 sec h2θa

1 cos h2θb
2

p∑
r=1

q∑
v,w=1

(R1Er(ln k1) + (ln k2)R1Er)21̆(E∗v, E
∗

w)2

= 2q csc h2θa
1[1 + sec h2θa

1 cosh2 θb
2]

p∑
r=1

(R1Er(ln k1) + (ln k2)R1Er)2. (66)

At the moment

||∇(ln k1 + ln k2)||2 =
2p∑
r=1

(Er ln k1)2 +

2p∑
r=1

(Er ln k2)2

=

p∑
r=1

(Er ln k1)2 +

p∑
r=1

(sec hθa
1R1Er ln k1)2 +

p∑
r=1

(Er ln k2)2 +

p∑
r=1

(sec hθa
1R1Er ln k2)2

=

p∑
r=1

(Er ln k1)2 + (Er ln k2)2 + sec h2θa
1

p∑
r=1

(R1Er ln k1)2 + (R1Er ln k2)2
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From the above equation, we derive
p∑

r=1

(R1Er ln k1 + R1Er ln k2)2 = cosh2 θa
1(||∇ ln k1 + ln k2||

2

−

p∑
r=1

(Er ln k1)2 + (Er ln k2)2). (67)

Using (67) in (66), we have (58).

h1(Dθ1 ,Dθ1 ) ⊂ SDθ1 ⊕ SDθ2 (68)

and from the leaving second term in (61), we have 1̆1(h1(Dθ1 ,Dθ1 ),SDθ1 ) = 0 which implies that h1(Dθ1 ,Dθ1 )⊥SDθ1 ,
i.e.,

h1(Dθ1 ,Dθ1 ) ⊂ SDθ2 . (69)

Also from (36) and (64), we find h1(Dθ1 ,Dθ1 )⊥SDθ2 , i.e.,

h1(Dθ1 ,Dθ1 ) ⊂ SDθ1 . (70)

From (68)-(70), we have that

h1(Dθ1 ,Dθ1 ) = 0. (71)

SinceKθ1 is totally geodesic inK [9], from (71), we find thatKθ1 is totally geodesic in K̄ .

h1(Dθ2 ,Dθ2 ) ⊂ SDθ2 (72)

Because of leaving fourth term in (61), we get 1̆1(h1(Dθ2 ,Dθ2 ),SDθ2 ) = 0 which implies that h1(Dθ2 ,Dθ2 )⊥SDθ2 ,
i.e.,

h1(Dθ2 ,Dθ2 ) ⊂ SDθ1 (73)

Moreover, utilizing (64) in (71), we find

1̆(h1(Zd,Vc),SXa) = (R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc)
+ (Xa(ln k1) + (ln k2)Xa)1̆(Zd,R2Vc). (74)

For any Xa ∈ Γ(TKθ1 ) andZd,Vc ∈ Γ(TKθ2 ). By polarization of (74), we get

1̆(h1(Zd,Vc),SXa) = (R1Xa(ln k1) + (ln k2)R1Xa)1̆(Zd,Vc)
+ (Xa(ln k1) + (ln k2)Xa)1̆(Vc,R2Zd). (75)

Substracting (75)from (74), we have

1̆(h1(Zd,Vc),SXa) = (R1Xa(ln k1) + (ln k2R1Xa))1̆(Zd,Vc). (76)

From (73) , (76) and the fact thatKθ2 is totally umbilical inK [9], we find thatKθ2 is totally umbilical in K̄ .
The proof is completed.

Remark 5.2. IfKθ1 ,Kθ2 manifolds of above theorem is timelike, equation (58) should be modified by

||h1||
2
≥ 2q csc h2θa

1(cosh2 θa
1 + cosh2 θb

2){||∇(ln k1 + ln k2)||2

−

p∑
r=1

((er ln k1)2 + (er ln k2)2)}. (77)

Similarly, for proper pointwise slant submanifoldsKθ1 ,Kθ2 (type-2), we achieve
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Theorem 5.3. Let K =k2 K
θ1 ×k1 K

θ2 be an s-dimensional mixed totally geodesic pointwise bi-slant non-trivial
doubly warped product submanifold whose ambient space is (2m) dimensional para-Kaehler manifold K̄ .
where,Kθ1 ,Kθ2 are pointwise slant submanifolds with θa

1
and θb

2
are slant angles inK . Also,Kθ1 ,Kθ2 are spacelike

and timelike, respectively. Then, (for type-2) The squared norm of the second fundamental form ofNx supplies:

||h1||
2
≤ 2q csc2 θa

1(cos2 θa
1 + cos2 θb

2){||∇(ln k1 + ln k2)||2

−

p∑
r=1

((er ln k1)2 + (er ln k2)2)} (78)

(respectivelly

||h1||
2
≥ 2q csc2 θa

1(cos2 θa
1 + cos2 θb

2){||∇(ln k1 + ln k2)||2

−

p∑
r=1

((er ln k1)2 + (er ln k2)2)}). (79)
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