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Abstract. It is demonstrated that the following class of difference equations systemun+1 = Φ
−1

(
Ψ (vn) a1Φ(un)+b1Ψ(vn−1)

c1Φ(un)+d1Ψ(vn−1)

)
,

vn+1 = Ψ
−1

(
Φ (un) a2Ψ(vn)+b2Φ(un−1)

c2Ψ(vn)+d2Φ(un−1)

)
,

n ∈N0,

where the initial conditions u−i, v−i, for i ∈ {0, 1}, are real numbers, the parameters c2
j + d2

j , 0, a j, b j, c j, d j, for
j ∈ {1, 2}, are real numbers, Φ and Ψ are continuous and strictly monotone functions such that Φ (R) = R,
Ψ (R) = R, Φ (0) = 0,Ψ (0) = 0, can be solved in all cases.

1. Introduction

First of all, recall the notation η = ζ, ξ means that
{
η ∈ Z : ζ ≤ η ≤ ξ

}
if ζ, ξ ∈ Z, ζ ≤ ξ. Further, the

set of natural, nonnegative integer, integer and real number are indicated by the notation ofN, N0, Z, R,
respectively.

It is important to know if exist solutions of system of difference equations. Firstly, to give the solutions
of system of difference equations, the type of difference equation system must be determined such as linear,
non-linear, Riccati, exponential and fuzzy (see e.g. [9, 19, 20] and reference therein). After determining the
type of difference equations system, the method to be used must be stated. For example, one of the methods
that can be used to solve system of non-linear difference equations and non-linear difference equations, is
the change of variables. There are some authors, who use this method [1, 10–17, 23–29] in literature. But,
some authors still solve systems of non-linear difference equations, by induction [4–8].

Recently, the following difference equation

xn+1 = 1
−1

(
1 (xn)

α1 (xn) + β1 (xn−1)
γ1 (xn) + δ1 (xn−1)

)
, n ∈N0, (1)
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where the parameters α, β, γ, δ and the initial values x−s, for s ∈ {0, 1} are real numbers, γ2 + δ2 , 0, 1 is a
strictly monotone and continuous function, 1 (R) = R, 1 (0) = 0 is solved by using transformation in [21].

Lately, Stević et al., investigate the following difference equations

xn+1 = Φ
−1

(
Φ (xn−1)

αΦ (xn−2) + βΦ (xn−4)
γΦ (xn−2) + δΦ (xn−4)

)
, n ∈N0, (2)

where the initial values x−p, for p = 0, 4 and the parameters α, β, γ and δ are real numbers in [22].
In an earlier paper, Kara obtained closed-form solutions of the following general difference equations

xn+1 = h−1

(
h (xn)

Ah (xn−1) + Bh (xn−2)
Ch (xn−1) +Dh (xn−2)

)
, n ∈N0, (3)

where the parameters A,B,C,D and the initial values x−Φ, forΦ = 0, 2 are real numbers, A2+B2 , 0 , C2+D2,
h is a strictly monotone and continuous function, h (R) = R, h (0) = 0 in [18].

A natural problem is to extend a two-dimensional relative of equation (1) that can be solved in closed-
form. In this paper, we will consider such a system. More precisely, we demonstrate the various subclasses
of nonlinear difference equation systems of the form. In other words, we are interested in the following
general two-dimensional form of equation (1)

un+1 = Φ
−1

(
Ψ (vn) a1Φ(un)+b1Ψ(vn−1)

c1Φ(un)+d1Ψ(vn−1)

)
,

vn+1 = Ψ
−1

(
Φ (un) a2Ψ(vn)+b2Φ(un−1)

c2Ψ(vn)+d2Φ(un−1)

)
,

n ∈N0, (4)

where the initial conditions ut, vt, for t ∈ {−1, 0} are real numbers, the parameters ak, bk, ck, dk, for k ∈ {1, 2}
are real numbers,Φ andΨ are continuous and strictly monotone functions,Φ (R) = R,Ψ (R) = R,Φ (0) = 0,
Ψ (0) = 0. Further, we obtain the solutions of system (4) in closed-form according to states of parameters.
In the last case, we will use suitable substitutions on variables and reduce to second-order linear difference
equations.

Recurrence relations and difference equations are ancient topics whose rigorous analytical study was
largely initiated at the start of the 18th century by de-Moivre who also came up with the phrase “recurrence
relation” in [2]. The general solution in closed-form in terms of the parameters η, ζ and the initial conditions
zi, i ∈ {0, 1}, to the following linear difference equation of second-order

zn+2 = ηzn+1 + ζzn, n ∈N0, (5)

where ζ , 0, was obtained by de-Moivre in [2], as follows:

zn =
(z1 − λ2z0)λn

1 − (z1 − λ1z0)λn
2

λ1 − λ2
, n ∈N0, (6)

when ζ , 0 and η2+4ζ , 0, where λ1,2 =
η±
√
η2+4ζ
2 are the roots of the characteristic equation λ2

−ηλ−ζ = 0,

zn = ((z1 − λz0) n + λz0)λn−1, n ∈N0, (7)

when ζ , 0 and η2 + 4ζ = 0, where λ1,2 = λ =
η
2 are the roots of mentioned characteristic equation.

We will use the following very well-known result, which was given by Chapter 1 and page 3-4, in [3].

Lemma 1.1. Consider the linear difference equation

wrn+ j = anwr(n−1)+ j + bn, n ∈N0,
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where an and bn are real number sequences and j ∈ {0, 1, . . . , r − 1}. Then, the general solution of variable coefficients
linear difference equation is given by the following formula

wrn+ j =

 n∏
j=0

a j

 w j−r +

n∑
k=0

 n∏
j=k+1

a j

 bk,

where the next standard conventions
∏l

i= j γi = 1 and
∑l

i= j ηi = 0, for all l < j, are utilized here. Moreover if an and
bn are constants, that is, an = a and bn = b, then the general solution to constant coefficient linear difference equation
is given by the following formula

wrn+ j =

an+1w j−r +
an+1
−1

a−1 b, a , 1,
w j−r + (n + 1) b, a = 1,

n ∈N0.

2. Closed-Form Solutions of System (4)

The main results of this study are established and proved in this section.

Theorem 2.1. Suppose that a j, b j, c j, d j ∈ R, for j ∈ {1, 2}, such that c2
j + d2

j , 0 and the functions Φ and Ψ are
continuous and strictly monotone such that Φ (R) = R, Ψ (R) = R, Φ (0) = 0, Ψ (0) = 0. Then, the general system
(4) is solvable in closed-form.

Proof. If at least one of the initial values u−i or v−i, for i ∈ {0, 1}, is equal to zero, then the solution of system
(4) is not defined. Moreover, assume that un0 = 0 for some n0 ∈N0. Then, from system (4) we have vn0+1 = 0.
These facts along with (4) imply that vn0+2 is not defined. Similarly, suppose that vn1 = 0 for some n1 ∈ N0.
Then, from system (4) we have un1+1 = 0 from which along with (4) imply that un1+2 is not defined. Hence,
for every well-defined solution of system (4), we have

unvn , 0, n ≥ −1. (8)

if and only if u−iv−i , 0, for i ∈ {0, 1} Firstly, sinceΦ (R) = R,Ψ (R) = R,Φ (0) = 0,Ψ (0) = 0 andΦ,Ψ : R→ R
are continuous and strictly monotone functions, Φ and Ψ are one to one functions. Further, the only root
of the functions Φ and Ψ is 0. So, these functions are homomorphism on R. Taking this property of the
functions into consideration, the solutions of system (4) according to the states of the parameters will be
examined as follows:
Case 1. a jd j = b jc j, for j ∈ {1, 2}: In this case, we have 6 sub-cases.

Subcase 1.1. a j = 0 = b j, c jd j , 0, for j ∈ {1, 2}: In this case, system (4) becomes

un+1 = Φ
−1 (0) , vn+1 = Ψ

−1 (0) , n ∈N0.

By using the properties of functions Φ and Ψ in the last equations, we get the solution of system (4) as
follows

un = 0, vn = 0, n ∈N. (9)

Subcase 1.2. a j = 0, b jd j , 0, for j ∈ {1, 2}: In this case, with these conditions, we straight away get c j = 0,
for j ∈ {1, 2}, and hereby, d j , 0, for j ∈ {1, 2}, which implies

un+1 = Φ
−1

(
b1

d1
Ψ (vn)

)
, vn+1 = Ψ

−1
(

b2

d2
Φ (un)

)
, n ∈N0. (10)

Also, from (10), we easily obtain

Φ (un+1) =
b1

d1
Ψ (vn) , Ψ (vn+1) =

b2

d2
Φ (un) , n ∈N0, (11)
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from which it follows that

Φ (un+1) =
b1b2

d1d2
Φ (un−1) , Ψ (vn+1) =

b1b2

d1d2
Ψ (vn−1) , n ∈N. (12)

Since the equations in (12) are solvable, we define new variables as following forms

zn = Φ (un) , tn = Ψ (vn) , n ∈N0. (13)

By substituting the new variables to equations in (12), we obtain the second-order linear difference equations
as follows:

zn+1 =
b1b2

d1d2
zn−1, tn+1 =

b1b2

d1d2
tn−1, n ∈N. (14)

By using Lemma 1.1 for r = 2, we can write the general solution of the equations in (14) as follows

z2n+i =

(
b1b2

d1d2

)n

zi, t2n+i =

(
b1b2

d1d2

)n

ti, n ∈N0, (15)

for i ∈ {0, 1}. Further, from (13) and the solutions in (15), the general solutions of system (10) can be written
by

u2n+i = Φ
−1

((
b1b2

d1d2

)n

Φ (ui)
)
, v2n+i = Ψ

−1

((
b1b2

d1d2

)n

Ψ (vi)
)
, n ∈N0, (16)

for i ∈ {0, 1}.

Subcase 1.3. b j = 0, a jc j , 0, for j ∈ {1, 2}: In this case, with these conditions, we immediately have d j = 0,
for j ∈ {1, 2}, and consequently, c j , 0, for j ∈ {1, 2}, which implies

un+1 = Φ
−1

(a1

c1
Ψ (vn)

)
, vn+1 = Ψ

−1
(a2

c2
Φ (un)

)
, n ∈N0. (17)

Further, from (17), we get

Φ (un+1) =
a1

c1
Ψ (vn) , Ψ (vn+1) =

a2

c2
Φ (un) , n ∈N0. (18)

from which it follows that

Φ (un+1) =
a1a2

c1c2
Φ (un−1) , Ψ (vn+1) =

a1a2

c1c2
Ψ (vn−1) , n ∈N. (19)

By using transforms in (13), then we get the second-order linear difference equations as follows:

zn+1 =
a1a2

c1c2
zn−1, tn+1 =

a1a2

c1c2
tn−1, n ∈N. (20)

By using Lemma 1.1 for r = 2, we can write the general solution of equations in (20) as follows

z2n+i =
(a1a2

c1c2

)n
zi, t2n+i =

(a1a2

c1c2

)n
ti, n ∈N0, (21)

for i ∈ {0, 1}. From (13) and the solutions in (21), the general solution of system (17) can be written by

u2n+i = Φ
−1

((a1a2

c1c2

)n
Φ (ui)

)
, v2n+i = Ψ

−1
((a1a2

c1c2

)n
Ψ (vi)

)
, n ∈N0, (22)
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for i ∈ {0, 1}.

Subcase 1.4. d j = 0, for j ∈ {1, 2}: In this case, with this condition, we straight away get b j = 0, for
j ∈ {1, 2}, and hereby, c j , 0, for j ∈ {1, 2}. Then, there are two cases to be considered. These cases are ei-
ther a j = 0 or a j , 0 for j ∈ {1, 2}. These two cases were investigated in Subcase 1 and Subcase 3, respectively.

Subcase 1.5. c j = 0, for j ∈ {1, 2}: In this case, with this condition, we immediately have a j = 0, for
j ∈ {1, 2}, and consequently, d j , 0, for j ∈ {1, 2}. Then, there are two cases to be considered. These cases
are either b j = 0 or b j , 0 for j ∈ {1, 2}. These two cases were investigated in Sub-case 1 and Sub-case 2,
respectively.

Subcase 1.6. a jb jc jd j , 0, for j ∈ {1, 2}: In this case, with this condition, we straight away get a j =
b jc j

d j
for

j ∈ {1, 2}. Then system (4) reduces to system (10), whose solution is given by formulas (16).

Case 2. a jd j , b jc j for j ∈ {1, 2}: In this case, from (8) and the monotonicity of Φ and Ψ, we have the
following inequalities

Φ (un) , 0, Ψ (vn) , 0, n ≥ −1. (23)

Then, from (23), system (4) can be written in the following form

Φ (un+1)
Ψ (vn)

=
a1
Φ(un)
Ψ(vn−1) + b1

c1
Φ(un)
Ψ(vn−1) + d1

,
Ψ (vn+1)
Φ (un)

=
a2
Ψ(vn)
Φ(un−1) + b2

c2
Ψ(vn)
Φ(un−1) + d2

, n ∈N0. (24)

By using the following change of variables

zn =
Φ (un)
Ψ (vn−1)

, wn =
Ψ (vn)
Φ (un−1)

, n ∈N0, (25)

we get the following Riccati difference equations as follows:

zn+1 =
a1zn + b1

c1zn + d1
, wn+1 =

a2wn + b2

c2wn + d2
, n ∈N0. (26)

In here, there are two cases to be considered for system (26).

Subcase 2.1. c j = 0 for j ∈ {1, 2}: In this case, system (26) is presented by

zn+1 =
a1

d1
zn +

b1

d1
, wn+1 =

a2

d2
wn +

b2

d2
, n ∈N0. (27)

Now the subcases a j

d j
= 1 and a j

d j
, 1 for j ∈ {1, 2}will be considered separately.

Subsubcase 2.1.1. a j = d j for j ∈ {1, 2}: In this case, by using Lemma 1.1, if a1
d1
= 1 and a2

d2
= 1, in (27), the

solutions of equations in (27) can be written in the following form

zn = z0 +
b1

d1
n, wn = w0 +

b2

d2
n, n ∈N0, (28)

from which along with (25), it follows that

Φ (un) =
(
Φ (u0)
Ψ (v−1)

+
b1

d1
n
)
Ψ (vn−1) , Ψ (vn) =

(
Ψ (v0)
Φ (u−1)

+
b2

d2
n
)
Φ (un−1) , n ∈N0. (29)
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By substituting the first equation in (29) into the second equation in (29) and the second one in (29) into the
first one in (29), we can easily getΦ (un) =

(
Φ(u0)
Ψ(v−1) +

b1
d1

n
) (
Ψ(v0)
Φ(u−1) +

b2
d2

(n − 1)
)
Φ (un−2) ,

Ψ (vn) =
(
Ψ(v0)
Φ(u−1) +

b2
d2

n
) (
Φ(u0)
Ψ(v−1) +

b1
d1

(n − 1)
)
Ψ (vn−2) ,

n ∈N. (30)

On the other hand, we get the general solution of system (4) as followsu2n+i = Φ−1
(
Φ (ui)

∏n
j=1

(
Φ(u0)
Ψ(v−1) +

b1
d1

(
2 j + i

)) ( Ψ(v0)
Φ(u−1) +

b2
d2

(
2 j + i − 1

)))
,

v2n+i = Ψ−1
(
Ψ (vi)

∏n
j=1

(
Ψ(v0)
Φ(u−1) +

b2
d2

(
2 j + i

)) ( Φ(u0)
Ψ(v−1) +

b1
d1

(
2 j + i − 1

)))
,

n ∈N0, (31)

for i ∈ {−1, 0}.

Subsubcase 2.1.2. a1 = d1 and a2 , d2: In this case, by using Lemma 1.1, if a1
d1
= 1 and a2

d2
, 1, in (27), we

can write the solutions of equations in (27) as follows

zn = z0 +
b1

d1
n, wn =

( a2

d2

)n
w0 + b2

(
a2
d2

)n
− 1

a2 − d2
, n ∈N0. (32)

Clearly, from (25), we get
Φ (un) =

(
Φ(u0)
Ψ(v−1) +

b1
d1

n
)
Ψ (vn−1) ,

Ψ (vn) =
(

a2
d2

)n Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)n
−1

a2−d2
Φ (un−1) ,

n ∈N0. (33)

By substituting the first equation in (33) into the second equation in (33) and the second one in (33) into the
first one in (33), we get that in this case

Φ (un) =
(
Φ(u0)
Ψ(v−1) +

b1
d1

n
) ( a2

d2

)n−1 Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)n−1
−1

a2−d2

Φ (un−2) ,

Ψ (vn) =

( a2
d2

)n Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)n
−1

a2−d2

 ( Φ(u0)
Ψ(v−1) +

b1
d1

(n − 1)
)
Ψ (vn−2) ,

n ∈N. (34)

and consequently
u2n+i = Φ−1

Φ (ui)
∏n

j=1

(
Φ(u0)
Ψ(v−1) +

b1
d1

(
2 j + i

)) ( a2
d2

)2 j+i−1 Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)2 j+i−1
−1

a2−d2


 ,

v2n+i = Ψ−1

Ψ (vi)
∏n

j=1

( a2
d2

)2 j+i Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)2 j+i
−1

a2−d2

 ( Φ(u0)
Ψ(v−1) +

b1
d1

(
2 j + i − 1

)) ,
n ∈N0, (35)

for i ∈ {−1, 0}.

Subsubcase 2.1.3. a1 , d1 and a2 = d2: In this case, by using Lemma 1.1, if a1
d1
, 1 and a2

d2
= 1, in (27), the

general solutions to equations in (27) can be written as follows

zn =
( a1

d1

)n
z0 + b1

(
a1
d1

)n
− 1

a1 − d1
, wn = w0 +

b2

d2
n, n ∈N0. (36)

From (25), we obtainΦ (un) =
(

a1
d1

)n Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)n
−1

a1−d1
Ψ (vn−1) ,

Ψ (vn) =
(
Ψ(v0)
Φ(u−1) +

b2
d2

n
)
Φ (un−1) ,

n ∈N0. (37)
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By substituting the first equation in (37) into the second equation in (37) and the second one in (37) into the
first one in (37), we obtain that in this case

Φ (un) =

( a1
d1

)n Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)n
−1

a1−d1

 ( Ψ(v0)
Φ(u−1) +

b2
d2

(n − 1)
)
Φ (un−2) ,

Ψ (vn) =
(
Ψ(v0)
Φ(u−1) +

b2
d2

n
) ( a1

d1

)n−1 Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)n−1
−1

a1−d1

Ψ (vn−2) ,

n ∈N. (38)

and consequently
u2n+i = Φ−1

Φ (ui)
∏n

j=1

( a1
d1

)2 j+i Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)2 j+i
−1

a1−d1

 ( Ψ(v0)
Φ(u−1) +

b2
d2

(
2 j + i − 1

)) ,
v2n+i = Ψ−1

Ψ (vi)
∏n

j=1

(
Ψ(v0)
Φ(u−1) +

b2
d2

(
2 j + i

)) ( a1
d1

)2 j+i−1 Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)2 j+i−1
−1

a1−d1


 ,

n ∈N0, (39)

for i ∈ {−1, 0}.
Subsubcase 2.1.4. a j , d j for j ∈ {1, 2}: In this case, by using Lemma 1.1, if a1

d1
, 1 and a2

d2
, 1, in (27), we have

write the solutions of equations in (27) as follows

zn =
( a1

d1

)n
z0 + b1

(
a1
d1

)n
− 1

a1 − d1
, wn =

( a2

d2

)n
w0 + b2

(
a2
d2

)n
− 1

a2 − d2
, n ∈N0. (40)

Taking into account (25), we getΦ
(un) =

(
a1
d1

)n Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)n
−1

a1−d1
Ψ (vn−1) ,

Ψ (vn) =
(

a2
d2

)n Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)n
−1

a2−d2
Φ (un−1) ,

n ∈N0. (41)

By substituting the first equation in (41) into the second equation in (41) and the second one in (41) into the
first one in (41), we have

Φ (un) =

( a1
d1

)n Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)n
−1

a1−d1


( a2

d2

)n−1 Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)n−1
−1

a2−d2

Φ (un−2) ,

Ψ (vn) =

( a2
d2

)n Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)n
−1

a2−d2


( a1

d1

)n−1 Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)n−1
−1

a1−d1

Ψ (vn−2) ,

n ∈N, (42)

from which it follows that
u2n+i = Φ−1

Φ (ui)
∏n

j=1

( a1
d1

)2 j+i Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)2 j+i
−1

a1−d1


( a2

d2

)2 j+i−1 Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)2 j+i−1
−1

a2−d2


 ,

v2n+i = Ψ−1

Ψ (vi)
∏n

j=1

( a2
d2

)2 j+i Ψ(v0)
Φ(u−1) + b2

(
a2
d2

)2 j+i
−1

a2−d2


( a1

d1

)2 j+i−1 Φ(u0)
Ψ(v−1) + b1

(
a1
d1

)2 j+i−1
−1

a1−d1


 ,

(43)

for n ∈N0, i ∈ {−1, 0}.
Subcase 2.2. c j , 0 for j ∈ {1, 2}: In this case, by employing the following substitution

c1zn + d1 =
pn+1

pn
, n ∈N0. (44)
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to the first equation in (26), we have the following second-order constant coefficients linear difference
equation

pn+2 − (a1 + d1) pn+1 − (b1c1 − a1d1) pn = 0,n ∈N0. (45)

The characteristic equation for (45) can be written as follows

λ2
− (a1 + d1)λ − (b1c1 − a1d1) = 0,

where λ1 =
a1+d1+

√
(a1+d1)2+4(b1c1−a1d1)

2 , λ2 =
a1+d1−

√
(a1+d1)2+4(b1c1−a1d1)

2 ,
if ∆1 = (a1 + d1)2 + 4 (b1c1 − a1d1) , 0, and λ1,2 =

a1+d1
2 , if ∆1 = (a1 + d1)2 + 4 (b1c1 − a1d1) = 0. Then, the

solution of equation (45) with the initial values p0, p1 is

pn =

(
p1 − λ2p0

)
λn

1 −
(
p1 − λ1p0

)
λn

2

λ1 − λ2
, n ∈N0, (46)

if (a1 + d1)2 + 4 (b1c1 − a1d1) , 0, and

pn =
((

p1 − λ1p0
)

n + λ1p0
)
λn−1

1 , n ∈N0, (47)

if (a1 + d1)2 + 4 (b1c1 − a1d1) = 0. By using (44) and p1

p0
= c1z0 + d1, the solution of the first equation in (26) can

be written by

zn =
1
c1

(c1z0 + d1 − λ2)λn+1
1 − (c1z0 + d1 − λ1)λn+1

2

(c1z0 + d1 − λ2)λn
1 − (c1z0 + d1 − λ1)λn

2
−

d1

c1
, n ∈N0, (48)

if (a1 + d1)2 + 4 (b1c1 − a1d1) , 0, and

zn =
1
c1

((c1z0 + d1 − λ1) (n + 1) + λ1)λn
1

((c1z0 + d1 − λ1) n + λ1)λn−1
1

−
d1

c1
, n ∈N0, (49)

if (a1 + d1)2 + 4 (b1c1 − a1d1) = 0.
Similarly, by using the following change of variable

c2wn + d2 =
qn+1

qn
, n ∈N0, (50)

to the second equation in (26), we obtain the following second-order constant coefficients linear difference
equation

qn+2 − (a2 + d2) qn+1 − (b2c2 − a2d2) qn = 0,n ∈N0. (51)

The characteristic equation for (51) is

λ2
− (a2 + d2)λ − (b2c2 − a2d2) = 0,

where λ3 =
a2+d2+

√
(a2+d2)2+4(b2c2−a2d2)

2 , λ4 =
a2+d2−

√
(a2+d2)2+4(b2c2−a2d2)

2 ,
if ∆2 = (a2 + d2)2 + 4 (b2c2 − a2d2) , 0, and λ3,4 =

a2+d2
2 if ∆2 = (a2 + d2)2 + 4 (b2c2 − a2d2) = 0. In addition, the

solution of equation (51) with the initial values q0, q1 is

qn =

(
q1 − λ4q0

)
λn

3 −
(
q1 − λ3q0

)
λn

4

λ3 − λ4
, n ∈N0, (52)



M. Şen et al. / Filomat 39:13 (2025), 4477–4487 4485

if (a2 + d2)2 + 4 (b2c2 − a2d2) , 0, and

qn =
((

q1 − λ3q0
)

n + λ3q0
)
λn−1

3 , n ∈N0, (53)

if (a2 + d2)2 + 4 (b2c2 − a2d2) = 0. By using (50) and q1

q0
= c2w0 + d2, the solution of the second equation in (26)

can be written by

wn =
1
c2

(c2w0 + d2 − λ4)λn+1
3 − (c2w0 + d2 − λ3)λn+1

4

(c2w0 + d2 − λ4)λn
3 − (c2w0 + d2 − λ3)λn

4
−

d2

c2
, n ∈N0, (54)

if (a2 + d2)2 + 4 (b2c2 − a2d2) , 0, and

wn =
1
c2

((c2w0 + d2 − λ3) (n + 1) + λ3)λn
3

((c2w0 + d2 − λ3) n + λ3)λn−1
3

−
d2

c2
, n ∈N0, (55)

if (a2 + d2)2 + 4 (b2c2 − a2d2) = 0.

From the relations (48), (49), (54) and (55), we observe that there are fundamentally two different
formulas for solutions of system (4), depending on the states of ∆1∆2 , 0 and ∆1 = ∆2 = 0.
Subsubcase 2.2.1. ∆1∆2 , 0: In this case, by using (25), (48) and (54), we obtain

Φ (un) =

 1
c1

(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λn+1

1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λn+1

2(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λn

1−

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λn

2

−
d1
c1

Ψ (vn−1) ,

Ψ (vn) =

 1
c2

(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λn+1

3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λn+1

4(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λn

3−

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λn

4

−
d2
c2

Φ (un−1) ,
n ∈N0. (56)

By substituting the first equation in (56) into the second equation in (56) and the second one in (56) into the
first one in (56), we have

Φ (un) =

 1
c1

(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λn+1

1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λn+1

2(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λn

1−

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λn

2

−
d1
c1


×

 1
c2

(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λn

3−

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λn

4(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λn−1

3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λn−1

4

−
d2
c2

Φ (un−2) ,

Ψ (vn) =

 1
c2

(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λn+1

3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λn+1

4(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λn

3−

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λn

4

−
d2
c2


×

 1
c1

(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λn

1−

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λn

2(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λn−1

1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λn−1

2

−
d1
c1

Ψ (vn−2) ,

n ∈N, (57)

and consequently



u2n+i = Φ
−1

[
Φ (ui)

∏n
j=1

 1
c1

(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λ

2 j+i+1
1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λ

2 j+i+1
2(

c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λ

2 j+i
1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λ

2 j+i
2

−
d1
c1


×

 1
c2

(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λ

2 j+i
3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λ

2 j+i
4(

c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λ

2 j+i−1
3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λ

2 j+i−1
4

−
d2
c2

 ],
v2n+i = Ψ

−1
[
Ψ (vi)

∏n
j=1

 1
c2

(
c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λ

2 j+i+1
3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λ

2 j+i+1
4(

c2
Ψ(v0)
Φ(u−1)+d2−λ4

)
λ

2 j+i
3 −

(
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
λ

2 j+i
4

−
d2
c2


×

 1
c1

(
c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λ

2 j+i
1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λ

2 j+i
2(

c1
Φ(u0)
Ψ(v−1)+d1−λ2

)
λ

2 j+i−1
1 −

(
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
λ

2 j+i−1
2

−
d1
c1

 ],
(58)
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for n ∈N0 and i ∈ {−1, 0}.
Subsubcase 2.2.2. ∆1 = ∆2 = 0: In this case, from (25), (49) and (55), we obtain

Φ (un) =

 1
c1

((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(n+1)+λ1

)
λn

1((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
n+λ1

)
λn−1

1

−
d1
c1

Ψ (vn−1) ,

Ψ (vn) =

 1
c2

((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(n+1)+λ3

)
λn

3((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
n+λ3

)
λn−1

3

−
d2
c2

Φ (un−1) ,
n ∈N0. (59)

By substituting the first equation in (59) into the second equation in (59) and the second equation in (59)
into the first equation in (59), we obtain



Φ (un) =

 1
c1

((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(n+1)+λ1

)
λn

1((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
n+λ1

)
λn−1

1

−
d1
c1


×

 1
c2

((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
n+λ3

)
λn−1

3((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(n−1)+λ3

)
λn−2

3

−
d2
c2

Φ (un−2) ,

Ψ (vn) =

 1
c2

((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(n+1)+λ3

)
λn

3((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
n+λ3

)
λn−1

3

−
d2
c2


×

 1
c1

((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
n+λ1

)
λn−1

1((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(n−1)+λ1

)
λn−2

1

−
d1
c1

Ψ (vn−2) ,

n ∈N. (60)

Then, the general solutions of system (4) are



u2n+i = Φ
−1

[
Φ (ui)

∏n
j=1

 1
c1

((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(2 j+i+1)+λ1

)
λ

2 j+i
1((

c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(2 j+i)+λ1

)
λ

2 j+i−1
1

−
d1
c1


×

 1
c2

((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(2 j+i)+λ3

)
λ

2 j+i−1
3((

c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(2 j+i−1)+λ3

)
λ

2 j+i−2
3

−
d2
c2

 ],
v2n+i = Ψ

−1
[
Ψ (vi)

∏n
j=1

 1
c2

((
c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(2 j+i+1)+λ3

)
λ

2 j+i
3((

c2
Ψ(v0)
Φ(u−1)+d2−λ3

)
(2 j+i)+λ3

)
λ

2 j+i−1
3

−
d2
c2


×

 1
c1

((
c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(2 j+i)+λ1

)
λ

2 j+i−1
1((

c1
Φ(u0)
Ψ(v−1)+d1−λ1

)
(2 j+i−1)+λ1

)
λ

2 j+i−2
1

−
d1
c1

 ],
(61)

for n ∈N0 and i ∈ {−1, 0}.

Corollary 2.2. Consider system (4) with the initial conditions u−t, v−t, for t ∈ {0, 1} and the parameters c2
j + d2

j , 0
a j, b j, c j, d j, for j ∈ {1, 2}, which are real numbers. Then the following statements are true.

a) If a jd j = b jc j, a j = b j = 0 and c jd j , 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (9).

b) If a jd j = b jc j, a j = 0 and b jd j , 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (16).

c) If a jd j = b jc j, b j = 0 and a jc j , 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (22).

d) If a jd j = b jc j, d j = 0 and a j = 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (9).

e) If a jd j = b jc j, d j = 0 and a j , 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (22).

f) If a jd j = b jc j, c j = 0 and b j = 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (9).

g) If a jd j = b jc j, c j = 0 and b j , 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (16).



M. Şen et al. / Filomat 39:13 (2025), 4477–4487 4487

h) If a jd j = b jc j and a jb jc jd j , 0 for j ∈ {1, 2}, then the general solution to system (4) is given by (16).

i) If a jd j , b jc j, c j = 0 and a j = d j for j ∈ {1, 2}, then the general solution to system (4) is given by (31).

j) If a jd j , b jc j, c j = 0, for j ∈ {1, 2}, a1 = d1 and a2 , d2, then the general solution to system (4) is given by (35).

k) If a jd j , b jc j, c j = 0, for j ∈ {1, 2}, a1 , d1 and a2 = d2, then the general solution to system (4) is given by (39).

l) If a jd j , b jc j, c j = 0 and a j , d j for j ∈ {1, 2}, then the general solution to system (4) is given by (43).

m) If a jd j , b jc j, c j , 0, for j ∈ {1, 2} and
(
(a1 + d1)2 + 4 (b1c1 − a1d1)

) (
(a2 + d2)2 + 4 (b2c2 − a2d2)

)
, 0 then the

general solution to system (4) is given by (58).

n) If a jd j , b jc j, c j , 0, for j ∈ {1, 2} and (a1 + d1)2 + 4 (b1c1 − a1d1) = 0 = (a2 + d2)2 + 4 (b2c2 − a2d2), then the
general solution to system (4) is given by (61).
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