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Abstract. Let HG(x, y) be the expected hitting time from vertex x to vertex y for the first time on a simple
connected graph G and φ(G) = maxx,y∈V(G)HG(x, y). Let Gt

n be the set of simple connected graphs with n
vertices and t pendant vertices. In this paper, we proved the upper bound of the φ(G) for G ∈ Gt

n and
determined the extremal graph in all n-vertex bicyclic graphs with given t pendant vertices.

1. Introduction

Let G = (V(G),E(G)) be a graph with vertex set V(G) and edge set E(G). For any vertex x ∈ V(G), N(x) is
used to be the set of adjacent vertices of vertex x, i.e., N(x) is the neighbor set of x. Let N[x] be the induced
subgraph of G induced by x and all vertices adjacent to x. The degree of vertex x in G is denoted by dG(x)
and if dG(x) = 1, then we call vertex x a pendant vertex. The distance between vertices x and y in G is
denoted by dG(x, y), abbreviated as d(x, y) if G is clear. For vertices x and y in G, the hitting time HG(x, y) is
the expected number of steps it takes from vertex x to vertex y for the first time. If the graph G is clear from
the context, we use H(x, y) instead of HG(x, y). If A ⊆ V(G), then HG(x,A) is the expected hitting time from
vertex x to reach a vertex in set A for the first time. If x ∈ A, then HG(x,A) = 0. For a given graph G, the
hitting time of G is defined as

φ(G) = maxx,y∈V(G)HG(x, y).

Let Gt
n be the set of simple connected graphs with n vertices and t pendant vertices. Let ϕ(n) := max{φ(G) :

G ∈ Gt
n}. If there is a graph G in Gt

n such that ϕ(n) = φ(G), then G is called an n-maximal graph for Gt
n.

Let G1 = (V1,E1) and G2 = (V2,E2) be two simple connected graphs such that V1 ∩ V2 = {x, y} and
E1 ∩ E2 = ∅. If G is composed of G1 and G2, then there is V(G) = V1 ∪ V2 and E(G) = E1 ∪ E2. In this case,
G can be described as a graph obtained by pasting G1 and G2 through vertices x and y, in other words, G1
and G2 are two subgraphs obtained by decomposing G through vertices x and y. The effective resistance
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R(x, y) between x and y can be defined as the potential difference between x and y when a unit current from
x to y is maintained. While G is treated as an electrical network and each edge of G is replaced with a unit
resistor, RG(x, y) is the effective resistance between x and y in G by Ohm’s law.

An n-vertex bicyclic graph is a graph that contains two cycles with n + 1 edges. For any bicyclic graph,
the two cycles in the graph can be divided into two cases, one case is that two cycles have no edges in
common and the other case is that two cycles have at least one edge in common. Let Bt(n) be the set of
all bicyclic graphs with n vertices and t pendant vertices. In particular, Bt

1(n) is defined as the subset of
B

t(n) in consisting of all bicyclic graphs in which the two cycles share no common edges, and the set Bt
2(n)

is defined as the subset of Bt(n) comprising all bicyclic graphs in which the two cycles share at least one
common edge.

If G ∈ Bt
1(n), then G has two cycles, say Cp and Cq, which intersect with no edges. Without loss of

generality, we assume that Cp = uu1 · · · up−1u, Cq = vv1 · · · vq−1v, and Pm = uw1 · · ·wm−1v is a unique path of
length m from vertex u to vertex v, and the trees Tu, Tv, Tui , Tv j , and Twk are pasted onto u, v, ui, v j, and wk,
respectively. Moreover, we denote G by G = B(Cp,P,Cq) (see the left graph in Figure 1). If m = 0, then the
length of P is zero, so Cp and Cq have a common vertex, that is, u = v; if m = 1, then P = uv. In addition,
let Bp,q

n,t be a bicyclic graph of order n with t pendant vertices in which two cycles Cp and Cq have only one
intersection vertex. A star tree St is attached at any vertex of Cp (excluding the intersection vertex), which
contains t − 1 pendant vertices, a path of length (n − p − q − t + 2) is pasted on vertex vi on Cq. Specifically,
if p = q = 3, then we denote this bicyclic graph by Bt

1(n) (see Figure 2).

If G ∈ Bt
2(n), then G has two cycles Cp and Cq which share at least one common edge, it means that G

contains paths with three non-intersecting edges at the same start vertex and end vertex. Without loss of
generality, we denote Pa = xu1u2 · · · ua−1y, Pb = xw1w2 · · ·wb−1y, and Pc = xv1v2 · · · vc−1y to be three paths.
Then the lengths of these three paths are a, b, and c, respectively. Therefore, graph G mainly consists of
eight parts, namely Pa, Pb, Pc and Tui (1 ≤ i ≤ a − 1), Tv j (1 ≤ j ≤ b − 1), Twk (1 ≤ k ≤ c − 1), Tx, Ty with root
vertices ui, v j, wk, x, and y, respectively. (see the right graph in Figure 1). Let Ba,b,c

n,t be a bicyclic graph that
consists of three non-intersecting paths Pa,Pb, Pc, and a star tree with t − 1 pendant vertices is pasted on
some vertex of Pa, and a path of length (n− a− b− c− t−1) is pasted on any vertex of Pc, excluding vertices x
and y. Specifically, if a = c = 1 and b = 0, i.e., then the bicyclic graph contains three disjoint paths Pa = xu1y,
Pb = xy, Pc = xv1y, and a path of length (n − t − 3) is pasted at vertex v1 and a star tree St is pasted at vertex
u1, then let Bt

2(n) be such a bicyclic graph (see Figure 3).
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Random walks on graphs have been investigated in many aspects and fields. The theory of random walk
is generally related to graphs and their related branches, such as effective resistance distance, topological
index, and the hitting time of some special graph classes. Hitting time, access time, cover time, and other key
parameters are used for studying random walks on graphs. Bollobás [1] introduced the basic knowledge of
random walks on graphs and the relevant calculation formulas and methods for the hitting time on graphs.
Rı́o and Palacios [15] derived a formula to decompose the walking hitting time on the graph into simpler
times. Tetali [16] indicated the relationship between the number of traversals between effective resistance
nodes x and y and the expected number of random walks along any specific edge of the two nodes x and y.
Similarly, Klein and Randić [10] also indicated the close relationship between random walks and effective
resistance distance. Cheng and Zhang [5] used the power network method to prove the formula for the
hitting time of simple random walks on trees and unicyclic graphs with cutpoints. Huang, Li, and Xie [9]
explained the close relationship between the hitting time, Kirchhoff index, resistance centrality, and related
invariants of simple random walks on the graph, and clarified the upper and lower bounds on the cover
cost of a single loop graph. Zhang and Li [19] studied some extreme value problems of the ZZ-index on
trees, and under certain given parameters, clarified in detail the upper and lower bounds on the hitting
time of the tree under the condition of given diameter, given number of matches, given number of pendant
vertices and vertex partition. González-Arévalo and Palacios [7] derived a formula from the symmetry
in the graph weak product inherited from the coordinate graph to calculate the expected hitting time of
random walks on the graph. Palacios [13] utilized the symmetry and properties of the power network to
provide a general boundary for a simple random walk of hitting times and cover times on some special
undirected connected graphs.

In addition, Brightwell and Winkler [2] proved that the lollipop graph G with n vertices and vertices
x and y make HG(x, y) the maximum hitting time among all n vertices in the graphs, and provided the
maximum values of the extremal graph and φ(G). Therefore, if the number of vertices in a graph remains
constant, then its extremal graph is also fixed. This result prompts us to consider the following problem
when the number of vertices and edges remains constant. Zhang and Li [19] obtained the upper bound
on the hitting time of a tree under the condition that the number of pendant vertices remains unchanged.
The extremal graph can be described as a path with a length of (n − p − 1) and a star graph with p − 1
pendant vertices are pasted at the starting vertex of this path. In addition, Zhu and Zhang [22, 23] provided
upper and lower bounds on the hitting time of unicyclic graphs and bicyclic graphs and gave the extremal
graphs of unicyclic graphs and bicyclic graphs. Zhu and Yang [21] provided upper and lower bounds on
the hitting time of tricyclic graphs and gave the extremal graphs.

In this paper, we continue to study the maximal hitting times for random walks on bicyclic graphs with



X.-M. Zhu et al. / Filomat 39:13 (2025), 4507–4521 4510

a given number of pendant vertices and use induction to prove relevant conclusions and derive its extremal
graph. We have learned the relationship between the hitting time of a graph and its subgraph. The results
are used to establish the upper bound for the hitting times of n-vertex bicyclic graphs with a given number
of pendant vertices. The main result is stated as follows:

Theorem 1.1. Let G be a bicyclic graph of order n with t pendant vertices. Then

φ(G) ≤ n2
− t2 + 2n − 6t − 11.

In addition, the equality holds if and only if G is a graph obtained by a path with n − t − 2 vertices, a star graph St,
and K4 − e, where K4 − e is a graph obtained by deleting one edge from complete graph K4.

The rest of this paper is arranged as follows. In Section 2, we present symbols and some key results
which will be used to prove the main results. In Section 3, we investigate the extremal problem of hitting
times for n-vertex bicyclic graphs with t pendant vertices, classified according to the structure of their
cycles. Specifically, the graphs are categorized into two distinct types: one type consists of bicyclic graphs
whose two cycles are edge-disjoint, while the other type comprises bicyclic graphs whose two cycles share
at least one common edge. In Section 4, we use the results of Section 3 to prove Theorem 1.1.

2. Preliminary

Theorem 2.1. [19] Let T be an n-vertices tree with t pendant vertices for n ≥ 3. Then

φ(T) ≤ n2
− t2 + 2t − 2n + 1. (1)

The equality holds if and only if T is composed of Pn−t and a star tree St pasted at the start vertex of this path.

Theorem 2.2. [20] Let G be any n-vertices unicyclic graph with t pendent vertices. Then

φ(G) ≤ n2
− t2
−

8
3

t −
7
3
. (2)

Theorem 2.3. [10] Let G be a connected graph and x, y ∈ V(G). If there exists a cut vertex z such that x and y are
not in a same component of G − z, then

HG(x, y) = HG(x, z) +HG(z, y). (3)

Moreover, if there exists a unique path P = xv1 . . . vk−1y in G, then

HG(x, y) = HG(x, v1) +HG(v1, v2) + . . . +HG(vk−1, y). (4)

Theorem 2.4. [2] Let G be a simple connected graph on n vertices and x, y ∈ V(G). If there exists a unique path
P = v0v1 . . . vk with v0 = x and vk = y, and mi is the number of edges of subgraph Gi, where Gi is the component of
G − v0v1, v1v2, . . . , vk−1vk containing vi for i = 0, . . . , k, then

HG(x, y) = k2 + 2
k−1∑
i=0

mi(k − i). (5)

Theorem 2.5. [15] Let G1 and G2 be decomposition of G through x and y with V(G1) ∩ V(G2) = {x, y} and
E(G1) ∩ E(G2) = ∅. Then

HG(x, y) =
R2(x, y)

R1(x, y) + R2(x, y)
HG1 (x, y) +

R1(x, y)
R1(x, y) + R2(x, y)

HG2 (x, y). (6)

where R1(x, y) and R2(x, y) are the effective resistance between x and y computed in graph G1 and G2 respectively.
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Theorem 2.6. [1] Let G be a simple connected graph on n vertices, y, z ∈ V(G) and z ∈ N(x), x, y, z represent three
different vertices, respectively. Then

HG(x, y) = 1 +
1

d(x)

∑
z∈N(x)

HG(z, y). (7)

Lemma 2.7. [22] Let G be a simple connected graph. If there exist two vertices x, y ∈ V(G) such thatφ(G) = HG(x, y),
then x and y are not cut vertices.

Lemma 2.8. [22] Let x and y be two vertices of graph G and w be a vertex in N[y] such that maxv∈N(y)HG(v, y) =
HG(w, y) and dN[y](w) = k+ 1, where dN[y](w) denotes the degree of vertex w in N[y]. Let N be the vertex set of N[y]
and G/N be the quotient graph obtained from G by contracting N to a single vertex (also denoted N) and identifying
any resulting multiple edges.

(1) If N(y) ∩N(w) = ∅, then HG(x, y) ≤ HG/N(x,N) + 1 + 2(e(G) − e(N[y]));

(2) If N(y) ∩N(w) , ∅, then HG(x, y) ≤ HG/N(x,N) + 4e(G)−2e(N[y])−d(y)+k+1
k+2 ,

where e(G) and e(N[y]) denote the edge number of G and N[y], respectively.

3. The extremal hitting times onBt
1
(n) andBt

2
(n)

In this part, we will prove that the upper bound of φ(G) can be obtained and the maximal graph can
also be obtained whenever G ∈ Bt

1 or G ∈ Bt
2.

Theorem 3.1. Let G ∈ Bt
1(n) and f (n) = n2

− t2 + 2n − 22
3 t − 49

3 , (t ≥ 2,n ≥ 15). Then

φ(G) ≤ f (n).

The equality holds if and only if G = Bt
1(n) and φ(Bt

1(n)) = HBt
1(n)(x, y) is the hitting time from the pendant vertex x

in St to the pendant vertex y in Pn−t−3 with root vertex v1 and d(x, y) = n − t − 1.

Proof. By Theorems 2.3, 2.4, 2.5 and Lemma 2.7, we have HBt
1(n)(x, y) = n2

− t2 + 2n − 22
3 t − 49

3 , (t ≥ 2,n ≥ 15),
which is the hitting time from the pendant vertex x in St to the pendant vertex y in Pn−t−3 with root vertex
v1 and d(x, y) = n− t− 1. Let ϕ1(n) = max{φ(G) : G ∈ Bt

1(n)}. Ultimately, we need to prove that ϕ1(n) = f (n).
If G is any graph with φ(G) = f (n) in Bt

1(n), then G = Bt
1(n) and HBt

1(n)(x, y) = φ(G), where x and y are all
pendant vertices such that d(x, y) = n − t − 1. To prove the above conclusion, we use induction for n.

When n = 9 and t = 3, then B3
1(9) contains 51 bicyclic graphs, denoted by Gi

9, i = 1, · · · , 51 (see Figure 4).
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Through calculations, we can obtain that

φ(G1
9) = H(v1, v9) = 40, φ(G2

9) = H(v1, v9) = 42, φ(G3
9) = H(v1, v9) =

128
3
,

φ(G4
9) = H(v1, v9) =

130
3
, φ(G5

9) = H(v6, v9) =
137

3
, φ(G6

9) = H(v1, v9) = 44,

φ(G7
9) = H(v9, v7) = 38, φ(G8

9) = H(v1, v9) =
140

3
, φ(G9

9) = H(v6, v9) =
151

3
,

φ(G10
9 ) = H(v1, v9) =

134
3
, φ(G11

9 ) = H(v1, v9) =
136

3
, φ(G12

9 ) = H(v6, v9) =
143

3
,

φ(G13
9 ) = H(v1, v9) = 46, φ(G14

9 ) = H(v6, v9) =
145

3
, φ(G15

9 ) = H(v6, v9) = 49,

φ(G16
9 ) = H(v1, v9) = 34, φ(G17

9 ) = H(v5, v9) = 38, φ(G18
9 ) = H(v8, v7) =

125
3
,

φ(G19
9 ) = H(v4, v9) = 36, φ(G20

9 ) = H(v9, v8) =
115

3
, φ(G21

9 ) = H(v9, v8) =
121

3
,

φ(G22
9 ) = H(v8, v7) = 41, φ(G23

9 ) = H(v6, v8) =
121

3
, φ(G24

9 ) = H(v1, v9) =
106

3
,

φ(G25
9 ) = H(v1, v7) =

110
3
, φ(G26

9 ) = H(v1, v9) =
110

3
, φ(G27

9 ) = H(v8, v7) =
137

3
,

φ(G28
9 ) = H(v1, v9) =

110
3
, φ(G29

9 ) = H(v1, v9) =
112

3
, φ(G30

9 ) = H(v9, v7) = 45,

φ(G31
9 ) = H(v1, v9) = 38, φ(G32

9 ) = H(v1, v9) = 40, φ(G33
9 ) = H(v9, v7) =

133
3
,

φ(G34
9 ) = H(v1, v9) = 28, φ(G35

9 ) = H(v5, v7) = 32, φ(G36
9 ) = H(v1, v9) =

57
2
,

φ(G37
9 ) = H(v5, v9) = 23, φ(G38

9 ) = H(v5, v9) =
91
3
, φ(G39

9 ) = H(v1, v7) = 33,

φ(G40
9 ) = H(v1, v9) = 30, φ(G41

9 ) = H(v8, v7) = 36, φ(G42
9 ) = H(v1, v9) =

63
2
,

φ(G43
9 ) = H(v8, v9) =

211
6
, φ(G44

9 ) = H(v5, v7) = 33, φ(G45
9 ) = H(v5, v8) =

95
3
,

φ(G46
9 ) = H(v9, v7) =

69
2
, φ(G47

9 ) = H(v5, v8) =
97
3
, φ(G48

9 ) = H(v7, v9) =
69
2
,

φ(G49
9 ) = H(v1, v8) = 34, φ(G50

9 ) = H(v8, v7) = 37, φ(G51
9 ) = H(v1, v8) = 33.

According to the value of the hitting time of each bicyclic graph calculated as above, we get ϕ1(9) =
max{φ(G1

9), · · · , φ(G51
9 )} = φ(G9

9) = 151
3 = f (9). So G9

9 is the only extremely graph of order 9 with 3 pendant
vertices inB3

1(9) and dG9
9
(v6, v9) = 9− 3− 1 = 5, where x and y are all pendant vertices with d(x, y) = n− t− 1.
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Figure 4: Bicyclic graphs in B3
1(9).

We assume that the above conclusion holds for n − 1. In other words, ϕ1(n − 1) = f (n − 1). In addition,
if G is any graph in Bt

1(n− 1) with φ(G) = f (n− 1), then G = Bt
1(n− 1) and HBt

1(n−1)(x, y) = φ(G), where x and
y are all pendant vertices with d(x, y) = (n − 1) − t − 1 = n − t − 2. Next, we will prove the above conclusion
holds for n. Without loss of generality, we assume G is a n-maximal graph in Bt

1(n) approach φ(G) = ϕ1(n).
In that way, by the definition of φ(G), there exist two vertices x and y in G such that HG(x, y) = φ(G) = ϕ1(n).
By Lemma 2.7, y is not a cut vertex in G, we will consider the following two situations below.

Case 1. y is a vertex on the cycle in G with d(y) = 2. So there exists a vertex w in N[y] that makes
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maxv∈N(y)HG(v, y) = HG(w, y) and dN[y](w) = k + 1.
Subcase 1.1. k = 0. Then e(N[y]) = 2, by Lemma 2.8, N(y) ∩ N(w) = ∅ and HG(x, y) ≤ HG/N(x,N) + 1 +

2(e(G) − e(N[y])). By substituting numerical values, then HG(x, y) ≤ HG/N(x,N) + 2n − 1. In addition, G/N is
a unicyclic graph with n − 2 vertices or G/N ∈ Bt

1(n − 2).
If G/N is a unicyclic graph with n− 2 vertices. Then by Theorem 2.2, HG/N(x,N) ≤ (n− 2)2

− t2
−

8
3 t− 7

3 =

n2
− t2
− 4n − 8

3 t + 5
3 . So, HG(x, y) ≤ n2

− t2
− 2n − 8

3 t + 2
3 < f (n).

If G/N ∈ Bt
1(n− 2). Then, HG/N(x,N) ≤ (n− 2)2

− t2 + 2(n− 2)− 22
3 t− 52

3 . So, HG(x, y) ≤ (n− 2)2
− t2 + 2(n−

2) − 22
3 t − 52

3 + 2n − 1 = n2
− t2
−

22
3 t − 55

3 < f (n).
Subcase 1.2. k = 1. Then, e(N[y]) = 3. By Lemma 2.8, N(y)∩N(w) , ∅. Therefore, HG(x, y) ≤ HG/N(x,N)+

4e(G)−2e(N[y])−d(y)+k+1
k+2 = HG/N(x,N)+ 4n−2

3 , by substituting numerical values HG(x, y) ≤ n2
−t2
−

8
3 n− 8

3 t+1 < f (n).
Therefore, if y is a vertex on the cycle in G with d(y) = 2, then ϕ1(n) = φ(G) < f (n).
Case 2. y is a pendant vertex in G, y has a unique adjacent vertex v. In that way, v must be a cut vertex

in G and G− := G − y is a connected bicyclic graph with n − 1 vertices and t pendant vertices. By Theorems
2.3 and 2.4, there are HG(x, y) = HG(x, v) +HG(v, y) = HG− (x, v) +HG(v, y) and HG(v, y) = 2n + 1.

Subcase 2.1. By making inductive assumptions about G−, HG− (x, v) ≤ ϕ1(n− 1) = f (n− 1) = φ(Bt
1(n− 1)).

Therefore, ϕ1(n) = φ(G) = HG(x, y) = HG− (x, v) +HG(v, y) ≤ f (n − 1) + 2n + 1 = f (n).
Subcase 2.2. Let both vertices x and y be pendant vertices such that d(x, y) = n − t − 1. Let v be the

unique adjacent vertex of y. By inductive assumption, we have

ϕ1(n) ≥ φ(Bt
1(n)) ≥ HBt

1(n)(x, y)

= HBt
1(n)(x, v) +HBt

1(n)(v, y)

= HBt
1(n−1)(x, v) + 2n + 1

= f (n − 1) + 2n + 1 = f (n).

Therefore, ϕ1(n) = f (n). In addition, G is any graph with n vertices in Bt
1(n) with φ(G) = ϕ1(n) = f (n). All

that there are two vertices x and y such that HG(x, y) = φ(G) = f (n), then y must be a pendant vertex. We
use v to be the unique adjacent vertex of y, then G− y is a bicyclic graph with n− 1 vertices in Bt

1(n− 1). By
inductive assumption,

f (n) = HG(x, y) = HG(x, v) +HG(v, y)
= HG−y(x, v) + 2n + 1
≤ φ(G − y) + 2n + 1
≤ f (n − 1) + 2n + 1 = f (n).

The above formula indicates that φ(G − y) = HG−y(x, v) = f (n − 1). By inductive assumption, G − y must
be Bt

1(n − 1) and v is a pendant vertex in Bt
1(n − 1). Therefore, G = Bt

1(n) and f (n) = φ(Bt
1(n)) = HBt

1(n)(x, y),
where both x and y are pendant vertices with d(x, y) = n − t − 1. Therefore, the above conclusion holds for
all n.

Theorem 3.2. Let G ∈ Bt
2(n) and 1(n) = n2

− t2 + 2n − 6t − 11, where t ≥ 2. Then

φ(G) ≤ 1(n).

The equation holds if and only if G = Bt
2(n) and φ(Bt

2(n)) = HBt
2(n)(u, v), which is the hitting time from pendant vertex

u in St with root vertex u1 to pendant vertex v in Pn−t−2 with root vertex v1 and d(u, v) = n − t.

Proof. By Theorems 2.3, 2.4, 2.5, 2.6 and Lemma 2.7, we have HBt
2(n)(u, v) = n2

− t2+2n−6t−11, (t ≥ 2,n ≥ 15),
which is the hitting time from pendant vertex u in St with root vertex u1 to pendant vertex v in Pn−t−2 with
root vertex v1 and d(u, v) = n − t. Let ϕ2(n) = max{φ(G) : G ∈ Bt

2(n)}, we need to prove ϕ2(n) = 1(n) =
n2
− t2 + 2n − 6t − 11 and φ(G) = 1(n) for any graph G, then G = Bt

2(n) and 1(n) = HBt
2(n)(u, v), where both u

and v are pendant vertices with d(u, v) = n − t. To prove the above results, we use induction for n.
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When n = 8 and t = 3, then B3
2(8) contains 46 bicyclic graphs, denoted by G j

8, j = 1, · · · , 46 (see Figure 5).
Through simple calculations,

φ(G1
8) = H(v1, v8) = 33, φ(G2

8) = H(v3, v8) =
61
2
, φ(G3

8) = H(v1, v8) = 35,

φ(G4
8) = H(v6, v8) =

145
4
, φ(G5

8) = H(v6, v8) = 38, φ(G6
8) = H(v1, v8) = 37,

φ(G7
8) = H(v6, v8) =

153
4
, φ(G8

8) = H(v6, v8) = 40, φ(G9
8) = H(v6, v8) =

79
2
,

φ(G10
8 ) = H(v6, v8) = 41, φ(G11

8 ) = H(v6, v8) = 42, φ(G12
8 ) = H(v1, v8) =

65
2
,

φ(G13
8 ) = H(v6, v8) =

69
2
, φ(G14

8 ) = H(v6, v8) =
69
2
, φ(G15

8 ) = H(v1, v8) =
69
2
,

φ(G16
8 ) = H(v5, v8) =

73
2
, φ(G17

8 ) = H(v5, v8) =
73
2
, φ(G18

8 ) = H(v5, v8) =
151

4
,

φ(G19
8 ) = H(v6, v8) = 37, φ(G20

8 ) = H(v5, v8) =
75
2
, φ(G21

8 ) = H(v1, v8) =
266
11
,

φ(G22
8 ) = H(v4, v8) =

233
11
, φ(G23

8 ) = H(v4, v8) = 24, φ(G24
8 ) = H(v1, v6) =

282
11
,

φ(G25
8 ) = H(v1, v8) =

280
11
, φ(G26

8 ) = H(v7, v6) =
327
11
, φ(G27

8 ) = H(v7, v6) =
186

7
,

φ(G28
8 ) = H(v8, v6) = 29, φ(G29

8 ) = H(v6, v8) =
304
11
, φ(G30

8 ) = H(v6, v8) =
317
11
,

φ(G31
8 ) = H(v1, v8) =

294
11
, φ(G32

8 ) = H(v7, v6) =
258
11
, φ(G33

8 ) = H(v5, v6) =
288
11
,

φ(G34
8 ) = H(v6, v7) =

302
11
, φ(G35

8 ) = H(v6, v8) =
304
11
, φ(G36

8 ) = H(v6, v8) =
317
11
,

φ(G37
8 ) = H(v4, v6) = 26, φ(G38

8 ) = H(v1, v8) = 23, φ(G39
8 ) = H(v4, v8) = 21,

φ(G40
8 ) = H(v6, v8) =

73
3
, φ(G41

8 ) = H(v7, v6) = 28, φ(G42
8 ) = H(v8, v6) = 27,

φ(G43
8 ) = H(v6, v8) = 25, φ(G44

8 ) = H(v7, v8) =
77
3
, φ(G45

8 ) = H(v6, v8) =
74
3
,

φ(G46
8 ) = H(v6, v8) = 27.

According to the value of the hitting time of each bicyclic graph calculated as above, we have ϕ2(8) =
max{φ(G) : G ∈ B3

2(8)} = φ(G11
8 ) = 1(8) = 42 and d(v6, v8) = 8 − 3 = 5, so the above conclusion holds for

n = 8.
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Figure 5: Bicyclic graphs in B3
2(8).
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Assuming that the above conclusion holds for n− 1 approach ϕ2(n− 1) = 1(n− 1). In addition, if G is an
arbitrary bicyclic graph with n−1 vertices and t pendant vertices andφ(G) = ϕ2(n−1), then G = Bt

2(n−1) and
there are two pendant vertices u and v in Bt

2(n−1) such that φ(Bt
2(n−1)) = HBt

2(n−1)(u, v) = ϕ2(n−1) = 1(n−1)
and d(u, v) = n − t.

Let G be an arbitrary graph with n vertices and t pendant vertices in Bt
2(n) such that φ(G) = ϕ2(n). Now

we will prove that ϕ2(n) = 1(n), where the equation holds if and only if G = Bt
2(n). In addition, by the

definition of φ(G), there are two vertices u and v in G such that HG(u, v) = φ(G) = ϕ2(n). By Lemma 2.7, v
is not a cut vertex, let w be a vertex in N[v] such that maxz∈N(v)HG(z, v) = HG(w, v) and dN[v](w) = k + 1. We
consider the following two cases.

Case 1. v is a vertex on the cycle with d(v) = 3, so we need to consider the following three situations.
Subcase 1.1. k = 0. By Lemma 2.8, N(v) ∩N(w) = ∅, then we have that e(N[v]) = 3 or e(N[v]) = 4.
Firstly, we discuss the situation of e(N[v]) = 3, then there are four situations for G/N, which are

G/N ∈ Bt
2(n − 3), G/N ∈ Bt

1(n − 3), G/N is a unicyclic graph with n − 3 vertices or G/N is a tree with n − 3
vertices.

If G/N ∈ Bt
2(n − 3), then HG(u, v) ≤ (n − 3)2

− t2 + 2(n − 3) − 6t − 11 + 2n − 3 < 1(n).
If G/N ∈ Bt

1(n−3), then by Theorem 3.1, which can obtain HG(u, v) ≤ (n−3)2
−t2+2(n−3)− 22

3 t− 49
3 +2n−3 <

1(n).
If G/N is a unicyclic graph with n− 3 vertices, then by Theorem 2.2, which can gain HG(u, v) ≤ (n− 3)2

−

t2
−

8
3 t − 7

3 + 2n − 3 < 1(n).
If G/N is a tree with n− 3 vertices, then by Theorem 2.1, which can calculate that HG(u, v) ≤ (n− t− 3)2 +

2(n − t − 3)(t − 1) + 2n − 3 < 1(n).
Next, if e(N[v]) = 4, then there are two situations in that G/N is a unicyclic graph with n − 3 vertices or

G/N is a tree with n − 3 vertices.
If G/N is a tree with n − 3 vertices, then by Theorem 2.1, we can gain HG(u, v) ≤ (n − t − 3)2 + 2(n − t −

3)(t − 1) + 2n − 5 < 1(n).
If G/N is a unicyclic graph with n− 3 vertices, then by Theorem 2.2, which can gain HG(u, v) ≤ (n− 3)2

−

t2
−

8
3 t − 7

3 + 2n − 5 < 1(n).
Subcase 1.2. k = 1. By Lemma 2.8, we have N(v) ∩ N(w) , ∅, then we can obtain that e(N[v]) = 4 or

e(N[v]) = 5.
Firstly, if e(N[v]) = 4, then G/N is a unicyclic graph with n−3 vertices or G/N is a tree with n−3 vertices.
If G/N is a unicyclic graph with n − 3 vertices, then HG(u, v) ≤ (n − 3)2

− t2
−

8
3 t − 7

3 +
4n−5

3 < 1(n).
If G/N is a tree with n − 3 vertices, then HG(u, v) ≤ (n − t − 3)2 + 2(n − t − 3)(t − 1) + 4n−5

3 < 1(n).
Next, if e(N[v]) = 5, then G/N is a tree with n − 3 vertices. Therefore, HG(u, v) ≤ (n − t − 3)2 + 2(n − t −

3)(t − 1) + 4n−7
3 < 1(n)

Subcase 1.3. k = 2. By Lemma 2.8, we have N(v)∩N(w) , ∅, then e(N[v]) = 5 and HG(u, v) ≤ HG/N(u,N)+
2n−3

2 . In addition, G/N is a tree with n−3 vertices, then HG(u, v) ≤ (n− t−3)2+2(n− t−3)(t−1)+ 2n−3
2 < 1(n).

Case 2. v is a pendant vertex in G, so there exists a unique adjacent vertex z of v in G. Let G− = G − v,
then z must be a cut vertex. By Theorem 2.3, we have HG(u, v) = HG(u, z) + HG(z, v) = HG− (u, z) + HG(z, v).
By Theorem 2.4, HG(z, v) = 2n + 1. Firstly, by the inductive hypothesis, we have

HG− (u, z) ≤ φ(G−) ≤ ϕ2(n − 1) = 1(n − 1).

Therefore,
ϕ2(n) = φ(G) ≤ ϕ2(n − 1) + 2n + 1 = 1(n − 1) + 2n + 1 = 1(n).

In addition, let u1,u2 be two vertices in Bt
2(n), d(u1) = d(u2) = 1 and d(u1,u2) = n − t. Let w be the unique

adjacent vertex of u2, by inductive assumptions about the definition of ϕ2(n), we have

ϕ2(n) ≥ φ(Bt
2(n)) ≥ HBt

2(n)(u1,u2)

= HBt
2(n)(u1,w) +HBt

2(n)(w,u2)

= HBt
2(n−1)(u1,w) + 2n + 1

= 1(n − 1) + 2n + 1 = 1(n).
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Therefore, ϕ2(n) = 1(n). In addition, ϕ2(n) = φ(Bt
2(n)) = HBt

2(n)(u1,u2) = 1(n). For an arbitrary graph G
with n vertices and t pendant vertices with φ(G) = ϕ2(n) = 1(n), there exist two vertices u and v such that
HG(u, v) = φ(G) = 1(n). Based on the above proof, v must be a pendant vertex in G. In addition, z is the only
adjacent vertex of v, so 1(n) = HG(u, v) ≤ φ(G−v)+2n+1 ≤ 1(n−1)+2n+1 = 1(n), where φ(G−v) = 1(n−1).
By inductive hypothesis, G − v = Bt

2(n − 1). Therefore, G = Bt
2(n) and the above conclusion is valid.

4. Proof of Theorem 1.1

Proof of Theorem 1.1. For the upper bound, by Theorems 3.1 and 3.2 , then

φ(G) ≤ n2
− t2 + 2n − 6t − 11.

This proves that our main result is valid.
By Theorems 3.1 and 3.2, we can draw conclusions that φ(G) ≤ f (n) = n2

− t2 + 2n − 22
3 t − 49

3 and
φ(G) ≤ 1(n) = n2

−t2+2n−6t−11. By using the subtraction method, i.e., comparing f (n)−1(n) (or 1(n)− f (n))
with 0, we can obtain 1(n) < f (n). Therefore, the upper bound of φ(G) is 1(n) = n2

− t2 + 2n− 6t− 11, i.e., the
conclusion that Theorem 1.1 can be obtained holds. In addition, we can also obtain the extremal graph of
any bicyclic graph with n vertices and t pendant vertices is Bt

2(n) (see Figure 6), which consist of star trees
St, K4 − e and a path with the length of n − t − 3.

u1
v1

x

yu

v

Figure 6: The extremal graph: Bt
2(n).
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