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Abstract. We investigate the class of star-dagger operators for which A∗ and A† commute. Let A = U|A|
be the polar decomposition, Ã(s, t) = |A|sU|A|t be the generalized Aluthge transformation, and Ã(∗)(s, t) =
|A∗|sU|A∗|t be the generalized ∗-Aluthge transformation of A, respectively. We have discovered new char-
acterizations for star-dagger operators, specifically that A is a star-dagger operator if and only if U and A
commute. In this particular case, we have proven that Ã(s, t) = PR(A∗)A and Ã(∗)(s, t) = APR(A) when s, t > 0
and s + t = 1.

1. Introduction and Preliminaries

In the context of a complex Hilbert space H , let B(H ) represent the C∗-algebra consisting of all bounded
linear operators on H . If we have an operator A ∈ B(H ), we use R(A) and N (A) to denote the range
and null space of A, respectively. A class of operators that receives less attention but is encountered
intermittently in operator and matrix theory is known as star-dagger operators, abbreviated as SD. In
this class, the operators satisfy the condition that A∗ and A† commute when the range of A, denoted
as R(A), is closed. Here, A† represents the Moore-Penrose inverse of A (refer to [13]), which exists if
and only if R(A) is closed. These operators also exhibit close connections with other types of operators,
including idempotent operators (i.e., A2 = A), partial isometries (i.e., A∗ = A†), and bi-dagger operators
(i.e., (A2)† = (A†)2); references for these connections can be found in [7, 13, 18]. Moreover, star-dagger
operators appear in diverse fields, such as the study of normal, positive-semidefinite, and partial orderings
of complex matrices and operators. There are independent classes of operators that are related to the
SD concept, but that relations exist between the intersection of some of these classes. It is well-known,
for a closed range operator A, that A is both SD and EP if and only if A is normal; see [14, 17]. Also,
Orthogonal projections ⊆ Partial Isometries ⊆ SD and Orthogonal projections ⊆ Idempotents ⊆ SD; see [7].
Each of the conditions A∗ = A∗A†, A∗ = A†A∗, A† = A†A†, A∗ = A†A†, A† = A∗A∗ is sufficient for matrix
A ∈ Cn×n to be star-dagger; see [5]. Given an operator A ∈ B(H ), we can consider its polar decomposition
as A = U|A|. Aluthge, in his work [2], introduced a transformation called the Aluthge transformation
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denoted as Ã( 1
2 ,

1
2 ) : B(H ) → B(H ), defined as Ã( 1

2 ,
1
2 ) = |A|

1
2 U|A|

1
2 . This transformation, known as

the Aluthge transformation, has proven to be very useful, and many authors have obtained significant
results by utilizing it. The Aluthge transformation and its generalizations have received considerable
attention in operator theory, with many authors focusing on studying and extending its properties for
various classes of operators. This emphasizes the importance and applicability of these transformations
in the field. For further details and related research, you can refer to the works of [8, 11, 12, 16, 20]. In
addition to the original Aluthge transformation, Yamazaki introduced the notion of the ∗-Aluthge transform
denoted as Ã(∗)( 1

2 ,
1
2 ). This transformation is defined as Ã(∗)( 1

2 ,
1
2 ) = |A∗|

1
2 U|A∗|

1
2 ; refer to [21] for more details.

Similarly, Jabbarzadeh, in the work of [12], introduced the †-Aluthge transformation denoted as Ã(†). This

transformation is defined as Ã(†)( 1
2 ,

1
2 ) =

(
Ã†( 1

2 ,
1
2 )
)†

, where Ã†( 1
2 ,

1
2 ) =

∣∣∣A†∣∣∣ 12 U∗
∣∣∣A†∣∣∣ 12 . These concepts were

further generalized by considering parameters r and s as follows: For every r, s > 0, the generalized Aluthge
transformation denoted as Ã(r, s) is defined as Ã(r, s) = |A|rU|A|s. Additionally, the generalized ∗-Aluthge
transformation denoted as Ã(∗)(r, s) is defined as Ã(∗)(r, s) = |A∗|rU|A∗|s; see [6, 19] for more information on
these generalizations. Furthermore, we can introduce a generalized †-Aluthge transformation, which is
analogous to the generalized Aluthge transformation, but with the additional property associated with
the Moore-Penrose of operator. If A = U|A| is normal, then U commutes with |A| and so with |A|

1
2 , hence

Ã( 1
2 ,

1
2 ) = A. It is also easy to show that if Ã( 1

2 ,
1
2 ) = A = U|A| then U commutes with |A|, so that A is normal

[4].
If A is idempotent, that is A2 = A, then Ã(s, 1 − s) is the orthogonal projection onto the range of |A|

1
2 , for

any s ∈ (0, 1); see [6].
The aim of this paper is to investigate star-dagger class of operators and represented new character-

izations by applying matrix representations of operators. More characterization of star-dagger operators
show where it is situated relative to the other well-known classes of special operator. Also, we prove
that generalized Aluthge transformation and generalized ∗-Aluthge transformation of a SD operator A are
Ã(s, t) = PR(A∗)A and Ã(∗)(s, t) = APR(A) when s, t > 0 and s + t = 1.

Lemma 1.1. [15, Theorem 2.1] Let A ∈ B (H ) have a closed range, and let A = U|A| be a polar decomposition of A.
Then U = A|A|†.

Theorem 1.2. [16, Theorem 2.4.] Suppose that A ∈ B (H ) has a closed range, and that A = U|A| is the polar

decomposition of A. If A =
[

A1 0
A2 0

]
:
[

R(A∗)
N (A)

]
→

[
R(A∗)
N (A)

]
, then

A = U|A| =
[

A1D−
1
2 0

A2D−
1
2 0

] [
D

1
2 0

0 0

]
,

where D = A∗1A1 + A∗2A2 is positive and invertible. The first matrix of the last equation coincides with U and the
second one coincides with |A| .

In addition, we use the following simple property of reverse order law for a closed range A ∈ B (H ), by
[17],

(AA∗A)† = A†(A∗)†A†. (1)

2. New characterization of SD operators

In this section, we represent new characterizations of a less attention class of operators that appears
intermittently throughout operator and matrix theory, the class of star-dagger operators. As always, we
write [A,B] = AB − BA.

Theorem 2.1. Let A ∈ B (H ) have a closed range and the polar decomposition A = U|A|. Then the following
statements are equivalent:
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(1) A is SD
(2) [A(A∗A)α,A] = 0 for all α > 0
(3) There exists α such that [A(A∗A)α,A] = 0
(4) (A∗A)αA = (A∗A)α−βA(A∗A)β for all α > β > 0
(5) There exists α, β such that α > β > 0 and (A∗A)αA = (A∗A)α−βA(A∗A)β

(6)
[
A((A∗A)†)α,A

]
= 0 for all α > 0

(7) There exists α > 0 such that
[
A((A∗A)†)α,A

]
= 0

(8) ((A∗A)†)αA = ((A∗A)†)α−βA((A∗A)†)β for all α > β > 0
(9) There exists α, β such that α > β > 0 and ((A∗A)†)αA = ((A∗A)†)α−βA((A∗A)†)β

(10) AA†(A∗A)† = (A†)∗(A†)2A
(11) A2 = (A†)∗AA∗A
(12) A2 = AA∗A(A†)∗

(13) A†A2 = A∗A
(
A†
)∗

(14) (A∗A)†A = A†A(A†)∗

(15) UA = AU
(16) U2 =

(
A†
)∗

A
(17) UAA∗A = AA∗UA
(18) A† is SD
(19)

[
A†((AA∗)†)α,A†

]
= 0 for all α > 0

(20) There exists α > 0 such that
[
A†((AA∗)†)α,A†

]
= 0

(21) ((AA∗)†)αA† = ((AA∗)†)α−βA†((AA∗)†)β for all α > β > 0
(22) There exists α, β such that α > β > 0 and ((AA∗)†)αA† = ((AA∗)†)α−βA†((AA∗)†)β

(23)
[
A†(AA∗)α,A†

]
= 0 for all α > 0

(24) There exists α > 0 such that
[
A†(AA∗)α,A†

]
= 0

(25) (AA∗)αA† = (AA∗)α−βA†(AA∗)β for all α > β > 0
(26) There exists α, β such that α > β > 0 and (AA∗)αA† = (AA∗)α−βA†(AA∗)β

(27) A†AAA∗ = A∗AAA†

(28)
(
A†
)2
= A∗ (AA∗A)†

(29)
(
A†
)2
= (AA∗A)† A∗

(30) A
(
A†
)2
=
(
A†
)∗

A†A∗

(31) AA∗A† = AA†A∗

(32) U∗A† = A†U∗

(33) (U∗)2 = A∗A†

(34) U∗(AA∗A)† = (A∗A)†U∗A†

(35) A2A† = (A†)∗AA∗

(36) A∗A†A = A†A∗A
(37) (A∗A)†AA∗ = A†A2A†

(38) AA†A∗A = AA∗A†A
(39) A(AA∗)† = (A†)∗AA†

(40) (A†)2A = A∗A†(A†)∗

(41) AA∗(A∗A)† = A(A†)2A
(42) A†A(AA∗)† = (A∗A)†AA†

(43) [A(A∗U)α,A] = 0 for all α > 0
(44) There exists α > 0 such that [A(A∗U)α,A] = 0
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(45) (A∗U)αA = (A∗U)α−βA(A∗U)β for all α > β > 0
(46) There exists α, β such that α > β > 0 and (A∗U)αA = (A∗U)α−βA(A∗U)β

(47)
[
A((A∗U)†)α,A

]
= 0 for all α > 0

(48) There exists α > 0 such that
[
A((A∗U)†)α,A

]
= 0

(49) ((A∗U)†)αA = ((A∗U)†)α−βA((A∗U)†)β for all α > β > 0
(50) There exists α, β such that α > β > 0 and ((A∗U)†)αA = ((A∗U)†)α−βA((A∗U)†)β

(51) AU∗(A∗A)† = U(A†)2A
(52) A2U∗A = UAA∗A
(53) A2U∗A = AA∗AU
(54) AU∗A2 = AA∗AU
(55) U∗A2 = A∗AU
(56) U∗(A∗)†A = U∗A(A†)∗

(57) A†UA = A†AU
(58) U∗UA = U∗AU
(59) U∗A2A∗ = A∗A2U∗

(60) (U∗)2 = A∗U∗UA†

(61) (U∗)2 = A∗U∗(A∗)†U∗

(62) (U∗)2 = A∗A†UU∗

(63) U∗A† = A∗A†UA†

(64) (U∗)2 = U∗UA†A∗

(65) (U∗)2 = U∗(A∗)†U∗A∗

(66) (U∗)2 = A†UU∗A∗

(67) A (U∗)2 = UU∗A∗

(68) AA†U∗ = UA†A∗

(69) AU∗A† =
(
A†
)∗

U∗A∗

(70) AA∗U∗ = AU∗A∗

(71) (U∗)2(AA∗)† = (A∗A)†(U∗)2

(72) A2U∗ = UAA∗

(73) A∗U∗A = U∗A∗A
(74) U∗UAA∗ = U∗A2U∗

(75) AU∗A∗A = AA∗U∗A
(76) AUU∗ = UAU∗

(77) (U∗)2A = A∗U∗U
(78) AA∗U∗U = A(U∗)2A
(79) A†AUU∗ = U∗UAA†

(80) U∗AU∗U = U∗UAU∗

Proof. (1)⇒ (2) Matrix form of closed range operator A is the following form

A =
[

A1 0
A2 0

]
:
[

R(A∗)
N (A)

]
→

[
R(A∗)
N (A)

]
. (2)

Since A is SD, it implies that[
D−1A∗1 D−1A∗2

0 0

] [
A∗1 A∗2
0 0

]
=

[
A∗1 A∗2
0 0

] [
D−1A∗1 D−1A∗2

0 0

]
,[

D−1A∗1A∗1 D−1A∗1A∗2
0 0

]
=

[
A∗1D−1A∗1 A∗1D−1A∗2

0 0

]
,
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where D = A∗1A1 +A∗2A2. Therefore, D−1A∗1A∗1 = A∗1D−1A∗1 and D−1A∗1A∗2 = A∗1D−1A∗2. Now, post-multiplying
by A1 the first equation and by A2 the second equation, we have D−1A∗1A∗1A1 = A∗1D−1A∗1A1 and D−1A∗1A∗2A2 =

A∗1D−1A∗2A2. By additive the obtained equalities, we conclude that D−1A∗1D = A∗1. Therefore

DA1 = A1D, (3)

Or equivalently

A1D−1 = D−1A1. (4)

Equations (3), (4) and [10, Proposition 2.4] imply that

DαA1 = A1Dα for all α ∈ R \ {0}. (5)

If α ∈ R+. Then

A(A∗A)αA =

[
A1 0
A2 0

] [
Dα 0
0 0

] [
A1 0
A2 0

]
=

[
A1DαA1 0
A2DαA1 0

]
=

[
A1A1Dα 0
A2A1Dα 0

]
= A2(A∗A)α,

that is, [A(A∗A)α,A] = 0.
(2)⇒ (1) Since [A(A∗A)α,A] = 0, then matrix form (2) allows us that[

A1DαA1 0
A2DαA1 0

]
=

[
A1A1Dα 0
A2A1Dα 0

]
. (6)

Therefore, A∗1A1DαA1 = A∗1A1A1Dα and A∗2A2DαA1 = A∗2A2A1Dα. They imply that DαA1 = A1Dα holds.
Letting α = 1, ensures that A is SD.

(1)⇒ (3) By ((1)⇒ (2)) is clear.
(3)⇒ (1) Matrix form (2) concludes that (6) establishes. Then DαA1 = A1Dα. [10, Proposition 2.4] implies

that [A1,D
α
α ] = 0, that is, A is SD.

(1)⇒ (4) Matrix form (2) gives that (5) holds. By (5) and the matrix forms of (A∗A)α and A, we have

(A∗A)αA =

[
DαA1 0

0 0

]
=

[
Dα−β 0

0 0

] [
A1 0
A2 0

] [
Dβ 0
0 0

]
(7)

= (A∗A)α−βA(A∗A)β. (8)

(4)⇒ (1) Matrix form (2) and equation (A∗A)αA = (A∗A)α−βA(A∗A)β cause for all α > β, DαA1 = Dα−βA1Dβ

to establish. It is sufficient to let α = 2 and β = 1, then equation (3) is satisfied, that is, A is SD.
(1)⇒ (5) Similar to ((1)⇒ (4)).
(5)⇒ (1) Matrix form (2) and equation (A∗A)αA = (A∗A)α−βA(A∗A)β yield for all α > β, DαA1 = Dα−βA1Dβ

to establish. Multiplying this equality on the left and right by D−α and D−β, respectively, we get [A1,D−β] = 0.

By [10, Proposition 2.4], we get [A1,D
−β
β ] = 0. The proof of the equivalence of (5) and (1) is completed.

(1) ⇔ (6) ⇔ ... ⇔ (9) Similarly to (1) ⇔ ... ⇔ (5), applying matrix form (2) and equations (3), (4), these
equivalences can be obtained.

(1)⇔ (10) Firstly, A∗A† = A†A∗ gives (A†)∗A∗A†(A†)∗ = (A†)∗A†A∗(A†)∗. Now pre- and post-multiply (10)
by A∗ to obtain (1).

(1)⇔ (11) We have

A∗A† = A†A∗ ⇔
(
A†
)∗

A = A
(
A†
)∗

⇔

(
A†
)∗

AA∗
(
A†
)∗
= A
(
A†
)∗

⇔

(
(A†)∗AA∗ − A

) (
A†
)∗
= 0
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⇔ R((A†)∗) ⊂ N ((A†)∗AA∗ − A)
⇔ R(A) ⊂ N ((A†)∗AA∗ − A)

⇔

((
A†
)∗

AA∗ − A
)

A = 0

⇔

(
A†
)∗

AA∗A = A2.

(1)⇔ (12) We obtain from direct computations that

A(A†)∗ = (A†)∗A ⇔ (A†)∗A∗A(A†)∗ = (A†)∗A
⇔ R(A∗A(A†)∗ − A) ⊂ N ((A†)∗)
⇔ R(A∗A(A†)∗ − A) ⊂ N (A)
⇔ AA∗A(A†)∗ = A2.

(12)⇔ (13) It follows from the following computation:

A2 = AA∗A(A†)∗ ⇔ A†A2 = A∗A
(
A†
)∗
.

(12)⇔ (14) Applying properties of the Moore-Penrose inverse, we see that

A2 = AA∗A(A†)∗ ⇔ A†A2 = A†AA∗A(A†)∗

⇔ A∗(A†)∗A = A∗A(A†)∗

⇔ R((A†)∗A − A(A†)∗) ⊂ N (A∗)
⇔ R((A†)∗A − A(A†)∗) ⊂ N (A†)
⇔ A†(A†)∗A = A†A(A†)∗

⇔ (A∗A)†A = A†A(A†)∗.

(1) ⇒ (15) Since A is SD, then matrix form (2) concludes that equality (5) holds. Therefore, by (5) and
matrix representations given in Theorem 1.2, we deduce that[

A1D−
1
2 A1 0

A2D−
1
2 A1 0

]
=

[
A1A1D−

1
2 0

A2A1D−
1
2 0

]
,[

A1D−
1
2 0

A2D−
1
2 0

] [
A1 0
A2 0

]
=

[
A1 0
A2 0

] [
A1D−

1
2 0

A2D−
1
2 0

]
,

UA = AU.

(15)⇒ (1) The matrix representations given in Theorem 1.2 allow us to have

UA = AU ⇔

[
A1D−

1
2 A1 0

A2D−
1
2 A1 0

]
=

[
A1A1D−

1
2 0

A2A1D−
1
2 0

]
.

Hence, A1D−
1
2 A1 = A1A1D−

1
2 and A2D−

1
2 A1 = A2A1D−

1
2 . Therefore,

A∗1A1D−
1
2 A1 = A∗1A1A1D−

1
2 , A∗2A2D−

1
2 A1 = A∗2A2A1D−

1
2 .

Then

(A∗1A1 + A∗2A2)D−
1
2 A1 = (A∗1A1 + A∗2A2)A1D−

1
2

⇔ D−
1
2 A1 = A1D−

1
2

⇔ D
1
2 D−

1
2 A1D

1
2 = D

1
2 A1D−

1
2 D

1
2

⇔ D
1
2 A1 = A1D

1
2 .
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So, [10, Proposition 2.4] imply that DA1 = A1D. Therefore, A∗1D = DA∗1. It leads to[
D−1A∗1A∗1 D−1A∗1A∗2

0 0

]
=

[
A∗1D−1A∗1 A∗1D−1A∗2

0 0

]
,[

D−1A∗1 D−1A∗2
0 0

] [
A∗1 A∗2
0 0

]
=

[
A∗1 A∗2
0 0

] [
D−1A∗1 D−1A∗2

0 0

]
,

A†A∗ = A∗A†.

(1) ⇔ (16) and (1) ⇔ (17) By considering the matrix forms of operators, similarly to ((1) ⇔ (15)), the
desired results follows.

(1)⇔ (18)⇔ ...⇔ (34) An operator A is SD if and only if A† is SD. Hence, we replace A and U with A†

and U∗, respectively, in the ((1)⇔ ....⇔ (17)) to obtain the desired results.
(11)⇔ (35) Multiplying A2 = (A†)∗AA∗A from the right hand side by A†, it follows A2A† = (A†)∗AA∗. If

we multiply A2A† = (A†)∗AA∗ from the right hand side by A, we get A2 = (A†)∗AA∗A.
(13)⇔ (36) This equivalence is clear by properties of conjugate operator.
(14) ⇔ (37) If we multiply (A∗A)†A = A†A(A†)∗ from the right hand side by A∗, we obtain (37). Multi-

plying (A∗A)†AA∗ = A†A2A† from the right hand side by (A†)∗, notice that (14) holds.
(31)⇔ (37) Obviously AA∗A† = AA†A∗ gives AA∗A†A = AA†A∗A. Multiplying AA†A∗A = AA∗A†A from

the right hand side by A†, we see that (31) is satisfied.
(35)⇔ (39) We observe that

A2A† = (A†)∗AA∗ ⇔ A(A†)∗A∗ = (A†)∗AA∗

⇔ A(A†)∗A† = (A†)∗AA†

⇔ A(AA∗)† = (A†)∗AA†.

(35) ⇔ (40) and (37) ⇔ (41) and (38) ⇔ (42) Since A is SD if and only if A† is SD, these equivalences
follow.

(1)⇔ (43) and (1)⇔ (44) and ... and (1)⇔ (80) By considering the matrix forms of operators and matrix
form of operator U of Theorem 1.2, similarly to ((1)⇔ (2)), the desired results follows.

In general the SD property is not additive, hence the following theorem is important.

Theorem 2.2. Let A = U|A| be the polar decomposition of a SD operator A ∈ B (H ). Then A + (A∗)† is SD.

Proof. Matrix form (2) of A implies that

A + (A∗)† =
[

A1(1 +D−1) 0
A2

(
1 +D−1

)
0

]
. (9)

We let H = A + (A∗)†. If H = V|H| is a polar decomposition of H, notice that

|H| =
[

(D
1
2 +D

−1
2 )2 0

0 0

] 1
2

.

Clearly, |H| has a closed range and then V = H|H|†. Therefore, we compute V:

V =

[
A1(1 +D−1) 0
A2

(
1 +D−1

)
0

] [ (1 +D−1)D(1 +D−1) 0
0 0

] 1
2

†

=

[
A1(1 +D−1) 0
A2

(
1 +D−1

)
0

] [ (D
1
2 +D

−1
2 )2 0

0 0

] 1
2

†

=

[
A1D

−1
2 (D

1
2 +D

−1
2 ) 0

A2D
−1
2 (D

1
2 +D

−1
2 ) 0

] [
(D

1
2 +D

−1
2 )−1 0

0 0

]
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=

[
A1D−

1
2 0

A2D−
1
2 0

]
= U.

Since A is SD, then (5) holds. Now, Theorem 2.1 ((1)⇒ (15)) and the following equalities

U(A + (A∗)†) =

[
A1D−

1
2 0

A2D−
1
2 0

] [
A1(1 +D−1) 0
A2

(
1 +D−1

)
0

]
=

[
A1D−

1
2 A1(1 +D−1) 0

A2D−
1
2 A1(1 +D−1) 0

]
,

(A + (A∗)†)U =

[
A1(1 +D−1) 0
A2

(
1 +D−1

)
0

] [
A1D−

1
2 0

A2D−
1
2 0

]
=

[
A1(1 +D−1)A1D−

1
2 0

A2(1 +D−1)A1D−
1
2 0

]
imply that A + (A∗)† is SD.

Theorem 2.3. If A ∈ B (H ) is a SD operator, then the following equalities hold:

(1) A + (A∗)† is a solution of the equation |A + X| = |A| + |X|.
(2) ⟨A,A + (A∗)†⟩ = A∗A + A†A.
(3) ⟨A,A + (A∗)†⟩ = |A| |A + (A∗)† | = |A + (A∗)† | |A|.
(4) ⟨A,A + (A∗)†⟩ is positive.
(5) A|A + (A∗)† | = (A + (A∗)†)|A|.

Proof. (1) Since A = U|A|, Theorem 2.2 deduces A+ (A∗)† = U
∣∣∣A + (A∗)†

∣∣∣. Then [3, Theorem 2.3] implies that
A + (A∗)† is a solution of the equation |A + X| = |A| + |X|.

(2) Since (1) holds, then [1, Theorem 2.3] implies that

⟨A,A + (A∗)†⟩ = |A||A + (A∗)† |

=

[
D

1
2 0

0 0

] [
D

1
2 +D

−1
2 0

0 0

]
=

[
D + 1 0
0 0

]
= A∗A + A†A.

(3) and (4) are obtained by applying (2) and its matrix forms.
(5) Corollary 2.5 of [1] implies it.

We now study when the product of two SD operators is SD too.

Theorem 2.4. Let A = U|A| and B = V|B| be the polar decompositions of SD operators A,B ∈ B (H ) , respectively.
If |A| |B∗| = |B∗| |A|, VA = AV and UB = BU, then AB is SD.

Proof. Since |A| |B∗| = |B∗| |A|, then [8, Theorem 2.3] implies that AB = UV|AB| is the polar decomposition.
Now, since VA = AV and UB = BU, Theorem 2.1 ((1) ⇔ (15)) implies that (UV)AB = AUVB = AB(UV),
that is, AB is SD.

Theorem 2.5. Let A ∈ B (H ) be SD and bi-dagger operator such that (A†A∗)† = AA∗
(
A†A∗AA∗

)†
, then A(A†)∗ is

a partial isometry.

Proof. Since (A†A∗)† = AA∗
(
A†A∗AA∗

)†
, applying property of conjugate operator to this equality and using

((1)⇔ (12)) of Theorem 2.1, we have

(A(A†)∗)† =
(
AA∗A(A†)∗

)†
AA∗ =

(
A2
)†

AA∗.
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Since A is also bi-dagger, it implies that

(A(A†)∗)† =
(
A2
)†

AA∗ =
(
A†
)2

AA∗ = A†A∗ = (A(A†)∗)∗,

that is, A(A†)∗ is a partial isometry.

In the following example, we illustrate previous result. Precisely, we give a SD operator such that

(A†A∗)† = AA∗
(
A†A∗AA∗

)†
which is not bi-dagger and A(A†)∗ is not partial isometry.

Example 2.6. Consider

A =
[

1 1
0 0

]
on H = C2. Then, by

A† =
[

1
2 0
1
2 0

]
and A∗ =

[
1 0
1 0

]
,

we have A∗A† =
[

1
2 0
1
2 0

]
= A†A∗ such that

(A†A∗)† =
[

1 1
0 0

]
= AA∗

(
A†A∗AA∗

)†
.

Since A(A†)∗ =
[

1
2

1
2

0 0

]
, notice that

(
A(A†)∗

)†
=

[
1 0
1 0

]
,

[
1
2 0
1
2 0

]
=
(
A(A†)∗

)∗
and

(A2)† = A† =
[

1
2 0
1
2 0

]
,

[
1
4 0
1
4 0

]
= (A†)2.

Hence, A is SD satisfying (A†A∗)† = AA∗
(
A†A∗AA∗

)†
, but A is not bi-dagger and A(A†)∗ is not partial isometry.

Theorem 2.7. Every SD operator A ∈ B (H ) is bi-dagger, if (AA∗A(A†)∗)† = A∗ (AA∗A)†.

Proof. Since A is SD, then applying ((1)⇔ (12)) and ((1)⇔ (28)) of Theorem 2.1 we have

A2 = AA∗A(A†)∗ and
(
A†
)2
= A∗ (AA∗A)† .

These equalities show that A is bi-dagger, if (AA∗A(A†)∗)† = A∗ (AA∗A)† establishes.

Notice that, for the operator A given in Example 2.6, we can check that condition (AA∗A(A†)∗)† =
A∗ (AA∗A)† of Theorem 2.7 is not satisfied.

Several necessary and sufficient conditions for a SD operator to be bi-dagger, are developed too.

Theorem 2.8. If A ∈ B (H ) is a SD operator, the following are equivalent.

(1) A is bi-dagger
(2) A∗A2 = A†A2A∗A†A2

(3) (A∗)2A = A∗A†A2A∗A†A
(4) A2 = (A†)∗AA∗A†A2

(5) (A∗)2 = A∗A†A2A∗A†
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(6) (A∗)2AA∗A = (A∗)3A2

(7) (A∗)2AA∗ = (A∗)3A2A†

(8) A∗AA∗A2 = (A∗)2A3

(9) AA∗A2 = AA†A∗A3

(10) A∗A2 = A†A∗A3

(11) (A∗)2A = (A∗)3A(A†)∗

(12) (A∗)2 = (A∗)3A(A†)∗A†

(13) A2 = (A†)∗A†A∗A3.

Proof. (1)⇔ (2) Let A be represented by (2). For E = (A∗1)2A2
1 + (A2A1)∗A2A1 = A∗1DA1, we observe that[

(D−1A∗1)2 D−1A∗1D−1A∗2
0 0

]
= (A†)2 = (A2)† =

[
E−1(A∗1)2 E−1(A2A1)∗

0 0

]
is equivalent to

D−1A∗1D−1A∗1 = E−1(A∗1)2 (10)

D−1A∗1D−1A∗2 = E−1A∗1A∗2. (11)

Multiplying (10) and (11) from the right hand side by A1 and A2, respectively, and then adding obtained
equalities, we get D−1A∗1 = E−1A∗1D. Applying property of conjugate operator to this equality, we have
A1D−1 = DA1E−1. Since A is SD, (3) gives DA∗1 = A∗1D. Thus, E = A∗1DA1 = DA∗1A1, which yields

DA1 = A1D−1E = A1D−1DA∗1A1 = A1A∗1A1.

We deduce that A is bi-dagger if and only if DA1 = A1A∗1A1. From the equalities

A∗A2 =

[
A∗1 A∗2
0 0

] [
A2

1 0
A2A1 0

]
=

[
DA1 0

0 0

]
and

A†A2A∗A†A2 =

[
A1A∗1A1 0

0 0

]
,

notice that A∗A2 = A†A2A∗A†A2 if and only if DA1 = A1A∗1A1 if and only if A is bi-dagger.
(2) ⇒ (4) If we multiply A∗A2 = A†A2A∗A†A2 from the left side by (A†)∗, we observe that A2 =

(A†)∗AA∗A†A2.
(4)⇒ (2) Multiplyin A2 = (A†)∗AA∗A†A2 from the left side by A∗, we get A∗A2 = A†A2A∗A†A2.
(2)⇔ (3) and (4)⇔ (5) This equivalences follow by properties of conjugate operator.
(1)⇔ (6) As in part (1)⇔ (2) of this proof, from (10) and (11), A is bi-dagger if and only if A∗1D−1 = E−1A∗1D

which is equivalent to EA∗1 = A∗1D2. Since E = A∗1DA1 = DA∗1A1, we get EA∗1 = A∗1(DA1A∗1) = A∗1E. Notice
that [

A∗1D2 0
0 0

]
= (A∗)2AA∗A = (A∗)3A2 =

[
E 0
0 0

]
if and only if A∗1D2 = EA∗1 which is equivalent to A is bi-dagger.

(6)⇒ (7) Using (A∗)2AA∗A = (A∗)3A2, we obtain (A∗)2AA∗ = (A∗)2AA∗AA† = (A∗)3A2A†.
(7)⇒ (6) Multiplying (A∗)2AA∗ = (A∗)3A2A† by A from the right side, we get (6).
(6)⇔ (8) and (7)⇔ (9) Applying properties of conjugate operator, we check these equivalence.
(9)⇔ (10) If we multiply AA∗A2 = AA†A∗A3 by A† from the left side, it follows that A∗A2 = A†A∗A3. The

converse is evident.
(10)⇔ (11) and (12)⇔ (13) It follows by conjugate operator properties.
(11)⇔ (12) Similarly as ((9)⇔ (10)), we verify this equivalence.
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3. Generalized Aluthge transformation of SD operators

In this section, we obtain generalized Aluthge transformation, generalized ∗-Aluthge transformation
and generalized † -Aluthge transformation of SD operators.

Definition 3.1. (Generalized † -Aluthge transformation). Let A = U|A| be the polar decomposition of a closed range
operator A ∈ B (H ). Generalized †- Aluthge transformation of A for all s, t > 0 is defined by

Ã(†)(s, t) :=
(
Ã†(s, t)

)†
=
(∣∣∣A†∣∣∣s U∗

∣∣∣A†∣∣∣t)† .
Theorem 3.2. Let A = U|A| be the polar decomposition of a SD operator A ∈ B (H ). Then the following properties
hold:

(1) Ã(s, t) = |A|s+t−1A for any s, t > 0 such that s + t > 1.
(2) Ã(s, t) = (|A|†)1−s−tA for any s, t > 0 such that 1 > s + t > 0.
(3) Ã(s, t) = Ã (s′, t′) for any s, t > 0 and s′, t′ > 0 such that s + t = s′ + t′.
(4) Ã(s, 2 − s) = |A|A for any s ∈ (0, 2).
(5) Ã(s, 1 − s) = A†A2 for any s ∈ (0, 1).
(6) Ã(∗)(s, t) = A2

|A|s+t−3A∗ for any s, t > 0 such that s + t > 3.
(7) Ã(∗)(s, t) = A2(|A|†)3−s−tA∗ for any s, t > 0 such that s + t < 3.
(8) Ã(∗)(s, t) = Ã(∗)(s′, t′) for any s, t > 0 and s′, t′ > 0 such that s + t = s′ + t′

(9) Ã(∗)(s, 4 − s) = A2
|A|A∗ for any s ∈ (0, 4).

(10) Ã(∗)(s, 1 − s) = A2A† for any s ∈ (0, 1).
(11) Ã†(s, t) = A(|A|†)s+t+3(A∗)2 for any s, t > 0.
(12) Ã†(s, 1 − s) = A(A†)2 for any s ∈ (0, 1).

Proof. (1) By matrix form (2) of A and Theorem 1.2, generalized Alutghe transform accepts the following
matrix representations

Ã(s, t) = |A|sU|A|t =
[

D
s
2 0

0 0

] [
A1D−

1
2 0

A2D−
1
2 0

] [
D

t
2 0

0 0

]
=

[
D

s
2 A1D

t−1
2 0

0 0

]
by (5) =

[
A1D

s+t−1
2 0

0 0

]
=

[
D

s+t−1
2 0

0 0

] [
A1 0
A2 0

]
(for s + t > 1) = |A|s+t−1A.

(2) Note that

Ã(s, t) =

[
A1D

s+t−1
2 0

0 0

]
=

[
D
−1
2 (1−s−t) 0

0 0

] [
A1 0
A2 0

]
(for 1 > s + t > 0) = (|A|†)1−s−tA.

(3) The statements (1) and (2) yield that

Ã(s, t) =
[

D
s+t−1

2 A1 0
0 0

]
=

[
D

s′+t′−1
2 A1 0
0 0

]
= Ã(s′, t′).
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(4) It is evident by part (1).
(5) By statement (2), we have

Ã(s, 1 − s) =
[

1 0
0 0

] [
A1 0
A2 0

]
= A†A2.

(6) We recall the following relation [16, Lemma 3.12]:

|A∗|α = U |A|αU∗ holds for α > 0.

Therefore

Ã(∗)(s, t) = |A∗|sU|A∗|t = U |A|s U∗U2
|A|t U∗. (12)

Straightforward computation implies that U∗U2 =

[
D
−1
2 A1 0
0 0

]
. Hence, we have

Ã(∗)(s, t) =

[
A1D−

1
2 0

A2D−
1
2 0

] [
A1D

s+t−1
2 0

0 0

] [
D−

1
2 A∗1 D−

1
2 A∗2

0 0

]
=

[
A1D−

1
2 A1D

s+t−1
2 0

A2D−
1
2 A1D

s+t−1
2 0

] [
D−

1
2 A∗1 D−

1
2 A∗2

0 0

]
=

[
A1D−

1
2 A1D

s+t−2
2 A∗1 A1D−

1
2 A1D

s+t−2
2 A∗2

A2D−
1
2 A1D

s+t−2
2 A∗1 A2D−

1
2 A1D

s+t−2
2 A∗2

]
= A2(A∗A)

s+t−3
2 A∗.

(7) and (8) By matrix forms presented in the proof of part (6), we obtain the desired results.
(9) It follows by (6).
(10) From matrix forms given in the proof of (6) and matrix representation of A†, we conclude that

Ã(∗)(s, 1 − s) = A2A† for any s ∈ (0, 1).
(11) By applying Lemma 3.1 and Corollary 5.3 of [16] and obtained matrix forms of operators, we

conclude that

Ã†(s, t) = |A†|sU∗|A†|t

= U|(A∗)†|sU∗U∗U|(A∗)†|tU∗

= U|(A∗)†|sU∗|(A∗)†|tU∗

= U(|A|s)†U∗(|A|t)†U∗

=

[
A1D−

1
2 0

A2D−
1
2 0

] [
D
−s
2 A∗1D

−1
2 D

−t
2 0

0 0

] [
D−

1
2 A∗1 D−

1
2 A∗2

0 0

]
=

[
A1D−

1
2 0

A2D−
1
2 0

] [
A∗1D

−s−t−1
2 0

0 0

] [
D−

1
2 A∗1 D−

1
2 A∗2

0 0

]
=

[
A1D

−s−t−3
2 A∗1A∗1 A1D

−s−t−3
2 A∗1A∗2

A2D
−s−t−3

2 A∗1A∗1 A2D
−s−t−3

2 A∗1A∗2

]
= A(|A|†)s+t+3(A∗)2.

(12) Using matrix forms presented in the proof of (11) and matrix representation A†, we prove that Ã†(s, 1−
s) = A(A†)2 for any s ∈ (0, 1).

Corollary 3.3. If A ∈ B (H ) is an idempotent operator, then, for any s ∈ (0, 1), the following properties hold:

(1) Ã(s, 1 − s) = PR(A∗).
(2) Ã(∗)(s, 1 − s) = PR(A).
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(3) Ã(†)(s, 1 − s) = AA∗.

Proof. (1) and (2) follow by parts (5) and (10) of Theorem 3.2.
(3) By (12) of Theorem 3.2 and (30) of Theorem 2.1, we have

Ã†(s, 1 − s) = A(A†)2 =
(
A†
)∗

A†A∗.

On the other hand,

(A∗)2
− A∗ = 0 ⇔ A∗(A∗ − 1) = 0

⇔ R((A∗ − 1)) ⊂ N (A∗)
⇔ R((A∗ − 1)) ⊂ N (A†)
⇔ A†A∗ = A†.

Therefore,
Ã†(s, 1 − s) =

(
A†
)∗

A† = (AA∗)†.

Then Ã(†)(s, 1 − s) = AA∗.

Corollary 3.4. If A ∈ B (H ) is an idempotent operator, then, for any s, s′, s′′ ∈ (0, 1), the following assertions hold:

(1) Ã(∗)(s, 1 − s)Ã(†)(s′, 1 − s′) = Ã(†)(s′, 1 − s′)Ã(∗)(s, 1 − s) = AA∗

(2) Ã(s, 1 − s)Ã(∗)(s′, 1 − s′)Ã(†)(s′′, 1 − s′′) = A∗

(3) Ã(∗)(s′, 1 − s′)Ã(†)(s′′, 1 − s′′)Ã(s, 1 − s) = A.

Theorem 3.5. If A ∈ B (H ) is a SD and bi-dagger operator, then Ã(∗)(s′, 1− s′)Ã(s, 1− s) = A2 for any s′, s ∈ (0, 1).

Proof. Parts (10) and (5) of Theorem 3.2 impliy that

Ã(∗)(s′, 1 − s′)Ã(s, 1 − s) = A2(A†)2A2 = A2.

Recall that the Dixmier angle between two closed subspaces M and N of H is the angleθ0(M ,N ) ∈
[
0, π2
]

whose cosine is defined by

c0(M ,N ) = sup{|⟨ξ, η⟩| : ξ ∈M , η ∈ N and ∥ξ∥ ⩽ 1, ∥η∥ ⩽ 1}.

See [9].

Corollary 3.6. If A ∈ B (H ) is an idempotent operator, then, for any s′, s ∈ (0, 1), the following assertions hold:

(1) c0(R(Ã(s, 1 − s)),R(Ã(∗)(s′, 1 − s′))) = ∥A†∥
(2) c0(R(Ã(†)(s′, 1 − s′)),R(Ã(s, 1 − s))) = ∥A†∥
(3) c0(R(Ã(∗)(s′, 1 − s′)),R(Ã(†)(s, 1 − s))) = 1.

Proof. (1) By Corollary 3.3 and [9, Proposition 2.1.], we conclude that

c0(R(Ã(s, 1 − s)),R(Ã(∗)(s′, 1 − s′))) =∥ PR(A∗)PR(A) ∥= ∥A†A2A†∥ = ∥A†∥.

Similar to (1), (2) and (3) are also proved.

Acknowledgements: The first author has been financially supported by the research deputy of education
and Research University of Torbat Heydarieh. The grant number is UTH:1401/10/5157.

The second author is supported by the Ministry of Science, Technological Development and Innovation,
Republic of Serbia, grant no. 451-03-137/2025-03/200124, and the project Linear operators: invertibility, spectra
and operator equations under the Branch of SASA in Niš, no. O-30-22.
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