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A note on the independent bondage number of planar graphs
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Abstract. A vertex subset S of a graph G is an independent set if no two vertices in S are adjacent and
is a dominating set if every vertex not in S is adjacent to a vertex in S. If S is both independent and
dominating in G, then S is said to be an independent dominating set. The independent domination number
of G is the minimum cardinality among all independent dominating sets of G. In this paper, we investigate
the independent bondage number of G defined as the minimum number of edges whose removal from G
results in a graph with a greater independent domination number. We prove that the independent bondage
number is at most 5 (respectively, 6, 7) for planar graphs with minimum degree at least 3 without cycles of
lengths 4 and 5 (respectively, without cycles of length 4, without intersecting triangles). All these results
improve two earlier bounds for planar graphs.

1. Introduction

All graphs considered are finite and simple. For a graph G, we denote by V(G) and E(G) its vertex set
and edge set, respectively. The open neighborhood of a vertex v ∈ V(G) is the set of vertices adjacent to v,
denoted NG(v). The degree of vertex v of G, denoted by dG(v), is the cardinality of its open neighborhood.
The minimum and maximum degree of G are denoted by δ(G) and ∆(G), respectively.

A set S ⊆ V is called independent if no two vertices in S are adjacent. The independent domination number
i(G) is the minimum cardinality of a maximal independent set in G.

In this paper, we are interested in studying the independent bondage number bi(G) of a graph G defined
as the cardinality of a smallest set of edges F ⊆ E(G) for which i(G − F) > i(G). The concept of bondage
number was first introduced and defined for the domination number in 1983 by Bauer et al. [1] and it was
later studied for several domination parameters. We refer the reader to the survey [7].

To our knowledge, the independent bondage number has only been studied in three papers, which
explains the few results obtained to date. Indeed, in 2017, Nader Jafari and Kamarulhaili [4] showed that
the associated decision problem for independent bondage is NP-hard, even for bipartite graphs. In 2018,
Priddy, Wang and Wei [6] gave the exact values of bi(G) for some classes of graphs including paths, cycles,
complete graphs and complete t-partite graphs. Moreover, they gave an upper bound on bi(G), which will
be useful to us in the remainder, expressed in terms of the degree sum of any two adjacent vertices of G.
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Theorem 1.1 (Priddy, Wang and Wei, [6]). If G is a nonempty graph, then

bi(G) ≤ min{dG(u) + dG(v) − |NG(u) ∩NG(v)| − 1 : uv ∈ E(G)}.

Restricted to planar graphs, Priddy et al. [6] provided the following sharp upper bound in terms of the
maximum degree

Theorem 1.2 (Priddy, Wang and Wei, [6]). If G is a connected planar graph, then bi(G) ≤ ∆(G) + 2.

One of the questions raised in [6] was whether there was a constant C such that bi(G) ≤ C for any planar
graph G. This question has been addressed by Pham and Wei [5] for planar graphs with minimum degree
at least three by showing the following upper bound.

Theorem 1.3 (Pham and Wei, [5]). If G is a planar graph with δ(G) ≥ 3, then bi(G) ≤ min{9,∆(G) + 2}.

It is worth mentioning that Pham and Wei were unable to provide an example for the sharpness of the
upper bound in Theorem 1.3. However, they provided a class of planar graphs G with minimum degree at
least 3 and bi(G) = 6.

More recently, Gamlath et al. [2] improved the bound of Theorem 1.3 by showing the following

Theorem 1.4 (Gamlath, Wei and Reid, [2]). If G is a planar graph with δ(G) ≥ 3, then bi(G) ≤ min{8,∆(G)+2}.

Our aim in this paper is to improve the upper bounds in Theorems 1.2 and 1.4 for some classes of planar
graphs. Recall that, for any integer k ≥ 3, Ck denote a cycle of length k. Moreover, when we say that a graph
has no cycle meaning that such a cycle is not necessarily induced. Also, we say that two cycles are adjacent
if they share a common edge. In the rest of the paper, we shall prove the following.

Theorem 1.5. Let G be a planar graph with δ(G) ≥ 3.

1. If G is without C4, then bi(G) ≤ 6.
2. If G is without intersecting triangles, then bi(G) ≤ 7.
3. If G is without a C4 adjacent to a C3, then bi(G) ≤ 7.

Before proving our results, we give some additional definitions and notations.

Let G be a planar graph. We use F(G) to denote the set of faces of G. Let rG( f ) denote the degree of a
face f in G. A vertex of degree k is called a k-vertex. A k+-vertex (respectively, k−-vertex) is a vertex of degree
at least k (respectively, at most k). We use the same notations for faces, more precisely, a k-face (respectively,
k+-face, k−-face) is a face of degree k (respectively, at least k, at most k). A k-face having the boundary vertices
x1, x2, ..., xk in the cyclic order is denoted by [x1x2...xk]. A (k1, k2, k3)-triangle is a 3-face [xyz] with dG(x) = k1,
dG(y) = k2 and dG(z) = k3. For a vertex v ∈ V(G), let ni(v) denote the number of i-vertices adjacent to v for
i ≥ 1, and mi(v) the number of i-faces incident to v.

2. Independent bondage of planar graphs without small cycles

2.1. Proof of Theorem 1.5-(1)

We proceed by contradiction. Let H be a planar graph with δ(H) ≥ 3 and without C4 such that bi(H) > 6.
By Theorem 1.1, H satisfies the following properties:

Claim 2.1. H does not contain a 3-vertex adjacent to a 4−-vertex.

Claim 2.2. H does not contain a (4−, 4−,∆−(H))-triangle.
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We apply a discharging procedure. Euler’s formula |V(H)| − |E(H)| + |F(H)| = 2 can be rewritten as
(6|E(H)| − 10|V(H)|) + (4|E(H)| − 10|F(H)|) = −20. Using the relation

∑
v∈V(H)

dH(v) =
∑

f∈F(H)

rH( f ) = 2|E(H)| we

get that:∑
v∈V(H)

(3dH(v) − 10) +
∑

f∈F(H)

(2rH( f ) − 10) = −20 (1)

We define the weight function ω : V(H) ∪ F(H) −→ R by ω(x) = 3dH(x) − 10 if x ∈ V(H) and
ω(x) = 2rH(x) − 10 if x ∈ F(H). It follows from Equation (1) that the total sum of weights equals −20. In
what follows, we will define discharging rules (R1) to (R3) and redistribute weights accordingly. Once the
discharging is finished, a new weight function ω∗ is produced. However, the total sum of weights is kept
fixed when the discharging is finished. Nevertheless, we will show that ω∗(x) ≥ 0 for all x ∈ V(H) ∪ F(H),
leading us to the following contradiction:

0 ≤
∑

x∈V(H)∪F(H)

ω∗(x) =
∑

x∈V(H)∪F(H)

ω(x) = −20 < 0

and hence will demonstrate that such a counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every 5+-vertex gives 1
3 to each adjacent 3-vertex.

(R2) Every 4-vertex gives 1 to each incident 3-face.
(R3) Every 5+-vertex gives 2 to each incident 3-face.

Since H does not contain C4, by hypothesis, the following fact is easy to observe and will be frequently
used throughout the proof without further notice.

Observation 2.3. A k-vertex v is incident to at most ⌊ k
2 ⌋ 3-faces.

Let v ∈ V(H) be a k-vertex and recall that δ(H) ≥ 3. Consider the following cases:

1. Case k = 3. Observe that ω(v) = −1. By Claim 2.1, v has three neighbors of degree at least 5. Then, by
(R1) we have ω∗(v) = −1 + 3 × 1

3 = 0.
2. Case k = 4. Observe that ω(v) = 2. By Claim 2.1, v has four neighbors of degree at least 4. By

Observation 2.3, v is incident to at most two 3-faces and thus by (R2) ω∗(v) ≥ 2 − 2 × 1 = 0.
3. Case k = 5. Observe that ω(v) = 5. By Claim 2.2 and Observation 2.3, v is incident to at most two

(3, 5, 5+)-triangles. Hence, by (R1) and (R3),ω∗(v) ≥ 5−max{2×(2+ 1
3 )+1× 1

3 , 1×(2+ 1
3 )+4× 1

3 , 5×
1
3 } ≥ 0.

4. Case k ≥ 6. Observe that ω(v) = 3k − 10. By (R1) and (R3), we have :

ω∗(v) = 3k − 10 − 2 ×m3(v) −
1
3
× n3(v)

≥ 3k − 10 − 2 ×
⌊

k
2

⌋
−

1
3
×

(
k −

⌊
k
2

⌋)
≥

11
6

k − 10 ≥ 0

Let f ∈ F(H) be a k-face.

1. Case k = 3. Observe that ω( f ) = −4. Suppose f = [rst] and consider the following cases:
(a) Suppose dH(r) = 3. Hence, by Claim 2.1, r is the unique 3-vertex and dH(s) ≥ 5 and dH(t) ≥ 5.

Therefore, by (R3), we have ω∗( f ) = −4 + 2 × 2 ≥ 0
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(b) Suppose now dH(r) ≥ 4, dH(s) ≥ 4 and dH(t) ≥ 4. By Claim 2.2, at least one of the three vertices r,
s and t is a 5+-vertex, say dH(t) ≥ 5.
Hence, by (R2) and (R3), ω∗( f ) ≥ −4 +min{2 × 1 + 1 × 2, 1 × 1 + 2 × 2, 3 × 2} ≥ 0.

2. Case k ≥ 5. The initial charge of f is ω( f ) = 2k − 10 ≥ 0 and it remains unchanged during the
discharging process. Hence, ω∗( f ) = ω( f ) = 2k − 10 ≥ 0.

After performing the discharging procedure the new weights of all faces and vertices are positive and
therefore, H cannot exist. □

2.2. Proof of Theorem 1.5-(2)
We proceed by contradiction. Let H be a planar graph with δ(H) ≥ 3 and without intersecting triangles,

such that bi(H) > 7. By Theorem 1.1, we have the following properties:

Claim 2.4. H does not contain a 3-vertex adjacent to a 5−-vertex.

Claim 2.5. H does not contain a (3−, 6−,∆−(H))-triangle.

Claim 2.6. H does not contain a (4−, 5−,∆−(H))-triangle.

Now, we apply a discharging procedure. Euler’s formula |V(H)| − |E(H)|+ |F(H)| = 2 can be rewritten as
(2|E(H)| − 4|V(H)|) + (2|E(H)| − 4|F(H)|) = −8. Using the relation

∑
v∈V(H)

d(v) =
∑

f∈F(H)

r( f ) = 2|E(H)|we get that:

∑
v∈V(H)

(d(v) − 4) +
∑

f∈F(H)

(r( f ) − 4) = −8 (2)

We define the weight function ω : V(H) ∪ F(H) −→ R by ω(x) = dH(x)− 4 if x ∈ V(H) and ω(x) = rH(x)− 4
if x ∈ F(H). It follows from Equation (2) that the total sum of weights equals −8.

As before, we will define discharging rules (R1) to (R3) as follows :

(R1) Every k-vertex, for k ≥ 6, gives 1
3 to each adjacent 3-vertex.

(R2) Every 5-vertex gives 1
3 to each incident 3-face.

(R3) Every k-vertex, for k ≥ 6, gives 1
2 to each incident 3-face.

Since H does not contain intersecting triangles, by hypothesis, the following fact is easy to observe and
will be frequently used throughout the proof without further notice.

Observation 2.7. Let v be a k-vertex with k ≥ 3. Then m3(v) ≤ 1.

Let v ∈ V(H) be a k-vertex. Recall that δ(H) ≥ 3 and consider the following cases:

1. Case k = 3. Observe that ω(v) = −1. By Claim 2.4, v has three neighbors of degree at least 6. Hence,
by (R1), we have ω∗(v) = −1 + 3 × 1

3 = 0.
2. Case k = 4. Observe that ω(v) = 0 and v gives nothing. Hence, we have ω∗(v) = ω(v) = 0.
3. Case k = 5. Observe that ω(v) = 1. By Claim 2.4, v has five neighbors of degree at least 4. By

Observation 2.7, we have the following :
(a) If m3(v) = 1, then by (R2), ω∗(v) ≥ 1 − 1

3 > 0.
(b) If m3(v) = 0, then v gives nothing. Hence, we have ω∗(v) = ω(v) = 1 > 0.

4. Case k = 6. Observe that ω(v) = 2. By Observation 2.7, we have the following:
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(a) If m3(v) = 1,. By Claim 2.4 and Claim 2.5, v is adjacent to at most four 3-vertices. Hence, by (R1)
and (R3), ω∗(v) ≥ 2 − 4 × 1

3 − 1 × 1
2 ≥ 0.

(b) If m3(v) = 0, then by (R1) , ω∗(v) ≥ 2 − 6 × 1
3 = 0.

5. Case k ≥ 7. Observe that ω(v) = k − 4. By Observation 2.7, we have the following :

(a) If m3(v) = 1, then by (R1) and (R3):

ω∗(v) = k − 4 −
1
2
×m3(v) −

1
3
× n3(v)

≥ k − 4 −
1
2
× 1 −

1
3
× k

≥
4k − 27

6
> 0

(b) If m3(v) = 0, then by (R1), ω∗(v) ≥ k − 4 − k × 1
3 =

2
3 k − 4 > 0.

Let f ∈ F(H) be a k-face.

1. Case k = 3. Observe that ω( f ) = −1. Suppose f = [rst] and consider the following situations:

(a) Suppose dH(r) = 3. Then, by Claim 2.5, r is the unique 3-vertex and dH(s) ≥ 7 and dH(t) ≥ 7.
Hence, by (R3), we have ω∗( f ) = −1 + 2 × 1

2 = 0
(b) Suppose now dH(r) = 4. Then by Claim 2.6, r is the unique 4-vertex and dH(s) ≥ 6 and dH(t) ≥ 6.

Hence, by (R3), ω∗( f ) = −1 + 2 × 1
2 = 0.

(c) Assume that dH(r) ≥ 5. Then by Claim 2.6, dH(s) ≥ 5 and dH(t) ≥ 5. Hence, by (R2) and (R3),
ω∗( f ) ≥ −1 +min{ 13 × 3, 1

3 × 2 + 1
2 × 1, 1

3 × 1 + 1
2 × 2, 1

2 × 3} ≥ 0.
2. Case k ≥ 4. The initial charge of f isω( f ) = k−4 ≥ 0 and it remains unchanged during the discharging

process. Hence ω∗( f ) = ω( f ) = k − 4 ≥ 0.

After performing the discharging procedure the new weights of all faces and vertices are positive and
therefore, H cannot exist. □

2.3. Proof of Theorem 1.5-(3)
We proceed by contradiction. Let H be a planar graph with δ(H) ≥ 3 and without a C4 adjacent to a C3,

such that bi(H) > 7. Note that H satisfies the reducible configurations given in Claim 2.4, Claim 2.5 and
Claim 2.6.

Now, we apply a discharging procedure.
We define the weight function ω : V(H) ∪ F(H) −→ R by ω(x) = 3dH(x) − 10 if x ∈ V(H) and

ω(x) = 2rH(x) − 10 if x ∈ F(H). It follows from Equation (1) that the total sum of weights equals −20. As
before, we will define discharging rules (R1) to (R5) as follows :

(R1) Every k-vertex, for k ≥ 6, gives 1
3 to each adjacent 3-vertex.

(R2) Every 4-vertex gives 1 to each incident 3-face.
(R3) Every k-vertex, for k ≥ 5, gives 2 to each incident 3-face.
(R4) Every 4-vertex gives 1

2 to each incident 4-face.
(R5) Every k-vertex, for k ≥ 5, gives 1 to each incident 4-face.

Since H does not contain a C4 adjacent to a C3, it is easy to observe that H does not contain adjacent
3-cycles. One can easily derive the following observation.

Observation 2.8. Let v be a k-vertex with k ≥ 3. Then m3(v) ≤ ⌊ k
2 ⌋. Moreover :
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1. If m3(v) = ⌊ k
2 ⌋, then m4(v) = 0.

2. If 1 ≤ m3(v) < ⌊ k
2 ⌋, then m4(v) ≤ dH(v) − 2 ×m3(v) − 1.

3. If m3(v) = 0, then m4(v) ≤ dH(v).

Let v ∈ V(H) be a k-vertex. Recall that δ(H) ≥ 3 and consider the following cases:

1. Case k = 3. Observe that ω(v) = −1. By Claim 2.4, v has three neighbors of degree at least 6. Hence,
by (R1), we have ω∗(v) = −1 + 3 × 1

3 = 0.
2. Case k = 4. Observe that ω(v) = 2. By Claim 2.4, v has four neighbors of degree at least 4. By

Observation 2.8, we have the following :

(a) If m3(v) = 2, then m4(v) = 0, and hence, by (R2), ω∗(v) ≥ 2 − 2 × 1 = 0.
(b) If m3(v) = 1, then m4(v) ≤ 1, and hence, by (R2) and (R4), ω∗(v) ≥ 2 − 1 × 1 − 1 × 1

2 > 0.
(c) If m3(v) = 0, then m4(v) ≤ 4, and hence, by (R4), ω∗(v) ≥ 2 − 4 × 1

2 = 0.

3. Case k = 5. Observe that ω(v) = 5. By Claim 2.4, v has five neighbors of degree at least 4. By
Observation 2.8, we have the following :

(a) If m3(v) = 2, then m4(v) = 0, and hence, by (R3), ω∗(v) ≥ 5 − 2 × 2 > 0.
(b) If m3(v) = 1, then m4(v) ≤ 2, and hence, by (R3) and (R5), ω∗(v) ≥ 5 − 2 × 1 − 2 × 1 > 0.
(c) If m3(v) = 0, then m4(v) ≤ 5, and hence, by (R5), ω∗(v) ≥ 5 − 5 × 1 = 0.

4. Case k ≥ 6. Observe that ω(v) = 3k − 10. By Observation 2.8, we have the following :

(a) If m3(v) = ⌊ k
2 ⌋, then m4(v) = 0. Hence, by (R1) and (R3):

ω∗(v) = 3k − 10 − 2 ×m3(v) −
1
3
× n3(v)

≥ 3k − 10 − 2 ×
⌊

k
2

⌋
−

1
3
× k

≥
5
3

k − 10 > 0

(b) If 1 ≤ m3(v) ≤ ⌊ k
2 ⌋ − 1, then m4(v) ≤ k − 3. Moreover, v has at most k −m3(v) neighbors of degree

3. Hence, by (R1), (R3) and (R5):

ω∗(v) = 3k − 10 − 2 ×m3(v) − 1 ×m4(v) −
1
3
× n3(v)

≥ 3k − 10 − 2 × (⌊
k
2
⌋ − 1) − (k − 3) × 1 −

1
3
× (k −m3(v))

≥ 3k − 10 − 2 × (⌊
k
2
⌋ − 1) − (k − 3) × 1 −

1
3
× (k − (⌊

k
2
⌋ − 1))

≥
5
6

k − 5 ≥ 0

(c) If m3(v) = 0, then m4(v) ≤ k. Hence, by (R1) and (R5),

ω∗(v) ≥ 3k − 10 − k × 1 − k ×
1
3
=

5
3

k − 10 ≥ 0.

Let f ∈ F(H) be a k-face.

1. Case k = 3. Observe that ω( f ) = −4. Suppose f = [rst] and consider the following situations:

(a) Suppose dH(r) = 3. Then, by Claim 2.4, r is the unique 3-vertex and dH(s) ≥ 6 and dH(t) ≥ 6.
Hence, by (R3), we have ω∗( f ) = −4 + 2 × 2 ≥ 0
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(b) Suppose now dH(r) ≥ 4, dH(s) ≥ 4 and dH(t) ≥ 4. By Claim 2.6, at least one of the three vertices r,
s and t is a 5+-vertex. Say dH(t) ≥ 5.
Then, by (R2) and (R3), ω∗( f ) ≥ −4 +min{2 × 1 + 1 × 2, 1 × 1 + 2 × 2, 3 × 2} ≥ 0.

2. Case k = 4. The initial charge of f is ω( f ) = −2. By Claim 2.4, at most two 3-vertices are incident to
the 4-face. Suppose f = [rstu] and consider the following situations:

(a) Suppose dH(r) = 3 = dH(t). By Claim 2.4, dH(s) ≥ 6 and dH(u) ≥ 6. Hence, by (R5), we have
ω∗( f ) = −2 + 2 × 1 ≥ 0

(b) Suppose now dH(r) = 3. By Claim 2.4, dH(s) ≥ 6 and dH(u) ≥ 6. Moreover, assume dH(t) ≥ 4.
Then, by (R4) and (R5), ω∗( f ) ≥ −2 +min{2 × 1 + 1 × 1

2 , 3 × 1} ≥ 0.
(c) Assume dH(r) ≥ 4, dH(s) ≥ 4, dH(t) ≥ 4 and dH(u) ≥ 4. Then, by (R4) and (R5),
ω∗( f ) ≥ −2 +min{4 × 1

2 , 3 ×
1
2 + 1 × 1, 2 × 1

2 + 2 × 1, 1 × 1
2 + 3 × 1, 4 × 1} ≥ 0.

3. Case k ≥ 5. The initial charge of f is ω( f ) = 2k − 10 ≥ 0 and it remains unchanged during the
discharging process. Hence, ω∗( f ) = ω( f ) = 2k − 10 ≥ 0.

After performing the discharging procedure the new weights of all faces and vertices are positive and
therefore, H cannot exist. □

We conclude this section by giving an upper bound on the independent bondage number for another
specific class of planar graphs, namely planar graphs with no C4 and C5. Since the proof uses the same
reducible configurations and discharging rules as in the proof of Theorem 5.2 [3], we omit the proof of our
result.

Theorem 2.9. If G is a planar graph with δ(G) ≥ 3 and without C4 and C5, then bi(G) ≤ 5.
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