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Abstract. Let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of a graph G of order n and µ1 ≥ µ2 ≥ · · · ≥ µn = 0
be the Laplacian eigenvalues of G. In this paper, we propose a new conjecture that for any graph G except
for C4k+1(k ∈ Z+), ∑

µi≥2

(µi − 2)2
≤ (1 −

1
d1

)
n∑

i=1

di(di − 1).

We also prove this conjecture is true for the star, the path, the strongly regular graph, the threshold graph,
the barbell graph and the complete bipartite graph, respectively.

1. Introduction

Let G be a graph with n vertices and m edges, and d1(G) ≥ d2(G) ≥ · · · ≥ dn(G) be the degree sequence
of G. Denote by A(G) the adjacency matrix of G and λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) the eigenvalues of A(G).
Let d(v) be the degree of vertex v of G, and L(G) = D(G) − A(G) be the Laplacian matrix of G, where D(G) =
dia1(d(v1), d(v2), . . . , d(vn)) is the diagonal matrix of vertex degrees of G. Let µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) be
the eigenvalues of L(G)(µ1 ≥ µ2 ≥ · · · ≥ µn for short), which are also called the Laplacian eigenvalues of G. It
is well known that L(G) is positive semidefinite and so its eigenvalues are nonnegative real numbers. Note
that each row sum of L(G) is 0 and, therefore µn(G) = 0. Let Q(G) = D(G) + A(G) be the signless Laplacian
matrix of G and q1(G) ≥ q2(G) ≥ · · · ≥ qn(G) be the signless Laplacian eigenvalues of G.

A clique of a graph G is the complete subgraph of the graph G. The order of the maximum clique is
called the clique number of the graph G and is denoted by ω. As usual, we denote the complete graph, star,
path and cycle with n vertices by Kn, Sn, Pn and Cn, respectively. The complete bipartite graph with the part
sizes p and q is denoted by Kp,q.

Let Sk(G) =
∑k

i=1 µi(G), k = 1, 2, . . . ,n be the sum of the first k largest Laplacian eigenvalues of G.
Let dT

i (G) = |{v ∈ V(G) : d(v) ≥ i}| for i = 1, 2, . . . ,n. In 1994, Grone and Merris [10] observed that
Sk(G) ≤

∑k
i=1 dT

i (G), k = 1, 2, . . . ,n. And Bai [2] has proved this, which is called as Grone-Merris-Bai theorem
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now. As an analogue to Grone-Merris-Bai theorem, Brouwer [4] conjectured that Sk(G) ≤ m +
(k+1

2
)

for
k = 1, 2, . . . ,n. In 2010, Haemers et al. [12] proved that the conjecture holds for all graphs when k = 2. There
are numerous studies on it (see [5, 6, 9, 13] and the references therein), but it is still open now.

In this paper, we propose a new conjecture on Laplacian eigenvalues related to the degree sequence of
a graph.

Conjecture 1.1. Let G be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn and G , C4k+1(k ∈ Z+). Then

∑
µi≥2

(µi − 2)2
≤ (1 −

1
d1

)
n∑

i=1

di(di − 1).

By using a computer, we check that Conjecture 1.1 holds for connected graphs with at most 9 vertices.
It is easy to show that the conjecture holds for complete bipartite graphs. In Section 2, we will assert that
to prove Conjecture 1.1, it suffices to consider connected graphs. Furthermore, we prove that Conjecture
1.1 is true for the star, the path, the strongly regular graph, the threshold graph and the barbell graph,
respectively. And we also prove Conjecture 1.1 is true for the largest Laplacian eigenvalue, and for the
first two largest Laplacian eigenvalues, it is also true for the d-regular(d ≥ 3) graph and the starlike tree,
respectively.

Using Cauchy-Schwarz inequality, the weaker conjecture is also proposed.

Conjecture 1.2. Let G be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Then for k = 1, 2, . . . ,n,

Sk(G) ≤ 2k +

√√
k(1 −

1
d1

)
n∑

i=1

di(di − 1).

Remark 1: Haemers et al. [12] proved that for all graphs,

S2(G) ≤ m + 3. (1)

From the Grone-Merris-Bai Theorem, we have

S2(G) ≤ dT
1 + dT

2 . (2)

From Conjecture 1.2, we conjecture that

S2(G) ≤ 4 +

√√
2(1 −

1
d1

)
n∑

i=1

di(di − 1). (3)

We notice that these three upper bounds (1)-(3) are not comparable. For example, we list three graphs (a), (b)
and (c) with 6 vertices as Figure 1. For graph (a), (3) is smaller than (1) and (2). For graph (b), (1) is smaller
than (2) and (3). For graph (c), (2) is smaller than (1) and (3).

2. Lemmas and Results

Firstly, we assert that to prove Conjecture 1.1, it will suffice to consider connected graphs.

Lemma 2.1. If Conjecture 1.1 is true for connected graphs, then Conjecture 1.1 is also true for disconnected graphs.

Proof. Let G be a graph of order n with connected components H1,H2, . . . ,Ht, where 1 ≤ t ≤ n. Assume that
Hi contains ni vertices, where i = 1, 2, . . . , t. Clearly,

∑t
i=1 ni = n. It is known that the Laplacian eigenvalues

of G is the union of the Laplacian eigenvalues of its connected components and the degree sequence of
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Figure 1: Graphs (a), (b), (c)

G is the union of the degree sequence of its connected components. Since Conjecture 1.1 is true for each
connected component H j 1 ≤ j ≤ t, we have

∑
µi(H j)≥2

(µi(H j) − 2)2
≤ (1 −

1
d1(H j)

)
n j∑

i=1

di(H j)(di(H j) − 1).

It follows that∑
µi(G)≥2

(µi(G) − 2)2 =

t∑
j=1

∑
µi(H j)≥2

(µi(H j) − 2)2

≤

t∑
j=1

(1 −
1

d1(H j)
)

n j∑
i=1

di(H j)(di(H j) − 1)

≤ (1 −
1

d1(G)
)

t∑
j=1

n j∑
i=1

di(H j)(di(H j) − 1)

= (1 −
1

d1(G)
)

n∑
i=1

di(G)(di(G) − 1).

This completes the proof.

Next, we state some lemmas which will be used in the subsequent sections.

Lemma 2.2 ([10]). If G is a connected graph on n vertices with at least an edge, then µ1 ≥ d1 + 1, with equality if
and only if d1 = n − 1.

Lemma 2.3 ([1]). Let G be a connected graph with n ≥ 2 vertices, then µ1(G) ≤ n with equality if and only if the
complement of G is disconnected.

Lemma 2.4 ([7]). If G is a graph with n ≥ 2 vertices and G is its complement, thenµn(G) = 0 andµi(G) = n−µn−i(G)
(i = 1, 2, . . . ,n − 1).

We next list the Laplacian eigenvalues of some graphs.

Lemma 2.5 ([4]). Let n be a natural number.
(1) The Laplacian eigenvalues of Kn are n with multiplicity n − 1, 0.
(2) The Laplacian eigenvalues of Sn are n, 1 with multiplicity n − 2, 0.
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(3) The Laplacian eigenvalues of Pn are 2 − 2 cos πi
n for i = 0, . . . ,n − 1.

(4) The Laplacian eigenvalues of Cn are 2 − 2 cos 2πi
n for i = 0, . . . ,n − 1.

(5) The Laplacian eigenvalues of Kp,q are p + q, p with multiplicity q − 1, q with multiplicity p − 1, 0.

Nikiforov obtained the following assertion by using Motzkin-Straus inequality.

Lemma 2.6 ([16]). Let G be a graph with clique number ω and m edges. Then λ2
1(G) ≤ 2(ω−1)m

ω .

Considering the matrix A2 and using the fact that the sum of the eigenvalues of a matrix is equal to the
sum of its diagonal elements, we have the following lemma.

Lemma 2.7. Let A = (ai j)n×n be a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then
∑n

i=1 λ
2
i =∑n

i=1
∑n

j=1 a2
i j.

A graph (simple, undirected, and loopless) of order n is called strongly regular with parameters n, d, λ, µ
whenever it is not complete or edgeless and

1. each vertex is adjacent to d vertices,
2. for each pair of adjacent vertices there are λ vertices adjacent to both,
3. for each pair of nonadjacent vertices there are µ vertices adjacent to both.

We call an eigenvalue restricted if it has an eigenvector perpendicular to the all-1 vector 1. For strongly
regular graph G(n, d, λ, µ), A(G) has precisely two distinct restricted eigenvalues[4]. And they have the
following properties.

Lemma 2.8 ([4]). Let G be a strong regular graph G(n, d, λ, µ) with restricted eigenvalues r, s(r > s) and let f , 1 be
their respective multiplicities. Then f , 1 = 1

2 (n − 1 ∓ (r+s)(n−1)+2d
r−s ).

Denote by Φ(B) = Φ(B; x) = det(xI − B) the characteristic polynomial of B. If v ∈ G, let Lv(G) be the
principal submatrix of L(G) formed by deleting the row and column corresponding to vertex v. If G = v,
then suppose that Φ(Lv(G)) = 1.

Lemma 2.9 ([11]). Let G = G1u : vG2 be the graph obtained by joining the vertex u of the graph G1 to the vertex v
of the graph G2 by an edge. Then

Φ(L(G)) = Φ(L(G1))Φ(L(G2)) −Φ(L(G1))Φ(Lv(G2)) −Φ(L(G2))Φ(Lu(G1)).

For i = 1, 2, . . . ,n the conjugate degree dT
i (G) = |{v ∈ V(G) : d(v) ≥ i}| gives the number of nodes of G of

degree at least i. Each degree sequence satisfying dT
i = di + 1 for i = 1, . . . , h with trace h = max{i : di ≥ i}

uniquely defines a graph and these graphs form the so called threshold graphs [15].

Lemma 2.10 ([14]). Let G be a threshold graph. Then µi(G) = dT
i (G) for i = 1, . . . ,n.

A tree is said to be starlike if exactly one of its vertices has degree greater than two. By S(n1,n2, . . . ,nk) we
denote the starlike tree which has a vertex v1 of degree k ≥ 3 and which has the property S(n1,n2, . . . ,nk)−v1 =
Pn1 ∪ Pn2 ∪ · · · ∪ Pnk . We assume that n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. Das [8] gave the upper bound of µ1(G) and
µ2(G) for starlike trees as follows.

Lemma 2.11 ([8]). Let G be a starlike tree S(n1,n2, . . . ,nk), n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. Then
(1) µ1(G) < k + 1 + 1

k−1 .
(2) µ2(G) ≤ 2 + 2 cos 2π

2n1+1 .
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Let G be a graph with V(G) = {1, . . . ,n} and E(G) = {e1, . . . , em}. The (vertex-edge) incidence matrix of
G, which we denote by M(G), or simply by M, is the n × m matrix defined as follows. The rows and the
columns of M are indexed by V(G) and E(G), respectively. The (i, j)-entry of M is 0 if vertex i and edge e j
are not incident, and otherwise it is 1. Then Q(G) =MM′, where M′ is the transpose of M. Let L (G) be the
line graph of G. Note that A(L (G)) + 2I = M′M [3]. Then Q(G) and A(L (G)) + 2I have the same nonzero
eigenvalues.

We next prove Conjecture 1.1 is true for the largest Lapalcian eigenvalue, and so we give a new upper
bound for the largest Laplacian eigenvalue.

Theorem 2.12. Let G be a graph on n vertices and m ≥ 1 edges with degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Then

µ1 ≤ 2 +
√

(1 − 1
d1

)
∑n

i=1 di(di − 1).

Proof. Consider the line graph L (G) of G. Then ω(L (G)) = d1. By Lemma 2.6, λ1(L (G))2

≤ 2(1 − 1
d1

)m(L (G)). Since λ1(L (G)) = q1(G) − 2 and m(L (G)) =
∑n

i=1 di(di−1)
2 , we have (q1(G) − 2)2

≤

2(1 − 1
d1

)
∑n

i=1 di(di−1)
2 . Then µ1 ≤ q1 ≤ 2 +

√
(1 − 1

d1
)
∑n

i=1 di(di − 1).

The following results show that the equality of Conjecture 1.1 holds for the star, the path and the even
cycle, respectively.

Theorem 2.13. Let G be a graph of order n.
(1) If G is a star, then

∑
µi≥2(µi − 2)2 = (1 − 1

d1
)
∑n

i=1 di(di − 1).
(2) If G is a path, then

∑
µi≥2(µi − 2)2 = (1 − 1

d1
)
∑n

i=1 di(di − 1).

Proof. (1)For the star graph Sn, by Lemma 2.5,
∑
µi≥2(µi−2)2 = (n−2)2. Since (1− 1

d1
)
∑n

i=1 di(di−1) = (n−2)2,
the theorem holds.
(2)For the path Pn, since

∑
µi≥2(µi−2)2 =

∑
µi>2(µi−2)2, we only consider Laplacian eigenvalues greater than

2. By Lemma 2.5, the Laplacian eigenvalues of Pn are 2 − 2 cos πi
n for i = 0, . . . ,n − 1. Hence µi > 2 if and

only if cos πi
n < 0. This implies n

2 < i < n.
If n = 2k(k ∈ Z+), then k < i < 2k. We need to show that

2k−1∑
i=k+1

(2 − 2 cos
πi
2k
− 2)2 = 2k − 2.

After simplification, the previous equality is equivalent to

2k−1∑
i=k+1

cos
πi
k
= 0.

Since
∑n

i=1 µi = 2m, by Lemma 2.5, using the Laplacian eigenvalues of the cycle, we have
∑n−1

i=0 (2−2 cos 2πi
n ) =

2n. Then we have
∑n−1

i=0 cos 2πi
n = 0. It follows that

2k−1∑
i=k+1

cos
πi
k
=

2k−1∑
i=0

cos
2πi
2k
− 1 −

k−1∑
i=1

cos
2πi
2k
− cos

2πk
2k

= −

k−1∑
i=1

cos
2πi
2k

= −

2k−1∑
i=k+1

cos
2πi
2k
.
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Therefore,
∑2k−1

i=k+1 cos πi
k = 0.

If n = 2k + 1(k ∈ Z+), then k + 1
2 < i < 2k + 1. We need to show that

2k∑
i=k+1

(2 − 2 cos
πi

2k + 1
− 2)2 = 2k − 1.

After simplification, the previous equality is equivalent to

2k∑
i=k+1

cos
2πi

2k + 1
= −

1
2
.

Since
∑n−1

i=0 cos 2πi
n = 0, we have

∑2k
i=1 cos 2πi

2k+1 =
∑2k

i=0 cos 2πi
2k+1 − 1 = −1. On the other hand,

∑2k
i=1 cos 2πi

2k+1 =

2
∑2k

i=k+1 cos 2πi
2k+1 . Then

∑2k
i=k+1 cos 2πi

2k+1 = −
1
2 .

Theorem 2.14. Let Cn be a cycle. If n , 4k+ 1(k ∈ Z+), then
∑
µi≥2(µi − 2)2

≤ (1− 1
d1

)
∑n

i=1 di(di − 1), with equality
if and only if n is even.

Proof. Since
∑
µi≥2(µi − 2)2 =

∑
µi>2(µi − 2)2, we only consider Laplacian eigenvalues greater than 2. By

Lemma 2.5, the Laplacian eigenvalues of Cn are 2 − 2 cos 2πi
n for i = 0, . . . ,n − 1. Hence µi > 2 if and only if

cos 2πi
n < 0. This implies n

4 < i < 3n
4 .

If n = 4k(k ∈ Z+), then k < i < 3k. We need to show that

3k−1∑
i=k+1

(2 − 2 cos
2πi
4k
− 2)2 = 4k.

After simplification, the previous equality is equivalent to

3k−1∑
i=k+1

cos
πi
k
= 1.

Since
∑3k

i=k cos πi
k = −1, we have

∑3k−1
i=k+1 cos πi

k = −1 − cosπ − cos3π = 1.
If n = 4k + 2(k ∈ Z+), then k + 1

2 < i < 3k + 3
2 . We need to show that

3k+1∑
i=k+1

(2 − 2 cos
2πi

4k + 2
− 2)2 = 4k + 2.

After simplification, the previous equality is equivalent to

3k+1∑
i=k+1

cos
2πi

2k + 1
= 0.

Since
∑n−1

i=0 cos 2πi
n = 0, we have

3k+1∑
i=k+1

cos
2πi

2k + 1
=

2k+1∑
i=k+1

cos
2πi

2k + 1
+

3k+1∑
i=2k+2

cos
2πi

2k + 1

=

2k+1∑
i=k+1

cos
2πi

2k + 1
+

k∑
i=1

cos
2πi

2k + 1

=

2k+1∑
i=1

cos
2πi

2k + 1

= 0.
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If n = 4k + 3(k ∈ Z+), then k + 3
4 < i < 3k + 9

4 . We need to show that

3k+2∑
i=k+1

(2 − 2 cos
2πi

4k + 3
− 2)2 < 4k + 3.

After simplification, the previous inequality is equivalent to

3k+2∑
i=k+1

cos
4πi

4k + 3
< −

1
2
.

Using a computer we have

3k+2∑
i=k+1

cos
4πi

4k + 3
=

sin (12k+10)π
4k+3 − sin (4k+2)π

4k+3

2 sin 2π
4k+3

=
sin(3π + π

4k+3 ) − sin(π − π
4k+3 )

2 sin 2π
4k+3

= −
2 sin π

4k+3

2 sin 2π
4k+3

= −
sin π

4k+3

2 sin π
4k+3 cos π

4k+3

= −
1

2 cos π
4k+3

< −
1
2
.

This completes the proof.

Remark 2: When n = 4k + 1(k ∈ Z+), for cycle Cn, we conclude that
∑
µi≥2(µi − 2)2 > (1 − 1

d1
)
∑n

i=1 di(di − 1).
Otherwise, assume that

∑
µi≥2(µi − 2)2

≤ (1 − 1
d1

)
∑n

i=1 di(di − 1). By the theorem above, µi > 2 implies that
k + 1

4 < i < 3k + 3
4 . Then we need to show that

3k∑
i=k+1

(2 − 2 cos
2πi

4k + 1
− 2)2

≤ 4k + 1.

After simplification, the previous inequality is equivalent to

3k∑
i=k+1

cos
4πi

4k + 1
≤

1
2
.
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Using a computer we have

3k∑
i=k+1

cos
4πi

4k + 1
=

sin (12k+2)π
4k+1 − sin (4k+2)π

4k+1

2 sin 2π
4k+1

=
sin(3π − π

4k+1 ) − sin(π + π
4k+1 )

2 sin 2π
4k+1

=
2 sin π

4k+1

2 sin 2π
4k+1

=
sin π

4k+1

2 sin π
4k+1 cos π

4k+1

=
1

2 cos π
4k+1

>
1
2
,

a contradiction.

Theorem 2.15. Let G be a strong regular graph G(n, d, λ, µ)(d ≥ 3) with restricted eigenvalues r > s. Then∑
µi≥2(µi − 2)2

≤ (1 − 1
d1

)
∑n

i=1 di(di − 1).

Proof. By Lemma 2.8, the eigenvalues of G are d, r with multiplicity f and s with multiplicity 1, where
f = 1

2 (n− 1− (r+s)(n−1)+2d
r−s ) and 1 = 1

2 (n− 1+ (r+s)(n−1)+2d
r−s ). Since L(G) = D(G)−A(G), the Laplacian eigenvalues

of G is d − s with multiplicity 1, d − r with multiplicity f and 0. If d − r ≥ 2, we will show that

1(d − s − 2)2 + f (d − r − 2)2
≤ n(d − 1)2.

Since
∑n

i=1 λi = 0 and
∑n

i=1 λ
2
i =
∑n

i=1 di, we have 1s + f r = −d and 1s2 + f r2 + d2 = nd. Then

1(d − s − 2)2 + f (d − r − 2)2 = 1((d − 2)2
− 2s(d − 2) + s2) + f ((d − 2)2

− 2r(d − 2) + r2)

= (1 + f )(d − 2)2
− 2(d − 2)(1s + f r) + 1s2 + f r2

= (n − 1)(d − 2)2 + 2d(d − 2) + nd − d2.

Then we only need to show that

(n − 1)(d − 2)2 + 2d(d − 2) + nd − d2
≤ n(d − 1)2.

That is
4 + n(d − 3) ≥ 0.

The inequality holds if d ≥ 3. If d−r < 2, it easily follows that 1(d−s−2)2 < 1(d−s−2)2+ f (d−r−2)2
≤ n(d−1)2.

This completes the proof.

The barbell graph Bs,t is constructed by connecting two complete graphs Ks(s ≥ 1) and Kt(t ≥ 1) by a
bridge.

Theorem 2.16. Let G be the barbell graph Bs,t(s ≥ 1, t ≥ 1). Then
∑
µi≥2(µi − 2)2

≤ (1 − 1
d1

)
∑n

i=1 di(di − 1).

Proof. We may assume that s + t ≥ 10 and s ≥ t. Let u ∈ Ks, v ∈ Kt and uv be the bridge of Bs,t.
If s = t = 1, then G = K2. The result holds. If s ≥ 2 and t = 1, then by Lemma 2.9, the characteristic

polynomial of L(G) is as follows:

Φ(L(G)) =Φ(L(Ks))Φ(L(K1)) −Φ(L(Ks))Φ(Lv(K1)) −Φ(L(K1))Φ(Lu(Ks))

=x(x − s)s−1x − x(x − s)s−1
− x(x − 1)(x − s)s−2

=x(x − 1)(x − s)s−2(x − s − 1).
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Then the Laplacian spectrum of G are 0, 1, s with multiplicity s − 2, and s + 1. Then∑
µi≥2

(µi − 2)2 = (s − 1)2 + (s − 2)3

and

(1 −
1
d1

)
n∑

i=1

di(di − 1) = (s − 1)2 +
s − 2

s
(s − 1)3.

It is easy to check that the result holds.
If s ≥ t ≥ 2, then by Lemma 2.9, the characteristic polynomial of L(G) is as follows:

Φ(L(G)) =Φ(L(Ks))Φ(L(Kt)) −Φ(L(Ks))Φ(Lv(Kt)) −Φ(L(Kt))Φ(Lu(Ks))

=x(x − s)s−1x(x − t)t−1
− x(x − s)s−1(x − 1)(x − t)t−2

− x(x − t)t−1(x − 1)(x − s)s−2

=x(x − s)s−2(x − t)t−2(x3
− (s + t + 2)x2 + (st + s + t + 2)x − (s + t))

≜x(x − s)s−2(x − t)t−21(x).

Let x1 ≥ x2 ≥ x3 be the roots of the equation 1(x) = 0. Then the Laplacian spectrum of G are x1, s with
multiplicity s − 2, x2, t with multiplicity t − 2, x3 and 0. Since

1(0) = −s − t < 0, 1(1) = st − (s + t) + 1 > 0,
1(t) = (t − 1)(s − t) ≥ 0, 1(t + 1) = −s + 1 < 0,

1(s) = (s − 1)(t − s) ≤ 0, 1(s + 2) = s2 + (3 − t)s − 3t + 4 > 0,

we have 0 < x3 < 1, t ≤ x2 < t + 1, and s ≤ x1 < s + 2. Then∑
µi≥2

(µi − 2)2
≤ s2 + (s − 2)3 + (t − 1)2 + (t − 2)3.

The degree sequence of the barbell graph Bs,t is (s, t, s − 1, . . . , s − 1︸           ︷︷           ︸
s−1

, t − 1, . . . , t − 1︸           ︷︷           ︸
t−1

). Then

(1 −
1
d1

)
n∑

i=1

di(di − 1) =
s − 1

s
(s(s − 1) + (s − 1)2(s − 2) + t(t − 1) + (t − 1)2(t − 2)).

Hence, it suffices to prove

s2 + (s − 2)3 + (t − 1)2 + (t − 2)3
≤

s − 1
s

(s(s − 1) + (s − 1)2(s − 2) + t(t − 1) + (t − 1)2(t − 2)).

Cancelling and rearranging shows that the previous inequality is equivalent to

0 ≤ s3
− 5s2 + (2t2

− 6t + 7)s − t3 + 3t2
− 4t + 4.

Consider the polynomial f (s, t) = s3
−5s2+(2t2

−6t+7)s−t3+3t2
−4t+4. If s = t, which implies that s = t ≥ 5,

then f (s, t) = f (s) = 2s3
− 8s2 + 3s + 4. It is easy to check that f (s) increases as s increases when s ≥ 5. Then

f (s) ≥ f (5) > 0. If s > t, let s = t+a, a ≥ 1. Let h(a, t) = f (t+a, t) = a3+(3t−5)a2+(5t2
−16t+7)a+2t3

−8t2+3t+4.
We next prove h(a, t) ≥ 0 for t ≥ 1.

If t = 1, which implies that a ≥ 8, then h(a, 1) = a3
−2a2

−4a+1. It is easy to check that h(a, 1) increases as a
increases when a ≥ 8. Then h(a, 1) ≥ h(8, 1) > 0. If t = 2, which implies that a ≥ 6, then h(a, 2) = a3+a2

−5a−6.
It is easy to check that h(a, 2) increases as a increases when a ≥ 6. Then h(a, 2) ≥ h(6, 2) > 0. If t ≥ 3, the
derivative of h(a, t) with respect to a is ha(a, t) = 3a2 + 2(3t − 5)a + 5t2

− 16t + 7. The derivative of ha(a, t)
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with respect to a is haa(a, t) = 6a + 6t − 10. Since a ≥ 1 and t ≥ 3, haa(a, t) > 0. We have ha(a, t) increases
as a when a ≥ 1, then ha(a, t) > ha(1, t) = 5t2

− 10t > 0. Then h(a, t) increases as a when a ≥ 1. Hence
h(a, t) ≥ h(1, t) = 2t3

− 3t2
− 10t + 7. It is easy to check that h(1, t) = 2t3

− 3t2
− 10t + 7 increases as t increases

when t ≥ 3. Thus, h(a) ≥ h(1, 3) > 0.

A vertex is called dominating if it is adjacent to every other vertex. One way to characterize threshold
graphs is through an iterative process which starts with an isolated vertex, and where, at each step, either
a new isolated vertex is added, or a dominating vertex is added.

Theorem 2.17. Let G be a threshold graph of order n. Then
∑
µi≥2(µi − 2)2

≤ (1 − 1
d1

)
∑n

i=1 di(di − 1).

Proof. We prove this by induction on the number of vertices n. Let Gn be the threshold graph of order
n. Suppose the Laplacian spectrum of Gn is µ1(Gn) ≥ · · · ≥ µn(Gn) = 0. The degree sequence of Gn is
d1(Gn) ≥ · · · ≥ dn(Gn). For n = 1, it is obvious that the conclusion is true for G1 = K1. Assume the result is
true for n = k for some k ∈ Z+, that is,

∑
µi(Gk)≥2

(µi(Gk) − 2)2
≤ (1 −

1
d1(Gk)

)
k∑

i=1

di(Gk)(di(Gk) − 1).

From this assumption we want to deduce the truth of

∑
µi(Gk+1)≥2

(µi(Gk+1) − 2)2
≤ (1 −

1
d1(Gk+1)

)
k+1∑
i=1

di(Gk+1)(di(Gk+1) − 1).

If Gk+1 is obtained by adding an isolated vertex to Gk, using the induction hypothesis we have∑
µi(Gk+1)≥2

(µi(Gk+1) − 2)2 =
∑
µi(Gk)≥2

(µi(Gk) − 2)2

≤ (1 −
1

d1(Gk)
)

k∑
i=1

di(Gk)(di(Gk) − 1)

= (1 −
1

d1(Gk+1)
)

k+1∑
i=1

di(Gk+1)(di(Gk+1) − 1).

Next suppose that Gk+1 is obtained by adding a dominating vertex to Gk. The degree sequence of
Gk+1 is k ≥ d1(Gk) + 1 ≥ d2(Gk) + 1 ≥ · · · ≥ dk(Gk) + 1. By Lemma 2.4, the Laplacian spectrum of Gk+1
is {k − µk−1(Gk), k − µk−2(Gk), . . . , k − µ1(Gk), 0, 0}. Then by Lemma 2.4, the Laplacian spectrum of Gk+1 is
k+1 ≥ µ1(Gk)+1 ≥ µ2(Gk)+1 ≥ · · · ≥ µk−1(Gk)+1 ≥ 0. By Lemma 2.10, the Laplacian spectrum of a threshold
graph is integral. Then the Laplacian eigenvalues of Gk less than 2 are 0 and 1. Let t = max{ j|µ j(Gk) ≥ 2},
s = |{ j|µ j(Gk) = 1}|. Then using the induction hypothesis,

∑
µi(Gk+1)≥2

(µi(Gk+1) − 2)2 = (k + 1 − 2)2 +

t∑
i=1

(µi(Gk) + 1 − 2)2 +

s∑
i=1

(2 − 2)2

= (k − 1)2 +

t∑
i=1

(µi(Gk) − 2)2 + 2
t∑

i=1

(µi(Gk) − 2) + t

≤ (k − 1)2 + (1 −
1

d1(Gk)
)

k∑
i=1

di(Gk)(di(Gk) − 1) + 2
t∑

i=1

µi(Gk) − 3t

≤ (k − 1)2 + (1 −
1
k

)
k∑

i=1

di(Gk)(di(Gk) − 1) + 2
t∑

i=1

µi(Gk) − 3t.
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On the other hand,

(1 −
1

d1(Gk+1)
)

k+1∑
i=1

di(Gk+1)(di(Gk+1) − 1) = (1 −
1
k

)(k(k − 1) +
k∑

i=1

di(Gk)(di(Gk) + 1))

= (k − 1)2 + (1 −
1
k

)
k∑

i=1

di(Gk)(di(Gk) + 1).

Then we need to show that

(1 −
1
k

)
k∑

i=1

di(Gk)(di(Gk) − 1) + 2
t∑

i=1

µi(Gk) − 3t ≤ (1 −
1
k

)
k∑

i=1

di(Gk)(di(Gk) + 1).

Using
∑n

i=1 µi =
∑n

i=1 di and simplifying previous inequality, we need to show that

2
t∑

i=1

µi(Gk) − 3t ≤ 2(1 −
1
k

)
k∑

i=1

µi(Gk)

= 2
t∑

i=1

µi(Gk) + 2s −
2
k

t∑
i=1

µi(Gk) −
2s
k
.

We next need to show that 2
k
∑t

i=1 µi(Gk)+ 2s
k ≤ 3t+ 2s. By Lemma 2.3, µi(Gk) ≤ µ1(Gk) ≤ k for 1 ≤ i ≤ k. Then∑t

i=1 µi(Gk) ≤ kt. Since k ≥ 1, we have 2
k
∑t

i=1 µi(Gk) + 2s
k ≤ 2t + 2s

k ≤ 3t + 2s.

Theorem 2.18. Let G be a d-regular graph (d ≥ 3) of order n. Then (µ1 − 2)2 + (µ2 − 2)2
≤ (1 − 1

d1
)
∑n

i=1 di(di − 1).

Proof. We may assume that n ≥ 8. Let A = (ai j)n×n be the adjacency matrix of G, and D = dI be the degree
diagonal matrix. Consider the matrix B = (bi j)n×n, where B = D − A − 2I. Let λ2

1(B) ≥ λ2
2(B) ≥ · · · ≥ λ2

n(B) be
the eigenvalues of B2. By Lemma 2.7,

n∑
i=1

λ2
i (B) =

n∑
i=1

n∑
j=1

bi j
2

= n(d − 2)2 +

n∑
i=1

n∑
j=1

ai j
2

= n(d − 2)2 +

n∑
i=1

n∑
j=1

ai j

= n(d − 2)2 + nd

= nd2
− 3nd + 4n.

Then,

(µ1 − 2)2 + (µ2 − 2)2
≤ λ2

1(B) + λ2
2(B) = nd2

− 3nd + 4n −
n∑

i=3

λ2
i (B).

We have to show that

nd2
− 3nd + 4n −

n∑
i=3

λ2
i (B) ≤ n(d − 1)2.

That is
n∑

i=3

λ2
i (B) ≥ 3n − nd.

Since d ≥ 3, 3n − nd ≤ 0 ≤
∑n

i=3 λ
2
i (B) is true. This completes the proof.
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For 2-regular graph Cn(n ≥ 8), by Lemma 2.5, we have µ2 ≤ µ1 ≤ 4. Then (µ1 − 2)2 + (µ2 − 2)2
≤ 8 ≤ n =

(1 − 1
d1(Cn) )

∑n
i=1 di(Cn)(di(Cn) − 1). For 1-regular graph K2, by Lemma 2.5, µ1 + µ2 = 2 < 4. Then we have the

following corollary.

Corollary 2.19. Let G be a d-regular graph. Then S2(G) ≤ 4 + (d − 1)
√

2n.

Remark 3: The upper bound in Corollary 2.19 is better than the Brouwer Conjecture’s bound for regular
graph when n ≥ 8. That is nd/2 + 3 − (d − 1)

√
2n − 4 ≥ 0. Let f (n, d) = nd/2 + 3 − (d − 1)

√
2n − 4. If n = 8,

f (8, d) = 3 > 0. If n > 8, we find that f (n, d) > 0 when d ≥ 2−2
√

2n
n−2
√

2n
. Then f (n, d) > 0 for all d ≥ 1 since

2−2
√

2n
n−2
√

2n
< 1.

Lemma 2.20. Let G be a starlike tree of order n(n ≥ 10).
(i) If G � S(3, 1, . . . , 1), then µ1 < n − 2 + 3

n2 and (µ1 − 2)2 + (µ2 − 2)2
≤ (1 − 1

d1
)
∑n

i=1 di(di − 1).
(ii) If G � S(2, 2, 1, . . . , 1), then µ1 < n − 2 + 5

n2 and (µ1 − 2)2 + (µ2 − 2)2
≤ (1 − 1

d1
)
∑n

i=1 di(di − 1).
(iii) If G � S(2, 1, . . . , 1), then µ1 < n − 1 + 2

n2 and (µ1 − 2)2 + (µ2 − 2)2
≤ (1 − 1

d1
)
∑n

i=1 di(di − 1).

Proof. (1) By direct calculation, the characteristic polynomial of L(G) is

Φ(x) = x(x − 1)n−5(x4
− (n + 3)x3 + (5n − 4)x2

− (6n − 10)x + n).

Let f (x) = (x4
−(n+3)x3+(5n−4)x2

−(6n−10)x+n). Then f (n−2+ 3
n2 ) = 2n9

−29n8+114n7
−99n6

−198n5+342n4+81n3
−297n2+81

n8 .
Let 1(n) = 2n9

− 29n8 + 114n7
− 99n6

− 198n5 + 342n4 + 81n3
− 297n2 + 81. Then 1(n) is increasing when n ≥ 9.

Hence 1(n) ≥ 1(9) > 0. So Φ(n − 2 + 3
n2 ) > 0. Since Φ(n − 2) = 4 − n < 0, and by Lemmas 2.2 and 2.11,

µ1 ≥ n − 2 and µ2 ≤ 4, we have µ1 < n − 2 + 3
n2 .

Therefore, by Lemma 2.11,

(µ1 − 2)2 + (µ2 − 2)2
≤ (n − 2 +

3
n2 − 2)2 + 4 cos2(

2π
7

)

≤ (n − 4)2 + 6
n − 4

n2 +
9
n4 + 1.555.

And we have

(1 −
1
d1

)
n∑

i=1

di(di − 1) = (n − 4)2 + 4
n − 4
n − 3

.

It suffices to show that
6

n − 4
n2 +

9
n4 + 1.555 ≤ 4

n − 4
n − 3

.

It is true for n ≥ 5. This completes the proof.
(2) By direct calculation, the characteristic polynomial of L(G) is

Φ(x) = x(x − 1)n−6(x2
− 3x + 1)(x3

− (n + 1)x2 + (3n − 5)x − n).

Let f (x) = x3
−(n+1)x2+(3n−5)x−n, and x1 ≥ x2 ≥ x3 be the roots of f (x). The Laplacian eigenvalues of G are

x1, x2, x3,
3+
√

5
2 ,

3−
√

5
2 , 0, 1 with multiplicity n−6. By Lemmas 2.2 and 2.11, µ1 ≥ n−2 and µ2 ≤ 4. Then µ1 = x1.

By simple calculation, f (n−2+ 5
n2 ) = 3n6

−35n5+55n4+50n3
−175n2+125

n6 . Let 1(n) = 3n6
−35n5+55n4+50n3

−175n2+125.
Then 1(n) is increasing when n ≥ 10. Hence 1(n) ≥ 1(10) > 0. So f (n − 2 + 5

n2 ) > 0. Since f (n − 2) = −2 < 0,
µ1 = x1 < n − 2 + 5

n2 .
Therefore, by Lemma 2.11,

(µ1 − 2)2 + (µ2 − 2)2
≤ (n − 2 +

5
n2 − 2)2 + 4 cos2(

2π
5

)

≤ (n − 4)2 + 10
n − 4

n2 +
25
n4 + 0.382.
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And we have

(1 −
1
d1

)
n∑

i=1

di(di − 1) = (n − 4)2 + 4
n − 4
n − 3

.

It suffices to show that
10

n − 4
n2 +

25
n4 + 0.382 ≤ 4

n − 4
n − 3

.

It is true for n ≥ 5. This completes the proof.
(3) By direct calculation, the characteristic polynomial of L(G) is

Φ(x) = x(x − 1)n−4(x3
− (n + 2)x2 + (3n − 2)x − n).

Let f (x) = x3
− (n + 2)x2 + (3n − 2)x − n. Then f (n − 1 + 2

n2 ) = n6
−10n5+10n4+8n3

−20n2+8
n6 . Let 1(n) = n6

− 10n5 +

10n4 + 8n3
− 20n2 + 8. Then 1(n) is increasing when n ≥ 9. Hence 1(n) ≥ 1(9) > 0. So f (n − 1 + 2

n2 ) > 0. Since
f (n − 1) = −1 < 0, and by Lemmas 2.2 and 2.11, µ1 ≥ n − 1 and µ2 ≤ 4, we have µ1 < n − 1 + 2

n2 .
Therefore, by Lemma 2.11,

(µ1 − 2)2 + (µ2 − 2)2
≤ (n − 1 +

2
n2 − 2)2 + 4 cos2(

2π
5

)

≤ (n − 3)2 + 4
n − 3

n2 +
4
n4 + 0.382.

And we have

(1 −
1
d1

)
n∑

i=1

di(di − 1) = (n − 3)2 + 2
n − 3
n − 2

.

It suffices to show that
4

n − 3
n2 +

4
n4 + 0.382 ≤ 2

n − 3
n − 2

.

It is true for n ≥ 4. This completes the proof.

Theorem 2.21. Let G be a starlike tree of order n(n =
∑k

i=1 ni + 1)(k ≥ 3). Then (µ1 − 2)2 + (µ2 − 2)2
≤ (1 −

1
d1

)
∑n

i=1 di(di − 1).

Proof. By Theorem 2.13, we may assume n1 ≥ 2. By Lemma 2.11, we have

(µ1 − 2)2 + (µ2 − 2)2 < (k + 1 +
1

k − 1
− 2)2 + 4 cos2 2π

2n1 + 1

= (k − 1)2 + 2 +
1

(k − 1)2 + 2 + 2 cos
4π

2n1 + 1

≤ (k − 1)2 +
17
4
+ 2 cos

4π
2n1 + 1

.

By the definition of the starlike tree, we can easily obtain that

(1 −
1
d1

)
n∑

i=1

di(di − 1) =
k − 1

k
(k(k − 1) + 2(n1 − 1) + . . . + 2(nk − 1))

= (k − 1)2 + 2
k − 1

k
(n − 1 − k).

Hence it suffices to prove that

(k − 1)2 +
17
4
+ 2 cos

4π
2n1 + 1

≤ (k − 1)2 + 2
k − 1

k
(n − 1 − k).
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That is,
17
8
+ cos

4π
2n1 + 1

≤
k − 1

k
(n − 1 − k).

Since 2 ≤ n1 ≤ n − k, cos 4π
2n1+1 is increasing as n1 increases. So cos 4π

2n1+1 ≤ cos 4π
2(n−k)+1 . Then it suffices to

show that

17
8
+ cos

4π
2(n − k) + 1

≤
k − 1

k
(n − 1 − k). (4)

If n − k ≥ 6, k−1
k (n − 1 − k) ≥ 2

3 × 5 = 10
3 . Then (4) holds since 17

8 + cos 4π
2(n−k)+1 ≤

25
8 <

10
3 . If n − k = 5, then

17
8 + cos 4π

2(n−k)+1 ≈ 2.54. Thus k−1
k (n − 1 − k) ≥ 2

3 × 4 = 8
3 > 2.54. If n − k = 4, we may assume k ≥ 5. Then

17
8 + cos 4π

2(n−k)+1 ≈ 2.3. Thus k−1
k (n−1− k) ≥ 4

5 ×3 = 2.4 > 2.3. If n− k = 3, then G is isomorphic to S(3, 1, . . . , 1)
or S(2, 2, 1, . . . , 1), by Lemma 2.20, the theorem holds. If n − k = 2, then G is isomorphic to S(2, 1, . . . , 1), by
Lemma 2.20, the theorem holds. This completes the proof.

At the end, we also propose the following conjecture in terms of signless Laplacian eigenvalues and the
degree sequence of a graph.

Conjecture 2.22. Let G be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Then

∑
qi≥2

(qi − 2)2
≤ (1 −

1
d1

)
n∑

i=1

di(di − 1).

Remark 4: It is a well known fact that if G is a bipartite graph, then L(G) and Q(G) have the same eigenvalues.
So if G is a bipartite graph, then Conjecture 1 is equivalent to Conjecture 3.
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