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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. A graph G has a strong parity factor F if for any subset X ⊆ V(G) with |X| even, G contains a
spanning subgraph F satisfying δ(F) ≥ 1, dF(u) ≡ 1 (mod 2) for any u ∈ X, and dF(v) ≡ 0 (mod 2) for any
v ∈ V(G) \ X. In this paper, we first establish a neighborhood condition for the existence of a strong parity
factor in a graph. Then we show an independence number and minimum degree condition to ensure that
a graph has a strong parity factor.

1. Introduction

In this paper, we deal only with finite undirected graphs which have neither loops nor multiple edges.
Let G be a graph. Then we use V(G) and E(G) to denote the vertex set and edge set of G, respectively. The
order of G is the number n = |V(G)| of its vertices. For a vertex x of G, let NG(x) denote the neighborhood
of x in G. Then dG(x) = |NG(x)| is the degree of x in G. The minimum degree of G is denoted by δ(G) (δ
for short). For any X ⊆ V(G), we let NG(X) =

⋃
x∈X

NG(x). We denote by G[X] the subgraph induced in G by

X, and by G − X the subgraph obtained from G by deleting the vertices in X and their incident edges. An
independent set is a set of vertices whose induced subgraph has no edge. Let α(G), ω(G) and i(G) denote
the independence number, the number of connected components and the number of isolated vertices of G,
respectively.

Let 1 and f be two integer-valued functions defined on V(G) such that 0 ≤ 1(x) ≤ f (x) and 1(x) ≡ f (x)
(mod 2) for all x ∈ V(G). A spanning subgraph F of G with dF(x) ≡ f (x) (mod 2) and 1(x) ≤ dF(x) ≤ f (x) for
any x ∈ V(G) is called a (1, f )-parity factor. Let a and b be two integers with 1 ≤ a ≤ b and a ≡ b (mod 2). If
1(x) = a and f (x) = b for any x ∈ V(G), then a (1, f )-parity factor is called an (a, b)-parity factor. If a = 1, then
an (a, b)-parity factor is a (1, b)-odd factor. Notice that a (1, b)-odd factor is an extension of a 1-factor (or a
perfect matching). A (1, f )-parity factor is an f -factor if 1(v) = f (v) for every v ∈ V(G). If f (v) = k for any
v ∈ V(G), then an f -factor is a k-factor. For any real function φ defined on V(G) and any subset S ⊆ V(G),
let φ(S) =

∑
x∈S
φ(x).

Cleemput and Zamfirescu [3], Gross, Kahl and Saccoman [8], Enomoto, Plummer and Saito [6] in-
vestigated the existence of 1-factors in graphs. Zhou, Zhang and Sun [33] showed an Aα-spectral radius
condition for the existence of (1, 2)-factors in graphs. Zhou, Sun and Liu [27] established a connection be-
tween distance signless Laplacian spectral radius and (1, 2)-factors in graphs. Bazgan, Benhamdine, Li and
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Woźniak [1] claimed a toughness condition for a graph with a (1, 2)-factor. Kaneko [9] obtained a criterion
for a graph having a (1, 2)-factor. Kano, Lu and Yu [10] gave a sufficient condition for a graph to possess
a (1, 2)-factor via the number of isolated vertices. Zhou [21–23], Zhou, Sun and Liu [28] presented some
sufficient conditions for graphs to possess (1, 2)-factors. Wu [19], Dai [5], Liu and Pan [13], Liu [11] provided
some sufficient conditions for graphs to have (1, 2)-factors with given properties. Wang and Zhang [17],
Zhou, Xu and Sun [30] obtained some results for the existence of (1, b)-factors in graphs. Cui and Kano [4]
studied the existence of (1, b)-odd factors in graphs. Furuya and Yashima [7], Zhou, Zhang and Liu [32],
Zhou, Pan and Xu [25] showed some sufficient conditions for a graph to have an [a, b]-factor. Liu and Lu
[12] posed a degree condition for a graph to contain an (a, b)-parity factor. Yang, Zhang, Lu and Liu [20]
provided an independence number and connectivity condition for the existence of an (a, b)-parity factor in
a graph. Some other results on graph factors were obtained by Lv [15], Wang and Zhang [16], Wu [18],
Zhou and Liu [24], Zhou and Wu [29], Zhou, Sun and Liu [26].

A graph G has a strong parity factor F if for any subset X ⊆ V(G) with |X| even, G contains a spanning
subgraph F satisfying δ(F) ≥ 1, dF(u) ≡ 1 (mod 2) for any u ∈ X, and dF(v) ≡ 0 (mod 2) for any v ∈ V(G) \ X.
Bujtás, Jendrol’ and Tuza [2] introduced the concept of strong parity factor and put forward some sufficient
conditions for graphs to have strong parity factors. Lu, Yang and Zhang [14] gave a necessary and sufficient
condition for the existence of a strong parity factor in a graph. Zhou and Zhang [31] provided two sufficient
conditions for graphs to contain strong parity factors.

Lu, Yang and Zhang [14] presented a characterization of a graph having a strong parity factor, which is
shown in the following.

Theorem 1.1 (Lu, Yang and Zhang [14]). A graph G has a strong parity factor if and only if

ω(G − S) ≤
∑
x∈S

dG(x) − 2|S| + 1

for any S ⊆ V(G).

Zhou and Zhang [31] presented the following problem on strong parity factors of graphs.

Problem. Investigate other sufficient conditions for the existence of strong parity factors in graphs.

In this paper, we continue to investigate the existence of strong parity factors in graphs, and obtain some
results on strong parity factors in graphs which partially settles the above problem.

Theorem 1.2. Let G be a graph with minimum degree δ ≥ 3. If G satisfies

NG(X) = V(G) or |NG(X)| >
(
1 +

1
2(δ − 2)

)
|X| −

1
δ − 2

(1)

for any X ⊆ V(G), then G contains a strong parity factor.

Theorem 1.3. Let t ≥ 1 be an integer, and let G be a t-connected graph with minimum degree δ ≥ 3. If G
satisfies

α(G) < (δ − 2)t + 2, (2)

then G has a strong parity factor.

2. The proof of Theorem 1.2

Proof of Theorem 1.2. Suppose to the contrary that G contains no strong parity factor. Then by Theorem 1.1,
we conclude

ω(G − S) ≥
∑
x∈S

dG(x) − 2|S| + 2 ≥ (δ − 2)|S| + 2 (3)
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for some subset S ⊆ V(G).
Claim 1. ω(G) = 1.
Proof. Assume that ω(G) ≥ 2, that is, G is not connected. Then for any connected component C of G, we
have V(C) , ∅ and NG(V(C)) , V(G). According to δ ≥ 3, we deduce |V(C)| > 2. Combining this with (1)
and NG(V(C)) , V(G), we get

|V(C)| ≥|NG(V(C))|

>

(
1 +

1
2(δ − 2)

)
|V(C)| −

1
δ − 2

=|V(C)| +
|V(C)|

2(δ − 2)
−

1
δ − 2

>|V(C)| +
2

2(δ − 2)
−

1
δ − 2

=|V(C)|,

which is a contradiction. Claim 1 is proved. □
Claim 2. |S| ≥ 1.
Proof. Assume that |S| = 0. Together with (3), we obtain

ω(G) ≥ 2,

which contradicts Claim 1. We completes the proof of Claim 2. □
According to (3) and Claim 2, we have ω(G − S) ≥ (δ − 2)|S| + 2 ≥ δ ≥ 3. Let a denote the number of

isolated vertices of G − S. We shall consider two cases by the value of a.
Case 1. a ≥ 1.

In this case, we easily see NG(V(G) \ S) , V(G). Together with (1), we conclude

|NG(V(G) \ S)| >
(
1 +

1
2(δ − 2)

)
|V(G) \ S| −

1
δ − 2

=

(
1 +

1
2(δ − 2)

)
|V(G)| −

(
1 +

1
2(δ − 2)

)
|S| −

1
δ − 2

. (4)

Notice that |V(G)| − a ≥ |NG(V(G) \ S)|. Combining this with (4), we possess

|V(G)| − a ≥|NG(V(G) \ S)|

>

(
1 +

1
2(δ − 2)

)
|V(G)| −

(
1 +

1
2(δ − 2)

)
|S| −

1
δ − 2

,

which implies that

|V(G)| < (2δ − 3)|S| − 2(δ − 2)a + 2. (5)

On the other hand, G − S has at least (δ − 2)|S| + 2 − a nontrivial connected components, and thus
a + 2((δ − 2)|S| + 2 − a) ≤ |V(G)| − |S|. Hence, we deduce

|V(G)| ≥ (2δ − 3)|S| − a + 4. (6)

It follows from (5) and (6) that a < 0, which contradicts a ≥ 1.
Case 2. a = 0.

In this case, every connected component has at least two vertices. Take one connected component C in
G − S, and let X = V(G) − S − V(C). It is clear that NG(X) , V(G) and |NG(X)| ≤ |X| + |S|. Combining these
with (1), we obtain

|X| + |S| ≥ |NG(X)| >
(
1 +

1
2(δ − 2)

)
|X| −

1
δ − 2

,
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which yields that

|X| < 2(δ − 2)|S| + 2. (7)

Recall that G − S has at least (δ − 2)|S| + 2 nontrivial connected components. Thus, we deduce

|X| = |V(G) − S − V(C)| ≥ 2((δ − 2)|S| + 1) = 2(δ − 2)|S| + 2,

which is a contradiction to (7). Consequently, the theorem is verified. □

3. The proof of Theorem 1.3

Proof of Theorem 1.3. Suppose to the contrary that a t-connected graph G has no strong parity factor. In terms
of Theorem 1.1, there exists some subset S of V(G) such that

ω(G − S) ≥
∑
x∈S

dG(x) − 2|S| + 2 ≥ (δ − 2)|S| + 2. (8)

Claim 1. |S| ≥ 1.
Proof. If |S| = 0, then it follows from (8) that

ω(G) ≥ 2,

which contradicts that G is t-connected. This completes the proof of Claim 1. □
Claim 2. |S| ≥ t.
Proof. Let |S| ≤ t − 1. Since G is t-connected, G − S is connected. Thus, we obtain ω(G − S) = 1. Combining
this with (8), δ ≥ 3 and Claim 1, we conclude

1 = ω(G − S) ≥ (δ − 2)|S| + 2 ≥ δ ≥ 3,

which is a contradiction. This completes the proof of Claim 2. □
Notice that α(G) ≥ ω(G − S). Together with (2), (8), δ ≥ 3 and Claim 2, we possess

(δ − 2)t + 2 > α(G) ≥ ω(G − S) ≥ (δ − 2)|S| + 2 ≥ (δ − 2)t + 2,

which is a contradiction. We verify Theorem 1.3. □

4. Concluding remark

Bujtás, Jendrol’ and Tuza [2] introduced the concept of strong parity factor and conjectured that each
2-edge-connected graph with minimum degree at least three contains a strong parity factor. Lu, Yang
and Zhang [14] presented a characterization for the existence of a strong parity factor in a graph and
confirmed the above conjecture for 3-edge-connected graph. Zhou and Zhang [31] put forward two
sufficient conditions for a graph to possess a strong parity factor with respect to the size or the toughness.
In this paper, we also study a strong parity factor of a graph and provide two sufficient conditions for
a graph to contain a strong parity factor via the neighborhood, or the independence number and the
minimum degree. Indeed, there are very few results on strong parity factors of graphs. Hence, it is natural
and interesting to establish some new sufficient conditions to guarantee that a graph has a strong parity
factor.
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